Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.847
Filter
1.
Cortex ; 178: 1-17, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38954985

ABSTRACT

Recent advances in cognitive neurosciences suggest that intrinsic brain networks dynamics are associated with cognitive functioning. Despite this emerging perspective, limited research exists to validate this hypothesis. This Registered Report aimed to specifically test the relationship between intrinsic brain spatio-temporal dynamics and executive functions. Resting-state EEG microstates were used to assess brain spatio-temporal dynamics, while a comprehensive battery of nine cognitive function tasks was employed to evaluate executive functions in 140 participants. We hypothesized that microstates (class C and D) metrics would correlate with an executive functions composite score. Contrary to expectations, our hypotheses were not supported by the data. We however observed a small, non-significant trend with a negative correlation between microstate D occurrences and executive functions scores (r = -.18, 95% CI [-.33, -.01]) which however did not meet the adjusted threshold for significance. In light of the inconclusive or minor effect sizes observed, the assertion that intrinsic brain networks dynamics - as measured by resting-state EEG microstate metrics - are a reliable signature of executive functioning remains unsupported.

3.
Hum Brain Mapp ; 45(10): e26764, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38994667

ABSTRACT

Presurgical planning prior to brain tumor resection is critical for the preservation of neurologic function post-operatively. Neurosurgeons increasingly use advanced brain mapping techniques pre- and intra-operatively to delineate brain regions which are "eloquent" and should be spared during resection. Functional MRI (fMRI) has emerged as a commonly used non-invasive modality for individual patient mapping of critical cortical regions such as motor, language, and visual cortices. To map motor function, patients are scanned using fMRI while they perform various motor tasks to identify brain networks critical for motor performance, but it may be difficult for some patients to perform tasks in the scanner due to pre-existing deficits. Connectome fingerprinting (CF) is a machine-learning approach that learns associations between resting-state functional networks of a brain region and the activations in the region for specific tasks; once a CF model is constructed, individualized predictions of task activation can be generated from resting-state data. Here we utilized CF to train models on high-quality data from 208 subjects in the Human Connectome Project (HCP) and used this to predict task activations in our cohort of healthy control subjects (n = 15) and presurgical patients (n = 16) using resting-state fMRI (rs-fMRI) data. The prediction quality was validated with task fMRI data in the healthy controls and patients. We found that the task predictions for motor areas are on par with actual task activations in most healthy subjects (model accuracy around 90%-100% of task stability) and some patients suggesting the CF models can be reliably substituted where task data is either not possible to collect or hard for subjects to perform. We were also able to make robust predictions in cases in which there were no task-related activations elicited. The findings demonstrate the utility of the CF approach for predicting activations in out-of-sample subjects, across sites and scanners, and in patient populations. This work supports the feasibility of the application of CF models to presurgical planning, while also revealing challenges to be addressed in future developments. PRACTITIONER POINTS: Precision motor network prediction using connectome fingerprinting. Carefully trained models' performance limited by stability of task-fMRI data. Successful cross-scanner predictions and motor network mapping in patients with tumor.


Subject(s)
Connectome , Feasibility Studies , Magnetic Resonance Imaging , Preoperative Care , Humans , Connectome/methods , Magnetic Resonance Imaging/methods , Female , Male , Adult , Preoperative Care/methods , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/physiopathology , Motor Activity/physiology , Middle Aged , Brain/diagnostic imaging , Brain/physiology , Machine Learning , Young Adult
4.
Brain Behav ; 14(7): e3600, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988142

ABSTRACT

OBJECTIVE: In this study, multimodal magnetic resonance imaging (MRI) imaging was used to deeply analyze the changes of hippocampal subfields perfusion and function in patients with type 2 diabetes mellitus (T2DM), aiming to provide image basis for the diagnosis of hippocampal-related nerve injury in patients with T2DM. METHODS: We recruited 35 patients with T2DM and 40 healthy control subjects (HCs). They underwent resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) scans, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, and regional homogeneity (ReHo) value of the bilateral hippocampus subfields. RESULTS: The CBF values of cornu ammonis area 1 (CA1), dentate gyrus (DG), and subiculum in the right hippocampus of T2DM group were significantly lower than those of HCs. The ALFF values of left hippocampal CA3, subiculum, and bilateral hippocampus amygdala transition area (HATA) were higher than those of HCs in T2DM group. The ReHo values of CA3, DG, subiculum, and HATA in the left hippocampus of T2DM group were higher than those of HCs. In the T2DM group, HbAc1 and FINS were negatively correlated with imaging characteristics in some hippocampal subregions. CONCLUSION: This study indicates that T2DM patients had decreased perfusion in the CA1, DG, and subiculum of the right hippocampus, and the right hippocampus subiculum was associated with chronic hyperglycemia. Additionally, we observed an increase in spontaneous neural activity within the left hippocampal CA3, subiculum, and bilateral HATA regions, as well as an enhanced local neural coordination in the left hippocampal CA3, DG, HATA, and subiculum among patients with type 2 diabetes, which may reflect an adaptive compensation for cognitive decline. However, this compensation may decline with the exacerbation of metabolic disorders.


