Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Oecologia ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951222

ABSTRACT

Competing species may show positive correlations in abundance through time and space if they rely on a shared resource. Such positive correlations might obscure resource partitioning that facilitates competitor coexistence. Here, we examine the potential for resource partitioning between two ecologically similar midge species (Diptera: Chironomidae) in Lake Mývatn, Iceland. Tanytarsus gracilentus and Chironomus islandicus show large, roughly synchronized population fluctuations, implying potential reliance on a shared fluctuating resource and thereby posing the question of how these species coexist at high larval abundances. We first considered spatial partitioning of larvae. Abundances of both species were positively correlated in space; thus, spatial partitioning across different sites in the lake did not appear to be strong. We then inferred differences in dietary resources with stable carbon isotopes. T. gracilentus larvae had significantly higher δ13C values than C. islandicus, suggesting interspecific differences in resource use. Differences in resource selectivity, tube-building behavior, and feeding styles may facilitate resource partitioning between these species. Relative to surface sediments, T. gracilentus had higher δ13C values, suggesting that they selectively graze on 13C-enriched resources such as productive algae from the surface of their tubes. In contrast, C. islandicus had lower δ13C values than surface sediments, suggesting reliance on 13C-depleted resources that may include detrital organic matter and associated microbes that larvae selectively consume from the sediment surface or within their burrow walls. Overall, our study illustrates that coexisting and ecologically similar species may show positive correlations in space and time while using different resources at fine spatial scales.

2.
Insects ; 15(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921137

ABSTRACT

Bark beetles are a significant link in the chain of diseases that lead to the accelerated dying of firs (Abies alba Mill.), a key species in the cultivation of stable mixed-tree stands. The aim of this work was to evaluate biotic interactions in populations of bark beetles that colonised natural traps made from firs. The tested hypothesis was that the niche breadth of the species increases with the increasing density of the population. The research was carried out in near-natural forests containing fir, growing in the Suchedniów-Oblegorek Landscape Park in central Poland. Data were collected from 30 traps trees and 30 windfalls in the years 2010-2023. Cryphalus piceae Ratz. prefers heavily weakened trees, as shown by the fact that it colonised all of the natural traps, which lack any defensive reactions. The sampling method used in the study proved effective, as confirmed by the segregation of the niches of all of the bark beetles. Using nonlinear regression (linearisable model and piecewise linear regression), models were constructed that describe the niche breadths of the bark beetles. The niche parameter is correlated with the density of colonisation. The derived models explain around 77-84% of the variation in the niche breadth of bark beetles on natural traps. The mean relative errors of estimation do not exceed 20%. The niche breadth parameter obtained from the derived regression equations may be used in models that describe-for example-the impact of observed climate change on the population dynamics of bark beetles.

3.
J Fish Biol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632858

ABSTRACT

Rock hind (Epinephelus adscensionis) and spotted moray (Gymnothorax moringa) are ubiquitous mesopredators that co-occur in the nearshore waters of Ascension Island in the South Atlantic Ocean, where they have significant cultural and subsistence value, but management of their non-commercial take is limited. This isolated volcanic system is home to high biomass and low species diversity, which poses two key questions: How can two mesopredators that perform similar ecological roles coexist? And if these two species are so ecologically similar, can they be managed using the same approach? Here, we combined acoustic telemetry, stomach content analysis, and stable isotope analysis to (i) explore space use and diet choices within and between these two species and (ii) to assess appropriate species-specific management options. Although rock hind had high residency and small calculated home ranges (0.0001-0.3114 km2), spotted moray exhibited shorter periods of residency (<3 months) before exiting the array. Vertical space use differed significantly across the 20-month tracking period, with individual differences in vertical space observed for both species. A hierarchical generalized additive model using 12-h averaged depth data identified that rock hind occurred lower in the water column than spotted moray, with both species occupying moderately deeper depths at night versus day (+1.6% relative depth). Spotted moray depth was also significantly predicted by lunar illumination. Aggregating samples by species and tissue type, Bayesian ecological niche modeling identified a 53.14%-54.15% and 78.02%-97.08% probability of niche overlap from fin clip and white muscle, respectively, whereas limited stomach content data indicated a preference for piscivorous prey. Variability in niche breadth between years suggests these species may exploit a range of prey items over time. These findings indicate that although these two species perform a similar ecological role by feeding on prey occupying the same trophic levels, subtle differences in movement behaviors between them suggest a one-rule-fits-all management approach is not likely the most effective option.

4.
J Phycol ; 60(2): 254-272, 2024 04.
Article in English | MEDLINE | ID: mdl-38467467

ABSTRACT

Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.


Subject(s)
Cyanobacteria , Ecosystem , Cyanobacteria/metabolism , Sulfur/metabolism , Carbon/metabolism
5.
Ecology ; 105(5): e4284, 2024 May.
Article in English | MEDLINE | ID: mdl-38494344

ABSTRACT

Resource partitioning is considered a key factor in alleviating competitive interactions, enabling coexistence among consumer species. However, most studies have focused on resource partitioning between species, ignoring the potentially critical role of intraspecific variation in resource use. We investigated floral resource partitioning across species, colonies, and individuals in a species-rich bumblebee community in the diversification center of bumblebees. We used a total of 10,598 bumblebees belonging to 13 species across 5 years in the Hengduan Mountains of southwest China. First, we evaluated the influence of a comprehensive set of floral traits, including both those related to attractiveness (flower color and shape) and rewards (pollen, sugar ratio, nectar volume, sugar concentration, and amino acid content) on resource partitioning at the species level in bumblebee-plant networks. Then, we explored intraspecific resource partitioning on the colony and individual levels. Our results suggest that bumblebee species differ substantially in their use of the available floral resources, and that this mainly depends on flower attractiveness (floral color and shape). Interestingly, we also detected floral resource partitioning at the colony level within all commonest bumblebee species evaluated. In general, floral resource partitioning between bumblebee individuals decreased with species- and individual-level variation in body size (intertegular span). These results suggest that bumblebee species may coexist via the flexibility in their preferences for specific floral traits, which filters up to support the co-occurrence of high numbers of species and individuals in this global hotspot of species richness.


Subject(s)
Flowers , Species Specificity , Animals , Bees/physiology , Flowers/physiology , China , Ecosystem
6.
Ecology ; 105(5): e4296, 2024 May.
Article in English | MEDLINE | ID: mdl-38527496

ABSTRACT

Competition is a prominent mechanism driving population dynamics and structuring community assemblage, which can be investigated by linking shifts in species' ecological niche and the densities of sympatric species because the ecological release from competitive constraints is a density-dependent process. In this work we determine how a steppe passerine community segregates their ecological niches and evaluate the role of competition in inducing changes in the ecological niche of species. We built multidimensional ecological niches (with Gaussian kernel density estimators) using data on the habitat features used by 10 bird species collected from seven sites in the natural steppes of Central Spain over 2 consecutive years. We computed distance and niche similarity metrics to explore the ecological niche partitioning of the bird community. Next, we ran multivariate linear regression models to evaluate the effects of conspecific and heterospecific density (as proxies of intraspecific and interspecific competition, respectively) on niche breadth and/or position of the three most abundant species. We found low niche overlap in the community assemblage but varying levels of niche similarity among pairs of species, which could increase the likelihood of current competition operating in the community. However, we found no effect of heterospecific density on niche breadth or position, although conspecific density was negatively related to niche breadth. Contrary to predictions of competition theory, increased density of conspecifics caused niche contraction. Our results from a multispecies system contribute to advanced knowledge of the biotic mechanisms structuring wildlife communities within the framework of ecological niche theory.


Subject(s)
Ecosystem , Passeriformes , Animals , Passeriformes/physiology , Population Density , Species Specificity , Spain
7.
Ecol Evol ; 14(3): e11141, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500850

ABSTRACT

Predators of similar size often compete over prey. In semi-arid ecosystems where water is a limiting resource, prey availability can be affected by water distribution, which further increases resource competition and exacerbate conflict among predators. This can have implications for carnivore dietary competition. Hence, we evaluated the dynamics of food resource competition between African wild dogs and four competing predators (cheetahs, leopards, lions and spotted hyaenas) in different seasons and across areas with different waterhole densities in Hwange National Park, Zimbabwe. We used the frequency of occurrence of prey items found in predators' scats to analyse diet composition, overlap and prey preference. For most predators, kudu was most frequently consumed and preferred. Low and medium water-dependent prey (medium and small-sized) were mostly consumed by wild dogs, leopards and cheetahs. Wild dog diet overlap was high with all predators, particularly with hyaenas and lions. There were no seasonal differences in the predators diet. The diet overlap of wild dogs with lions was highest in the low waterhole density area, and wild dog diet composition did not differ significantly from the diet of lions and hyaenas. In the low waterhole density area, wild dogs and hyaenas broadened their niche breadth, and predators diet had a higher proportion of low water-dependent prey. A low density of waterholes increased food resource competition. However, high density of waterholes, where there is more prey availability, can increase the aggregation and density of predators, and hence, increase the risks involved in interspecific competition on wild dogs. To reduce food resource competition on wild dogs, we propose to conserve larger-bodied prey that are less dependent on water (e.g. kudu, reedbuck, eland and gemsbok). As the use of water pumping is common practice, we propose maintaining water management heterogeneity where prey which is less dependent on water can also thrive.