Subject(s)
Cerebrovascular Circulation , Diabetes Mellitus, Type 2 , Hippocampus , Magnetic Resonance Imaging , Humans , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/diagnostic imaging , Male , Female , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Cerebrovascular Circulation/physiology , Middle Aged , Adult , Rest/physiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging
5.
Hum Brain Mapp ; 45(10): e26746, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38989618

ABSTRACT

The human brain exhibits spatio-temporally complex activity even in the absence of external stimuli, cycling through recurring patterns of activity known as brain states. Thus far, brain state analysis has primarily been restricted to unimodal neuroimaging data sets, resulting in a limited definition of state and a poor understanding of the spatial and temporal relationships between states identified from different modalities. Here, we applied hidden Markov model (HMM) to concurrent electroencephalography-functional magnetic resonance imaging (EEG-fMRI) eyes open (EO) and eyes closed (EC) resting-state data, training models on the EEG and fMRI data separately, and evaluated the models' ability to distinguish dynamics between the two rest conditions. Additionally, we employed a general linear model approach to identify the BOLD correlates of the EEG-defined states to investigate whether the fMRI data could be used to improve the spatial definition of the EEG states. Finally, we performed a sliding window-based analysis on the state time courses to identify slower changes in the temporal dynamics, and then correlated these time courses across modalities. We found that both models could identify expected changes during EC rest compared to EO rest, with the fMRI model identifying changes in the activity and functional connectivity of visual and attention resting-state networks, while the EEG model correctly identified the canonical increase in alpha upon eye closure. In addition, by using the fMRI data, it was possible to infer the spatial properties of the EEG states, resulting in BOLD correlation maps resembling canonical alpha-BOLD correlations. Finally, the sliding window analysis revealed unique fractional occupancy dynamics for states from both models, with a selection of states showing strong temporal correlations across modalities. Overall, this study highlights the efficacy of using HMMs for brain state analysis, confirms that multimodal data can be used to provide more in-depth definitions of state and demonstrates that states defined across different modalities show similar temporal dynamics.


Subject(s)
Brain , Electroencephalography , Magnetic Resonance Imaging , Rest , Humans , Rest/physiology , Adult , Male , Female , Brain/diagnostic imaging , Brain/physiology , Young Adult , Brain Mapping , Markov Chains
6.
Front Psychiatry ; 15: 1399062, 2024.
Article in English | MEDLINE | ID: mdl-38966185

ABSTRACT

Background: Hoarding disorder (HD) is characterized by cognitive control impairments and abnormal brain activity in the insula and anterior cingulate cortex (ACC) during disposal of personal items or certain executive function tasks. However, whether there are any changes in resting-state functional connectivity of the insula and ACC remains unclear. Methods: A total of 55 subjects, including 24 patients with HD and 31 healthy controls (HCs), participated in the study. We acquired resting-state functional magnetic resonance imaging data and examined group differences in functional connectivity from the insula and ACC in whole-brain voxels. Results: In patients with HD, functional connectivity was significantly lower between the right insula and right inferior frontal gyrus (IFG) and left superior temporal gyrus (STG) compared to HCs. There was no correlation between these connectivities and HD symptoms. Conclusions: Although the clinical implication is uncertain, our results suggest that patients with HD have resting-state functional alterations between the insula and IFG and STG, corresponding with the results of previous fMRI studies. These findings provide new insight into the neurobiological basis of HD.

7.
Hum Brain Mapp ; 45(10): e26780, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38984446

ABSTRACT

Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.