8.
J Anim Ecol ; 93(5): 606-618, 2024 May.
Article in English | MEDLINE | ID: mdl-38414265

ABSTRACT

Human-induced species declines and extinctions have led to the downsizing of large-herbivore assemblages, with implications for many ecosystem processes. Active reintroduction of extirpated large herbivores or their functional equivalents may help to reverse this trend and restore diverse ecosystems and their processes. However, it is unclear whether resource competition between native and non-native herbivores could threaten restoration initiatives, or to what extent (re)introduced species may influence local vegetation dynamics. To answer these questions, we investigated the diets of a novel South American herbivore assemblage that includes resident native species, reintroduced native species and introduced non-native species. We examined plant composition, diet breadth and the overlap between species to describe the local herbivory profile and the potential for resource competition. Using DNA metabarcoding on faecal samples (n = 465), we analysed the diets of the herbivore assemblage in the Rincón del Socorro rewilding area of Iberá National Park, Argentina. We compared the species richness of faecal samples, the occurrence of plant families/growth forms and the compositional similarity of samples (inter- and intraspecifically). Our results indicate species-level taxonomic partitioning of plant resources by herbivores in this system. Differences in sample richness, composition and diet breadth reflected a diverse range of herbivory strategies, from grazers (capybara) to mixed feeders/browsers (brocket deer, lowland tapir). Differences in diet compositional similarity (Jaccard) revealed strong taxonomic resource partitioning. The two herbivores with the most similar diets (Pampas deer and brocket deer) still differed by more than 80%. Furthermore, all but one species (axis deer) had more similar diet composition intraspecifically than compared to the others. Overall, we found little evidence for resource competition between herbivore species. Instead, recently reintroduced native species and historically introduced non-natives are likely expanding the range of herbivory dynamics in the ecosystem. Further research will be needed to determine the full ecological impacts of these (re)introduced herbivores. In conclusion, we show clear differences in diet breadth and composition among native, reintroduced and non-native herbivore species that may be key to promoting resource partitioning, species coexistence and the restoration of ecological function.


La disminución y extinción de especies ocasionada por el hombre ha llevado a la reducción de tamaño de las comunidades de grandes herbívoros, con implicaciones para muchos procesos ecosistémicos. La reintroducción activa de grandes herbívoros extirpados, o sus equivalentes funcionales, puede ayudar a revertir esta tendencia y restaurar diversos ecosistemas y sus procesos. Sin embargo, no está claro si la competencia por recursos entre herbívoros nativos y no nativos podría amenazar las iniciativas de restauración, o en qué medida las especies (re)introducidas pueden influir la dinámica de la vegetación local. Para responder a estas preguntas, investigamos las dietas de una comunidad de herbívoros sudamericanos que incluye especies nativas, especies nativas reintroducidas y especies no nativas introducidas. Examinamos la composición de plantas, la amplitud de la dieta y la superposición entre especies para describir el perfil herbívoro local y el potencial de competencia por los recursos. Utilizando metabarcoding de ADN en muestras fecales (n = 465), analizamos las dietas de la comunidad de herbívoros en el sitio de rewilding Rincón del Socorro dentro del Parque Nacional Iberá, Argentina. Comparamos la riqueza de especies en las muestras fecales, la ocurrencia de familias de plantas/formas de crecimiento y la similitud en la composición de las muestras (interespecíficamente e intraespecíficamente). Nuestros resultados indican la partición taxonómica a nivel de especie de los recursos vegetales por parte de los herbívoros en este sistema. Las diferencias en la riqueza de las muestras, la composición y la amplitud de las dietas reflejaron una amplia gama de estrategias de herbivoría, desde pastoreadores (capibara) hasta herbívoros mixtos/ramoneadores (corzuela, tapir amazónico). Las diferencias en la similitud de la composición de la dieta (Jaccard) revelaron una fuerte partición taxonómica de los recursos. Los dos herbívoros con las dietas más similares (venado de las pampas y corzuela), aún así diferían en más del 80%. Además, todas las especies menos una (ciervo axis) tenían una composición dietética más similar intraespecíficamente que en comparación con las demás. En general, encontramos poca evidencia de competencia por recursos entre las especies de herbívoros. En cambio, las especies nativas reintroducidas recientemente y las no nativas introducidas históricamente probablemente estén ampliando el rango de dinámica de herbivoría en el ecosistema. Se necesitarán más investigaciones para determinar todos los impactos ecológicos de estos herbívoros (re)introducidos. En conclusión, mostramos diferencias claras en la amplitud y composición de la dieta entre especies de herbívoros nativas, reintroducidas y no nativas que pueden ser clave para promover la partición de recursos, la coexistencia de especies y la restauración de las funciones ecológicas.


Subject(s)
Diet , Feces , Herbivory , Introduced Species , Animals , Argentina , Diet/veterinary , Plants
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365244

ABSTRACT

Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.


Subject(s)
Microbiota , Seaweed , Bacteria/genetics
10.
Ecol Lett ; 27(2): e14383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344874

ABSTRACT

Diverse viruses and their hosts are interconnected through complex networks of infection, which are thought to influence ecological and evolutionary processes, but the principles underlying infection network structure are not well understood. Here we focus on network dimensionality and how it varies across 37 networks of viruses infecting eukaryotic phytoplankton and bacteria. We find that dimensionality is often strikingly low, with most networks being one- or two-dimensional, although dimensionality increases with network richness, suggesting that the true dimensionality of natural systems is higher. Low-dimensional networks generally exhibit a mixture of host partitioning among viruses and nestededness of host ranges. Networks of bacteria-infecting and eukaryote-infecting viruses possess comparable distributions of dimensionality and prevalence of nestedness, indicating that fundamentals of network structure are similar among domains of life and different viral lineages. The relative simplicity of many infection networks suggests that coevolutionary dynamics are often driven by a modest number of underlying mechanisms.


Subject(s)
Viruses , Bacteria , Biological Evolution , Phytoplankton , Eukaryota
11.
Ecology ; 105(1): e4208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37948189

ABSTRACT

Habitat partitioning among co-occurring, ecologically similar species is widespread in nature and thought to be an important mechanism for coexistence. The factors that cause habitat partitioning, however, are unknown for most species. We experimentally tested among three alternative hypotheses to explain habitat partitioning among two species of co-occurring burying beetle (Nicrophorus) that occupy forest (Nicrophorus orbicollis) and wetland (Nicrophorus hebes) habitats. Captive experiments revealed that the larger N. orbicollis (forest) was consistently dominant to N. hebes (wetland) in competitive interactions for carcasses that they require for reproduction. Transplant enclosure experiments in nature revealed that N. hebes had poor reproductive success whenever the dominant N. orbicollis was present. In the absence of N. orbicollis, N. hebes performed as well, or better, in forest versus its typical wetland habitat. In contrast, N. orbicollis performed poorly in wetlands regardless of the presence of N. hebes. These results support the competitive exclusion-tolerance rule where the competitively dominant N. orbicollis excludes the subordinate N. hebes from otherwise suitable or preferable forest habitat, while the subordinate N. hebes is uniquely able to tolerate the challenges of breeding in wetlands. Transplant experiments further showed that carcass burial depth-an important trait thought to enhance the competitive ability of the dominant N. orbicollis-is costly in wetland habitats. In the presence of N. hebes, N. orbicollis buried carcasses deeper; deeper burial is thought to provide a competitive advantage in forests but further compromised the reproductive success of N. orbicollis in wetlands. Overall, results provide evidence that the competitive exclusion-tolerance rule underlies habitat partitioning among ecologically similar species and that the traits important for competitive dominance in relatively benign environments are costly in more challenging environments, consistent with a trade-off.


Subject(s)
Coleoptera , Animals , Ecosystem , Reproduction , Forests , Wetlands
12.
Insects ; 14(12)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38132595

ABSTRACT

This review describes global rice stemborer assemblages based on published species distributions, apparent host preferences, and reported shifts in assemblage composition in response to environmental factors. At least 56 moth (Lepidoptera: Crambidae, Pyralidae, Noctuidae) and fly (Diptera: Diopsidae, Chloropidae) species have been associated with rice; however, only 21 species are of potential, large-scale economic importance with a further 2 species of localized concern; most of the remaining species' associations with rice are based on dubious records without economic impacts on rice production. A list of stemborer-host associations indicates that rice stemborers are largely oligophagous on grasses (Poaceae), but a few species are polyphagous (also attacking Cyperaceae, Typhaceae, and some Eudicotyledon plants). Total stemborer abundance is determined by rice cropping patterns and management. Assemblage species richness is determined by geographical location, surrounding habitat (particularly as regards secondary and occasional species), and season. Evidence suggests that stemborer assemblage structure is largely determined through conditional interspecific competition. Regional assemblages typically include a single dominant lepidopteran species (primary species) that is largely restricted to rice and for which the climate is optimal; one or more secondary species that vary based on the age of rice attacked, rice anatomy, and the proximity to other habitats (including other crops); and occasional species that probably spill over from adjacent grasslands. The co-occurrence of lepidopteran with dipteran rice stemborers requires further research attention.

13.
Am Nat ; 202(6): 800-817, 2023 12.
Article in English | MEDLINE | ID: mdl-38033179

ABSTRACT

AbstractEcological interactions are crucial to the structure and function of biological communities, but we lack a causal understanding of the forces shaping their emergence during evolutionary diversification. Here we provide a conceptual framework linking different modes of diversification (e.g., ecological diversification), which depend on environmental characteristics, to the evolution of different forms of ecological interactions (e.g., resource partitioning) in asexual lineages. We tested the framework by examining the net interactions in communities of Pseudomonas aeruginosa produced via experimental evolution in nutritionally simple (SIM) or complex (COM) environments by contrasting the productivity and competitive fitness of whole evolved communities relative to their component isolates. As expected, we found that nutritional complexity drove the evolution of communities with net positive interactions whereas SIM communities had similar performance as their component isolates. A follow-up experiment revealed that high fitness in two COM communities was driven by rare variants (frequency <0.1%) that antagonized PA14, the ancestral strain and common competitor used in fitness assays. Our study suggests that the evolution of de novo ecological interactions in asexual lineages is predictable at a broad scale from environmental conditions. Further, our work demonstrates that rare variants can disproportionately impact the function of relatively simple microbial communities.


Subject(s)
Biota , Pseudomonas aeruginosa , Biological Evolution
14.
Ecol Evol ; 13(11): e10781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034340

ABSTRACT

Water availability significantly influences bird and mammal ecology in terrestrial ecosystems. However, our understanding of the role of water as a limiting resource for birds and mammals remains partial because most of the studies have focused on surface water bodies in desert and semi-desert ecosystems. This study assessed the use of two types of surface water bodies (waterholes and epikarst rock pools) and one arboreal (water-filled tree holes) by birds and mammals in the seasonally dry tropical forests of the Calakmul Biosphere Reserve in southern Mexico. We deployed camera traps in 23 waterholes, 22 rock pools, and 19 water-filled tree holes in this karstic region to record visits by small, medium, and large-bodied birds and mammals during the dry and rainy seasons. These cameras were set up for recording videos documenting when animals were making use of water for drinking, bathing, or both. We compared the species diversity and composition of bird and mammal assemblages using the different types of water bodies by calculating Hill numbers and conducting nonmetric multidimensional scaling (NMDS), indicator species, and contingency table analyses. There was a greater species richness of birds and mammals using surface water bodies than tree holes during both seasons. There were significant differences in species composition among bird assemblages using the different water bodies, but dominant species and diversity remained the same. Terrestrial and larger mammalian species preferentially used surface water bodies, whereas arboreal and scansorial small and medium mammals were more common in arboreal water bodies. These findings suggest that differences in water body characteristics might favor segregation in mammal activity. The different water bodies may act as alternative water sources for birds and complementary sources for mammals, potentially favoring species coexistence and increasing community resilience to environmental variation (e.g., fluctuations in water availability). Understanding how differences in water bodies favor species coexistence and community resilience is of great relevance from a basic ecological perspective but is also crucial for anticipating the effects that the increased demand for water by humans and climate change can have on wildlife viability.

15.
Ecol Evol ; 13(11): e10740, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034343

ABSTRACT

Documenting long-term changes in the trophic structure of food webs and how species respond to these changes is essential to forecast their vulnerability and resilience to environmental stressors. Over the past decades, the St. Lawrence marine ecosystem (Canada) has experienced major changes in its physical, chemical, and biological conditions from overfishing, acoustic and chemical pollution, climate change, and the increased abundance of some top predators. These changes have likely affected the trophodynamics of the ecosystem, and are suspected to have deleterious effects on endangered species of mammals and other components of the ecosystem, such as blue whales (Balaenoptera musculus), fin whales (B. physalus), and beluga (Delphinapterus leucas). This study examined the trophic structure of the St. Lawrence marine ecosystem, including the isotopic niche of various species, over two periods of contrasting pressures from anthropogenic and climatic stressors (1995-2003 vs. 2019-2021). Stable isotope ratios were measured in 1240 samples of 21 species of marine invertebrates, fishes, and mammals sampled during both periods. A significant change in the isotopic value and niche position between periods is observed in most of the sampled species. While the direction of change and effect size were not uniform among species, these changes confirmed that substantial modifications in community structure have occurred over time. Niche overlap decreased considerably among some of the pelagic and demersal fishes, and among whale species during the most recent period. Combined with a concomitant reduction in niche breadth in several species, these observations suggested that resource sharing was limited among these species. This study highlighted some degree of dietary plasticity in several species, and a long-term change in the trophic structure of the St. Lawrence marine ecosystem, with likely effects on diet composition and energetics of several populations, including endangered species.

16.
PeerJ ; 11: e16117, 2023.
Article in English | MEDLINE | ID: mdl-37753172

ABSTRACT

The competitive exclusion principle establishes that the coexistence of closely related species requires a certain degree of resource partitioning. However, populations have individuals with different morphological or behavioral traits (e.g., maturity stages, sexes, temporal or spatial segregation). This interaction often results in a multi-level differentiation in food preferences and habits. We explored such resource partitioning between and within three batoid species: Hypanus dipterurus, Narcine entemedor, and Rhinoptera steindachneri in the southern Gulf of California, Mexico, using a combination of stomach content (excluding R. steindachneri) and stable isotope analyses. We found a clear differentiation between H. dipterurus and N. entemedor, where the latter exhibited more benthic habitats, supported by a greater association to infaunal prey and higher δ13C values. Though the degree and patterns of intra-specific segregation varied among species, there was a notable differentiation in both sex and stage of maturity, corresponding to changes in specialization (i.e., isotopic niche breadth) or trophic spectrum (varying prey importance and isotopic values per group). This work is a promising step towards understanding the dietary niche dynamics of these species in a potentially important feeding area within the southern Gulf of California, as well as the biological and ecological mechanisms that facilitate their coexistence.


Subject(s)
Geraniaceae , Nutrition Assessment , Humans , California , Nutritional Status , Food Preferences
17.
PeerJ ; 11: e15849, 2023.
Article in English | MEDLINE | ID: mdl-37637173

ABSTRACT

Small coastal demersal sharks form a major proportion of the sharks landed in Malaysia. However, little is known about their feeding ecology and reproduction. This study sought to elucidate the dietary patterns, role of ontogeny in prey consumption, and reproductive biology of four dominant small demersal shark species in Malaysian waters: the Hasselt's bamboo shark, Chiloscyllium hasseltii; brownbanded bamboo shark, C. punctatum; spadenose shark, Scoliodon laticaudus; and Pacific spadenose shark, S. macrorhynchos. Dietary analyses revealed a high overlap in prey taxa consumed; clear resource partitioning among co-occurring species based on the percentage Prey-specific Index of Relative Importance (%PSIRI), with higher fish %PSIRI for Chiloscyllium hasseltii, higher cephalopod %PSIRI for C. punctatum, and higher crustacean %PSIRI for both Scoliodon species; and an ontogenetic diet shift, seen through changes in prey size. Based on the examination of reproductive organs, the results showed larger sizes at maturity for males compared to females for all four species; no obvious reproductive cycles, based on hepatosomatic and gonadosomatic indices for all species; female bias in the sex ratio of the embryos of Scoliodon species; and increased reproductive output (number of eggs or embryos and size of eggs) with larger female size for C. hasseltii and Scoliodon species. The partitioning of food resources minimizes direct competition for food and supports coexistence within shared coastal habitats. The reproductive strategies of these small coastal sharks appear to be favorable for supporting short-term population productivity; although a reduction in fishing pressure, especially from bottom trawlers, is essential for the long-term sustainable use of these sharks.


Subject(s)
Ecology , Feeding Behavior , Reproduction , Sharks , Animals , Female , Male , Cephalopoda , Sharks/physiology , Malaysia
18.
Ecol Evol ; 13(8): e10422, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37575589

ABSTRACT

Movement is an important characteristic of an animal's ecology, reflecting the perception of and response to environmental conditions. To effectively search for food, movement patterns likely depend on habitat characteristics and the sensory systems used to find prey. We examined movements associated with foraging for two sympatric species of lizards inhabiting the Great Basin Desert of southeastern Oregon. The two species have largely overlapping diets but find prey via different sensory cues, which link to their differing foraging strategies-the long-nosed leopard lizard, Gambelia wislizenii, is a visually-oriented predator, while the western whiptail, Aspidoscelis tigris, relies more heavily on chemosensory cues to find prey. Using detailed focal observations, we characterized the habitat use and movement paths of each species. We placed markers at the location of focal animals every minute for the duration of each 30-min observation. Afterward, we recorded whether each location was in the open or in vegetation, as well as the movement metrics of step length, path length, net displacement, straightness index, and turn angle, and then made statistical comparisons between the two species. The visual forager spent more time in open areas, moved less frequently over shorter distances, and differed in patterns of plant use compared to the chemosensory forager. Path characteristics of step length and turn angle differed between species. The visual predator moved in a way that was consistent with the notion that they require a clear visual path to stalk prey whereas the movement of the chemosensory predator increased their chances of detecting prey by venturing further into vegetation. Sympatric species can partition limited resources through differences in search behavior and habitat use.

19.
Anim Microbiome ; 5(1): 26, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37138356

ABSTRACT

BACKGROUND: The Pacific oyster Crassostrea gigas is one of the main cultivated invertebrate species worldwide. Since 2008, oyster juveniles have been confronted with a lethal syndrome known as the Pacific Oyster Mortality Syndrome (POMS). POMS is a polymicrobial disease initiated by a primary infection with the herpesvirus OsHV-1 µVar that creates an oyster immunocompromised state and evolves towards a secondary fatal bacteremia. RESULTS: In the present article, we describe the implementation of an unprecedented combination of metabarcoding and metatranscriptomic approaches to show that the sequence of events in POMS pathogenesis is conserved across infectious environments. We also identified a core bacterial consortium which, together with OsHV-1 µVar, forms the POMS pathobiota. This bacterial consortium is characterized by high transcriptional activities and complementary metabolic functions to exploit host's resources. A significant metabolic specificity was highlighted at the bacterial genus level, suggesting low competition for nutrients between members of the core bacteria. CONCLUSIONS: Lack of metabolic competition between the core bacteria might favor complementary colonization of host tissues and contribute to the conservation of the POMS pathobiota across distinct infectious environments.

20.
Exp Appl Acarol ; 89(3-4): 417-432, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37071227

ABSTRACT

Prosopis laevigata (mesquite; Fabaceae) forms fertility islands in soils of semi-arid lands where microbial diversity concentrates in response to the accumulation of resources in the soil beneath individual plants, promoting organic matter decomposition and nutrient cycling. This phenomenon provides suitable conditions for the proliferation of key edaphic elements such as fungi and mites. Mite-fungal interactions are central for our understanding of nutrient cycling processes in resource-limited arid food webs; yet, no information is available about fertility islands in semi-arid lands. Thus, we aimed to determine in vitro fungal-based feeding preferences and molecular gut content of the oribatid mite species Zygoribatula cf. floridana and Scheloribates cf. laevigatus, which are abundant under the canopy of P. laevigata in an intertropical semi-arid zone in Central Mexico. Our results on the gut content analysis of these oribatid species resulted in the ITS-based identification of the following fungi: Aspergillus homomorphus, Beauveria bassiana, Filobasidium sp., Mortierella sp., Roussoella sp., Saccharomyces cerevisiae, Sclerotiniaceae sp. and Triparticalcar sp. Furthermore, under laboratory conditions both oribatid mite species exhibited feeding preferences on melanized fungi, such as Cladosporium spp., whereas A. homomorphus and Fusarium penzigi were avoided. Our findings indicated that the analyzed oribatid mite species have similar feeding preferences for melanized fungi, which might suggest resource partitioning and a degree of preference, explaining the coexistence of both oribatid species.


Subject(s)
Fabaceae , Mites , Prosopis , Animals , Food Chain , Fertility , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...