Subject(s)
Chronic Pain , Magnetic Resonance Imaging , Rest , Humans , Male , Female , Chronic Pain/physiopathology , Chronic Pain/diagnostic imaging , Adult , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Musculoskeletal Pain/physiopathology , Musculoskeletal Pain/diagnostic imaging , Resilience, Psychological , Prospective Studies , Biomarkers , Longitudinal Studies , Follow-Up Studies
8.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38984703

ABSTRACT

The propensity to experience meaningful patterns in random arrangements and unrelated events shows considerable interindividual differences. Reduced inhibitory control (over sensory processes) and decreased working memory capacities are associated with this trait, which implies that the activation of frontal as well as posterior brain regions may be altered during rest and working memory tasks. In addition, people experiencing more meaningful coincidences showed reduced gray matter of the left inferior frontal gyrus (IFG), which is linked to the inhibition of irrelevant information in working memory and the control and integration of multisensory information. To study deviations in the functional connectivity of the IFG with posterior associative areas, the present study investigated the fMRI resting state in a large sample of n = 101 participants. We applied seed-to-voxel analysis and found that people who perceive more meaningful coincidences showed negative functional connectivity of the left IFG (i.e. pars triangularis) with areas of the left posterior associative cortex (e.g. superior parietal cortex). A data-driven multivoxel pattern analysis further indicated that functional connectivity of a cluster located in the right cerebellum with a cluster including parts of the left middle frontal gyrus, left precentral gyrus, and the left IFG (pars opercularis) was associated with meaningful coincidences. These findings add evidence to the neurocognitive foundations of the propensity to experience meaningful coincidences, which strengthens the idea that deviations of working memory functions and inhibition of sensory and motor information explain why people experience more meaning in meaningless noise.


Subject(s)
Magnetic Resonance Imaging , Humans , Male , Female , Adult , Young Adult , Brain/physiology , Brain/diagnostic imaging , Brain Mapping , Memory, Short-Term/physiology , Rest/physiology , Neural Pathways/physiology , Neural Pathways/diagnostic imaging
9.
Psychiatry Res Neuroimaging ; 343: 111860, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38991286

ABSTRACT

Impulsivity is a trait associated with several psychiatric conditions, not least addictive disorders. While the neural mechanisms behind certain aspects of impulsivity have been studied extensively, there are few imaging studies examining this neurocircuitry in populations with substance use disorders. Therefore, we aimed to examine the functional connectivity of relevant neural networks, and their possible association with trait impulsivity, in a sample with severe amphetamine use disorder and a control group of healthy subjects. We used data collected in a randomized clinical trial studying the acute effects of oral naltrexone in amphetamine use disorder. Our final sample included 32 amphetamine users and 27 healthy controls. Trait impulsivity was rated with the Barratt Impulsiveness Scale-11, and functional connectivity was measured during resting-state fMRI, looking specifically at networks involving prefrontal regions previously implicated in studies of impulsivity. Amphetamine users had higher subjective ratings of impulsivity as compared to healthy controls, and these scores correlated positively with a wide-spread prefrontal hyperconnectivity that was found among the amphetamine users. These findings highlight the importance of aberrant prefrontal function in severe addiction.

10.
Neuroimage Clin ; 43: 103639, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991435

ABSTRACT

Primary progressive aphasia (PPA) variants present with distinct disruptions in speech-language functions with little known about the interplay between affected and spared regions within the speech-language network and their interaction with other functional networks. The Neurodegenerative Research Group, Mayo Clinic, recruited 123 patients with PPA (55 logopenic (lvPPA), 44 non-fluent (nfvPPA) and 24 semantic (svPPA)) who were matched to 60 healthy controls. We investigated functional connectivity disruptions between regions within the left-speech-language network (Broca, Wernicke, anterior middle temporal gyrus (aMTG), supplementary motor area (SMA), planum temporale (PT) and parietal operculum (PO)), and disruptions to other networks (visual association, dorsal-attention, frontoparietal and default mode networks (DMN)). Within the speech-language network, multivariate linear regression models showed reduced aMTG-Broca connectivity in all variants, with lvPPA and nfvPPA findings remaining significant after Bonferroni correction. Additional loss in Wernicke-Broca connectivity in nfvPPA, Wernicke-PT connectivity in lvPPA and greater aMTG-PT connectivity in svPPA were also noted. Between-network connectivity findings in all variants showed reduced aMTG-DMN and increased aMTG-dorsal-attention connectivity, with additional disruptions between aMTG-visual association in both lvPPA and svPPA, aMTG-frontoparietal in lvPPA, and Wernicke-DMN breakdown in svPPA. These findings suggest that aMTG connectivity breakdown is a shared feature in all PPA variants, with lvPPA showing more extensive connectivity disruptions with other networks.

11.
Int J Hyperthermia ; 41(1): 2376678, 2024.
Article in English | MEDLINE | ID: mdl-38991553

ABSTRACT

PURPOSE: To investigate how passive hyperthermia affect the resting-state functional brain activity based on an acute mouse model after heat stress exposure. MATERIALS AND METHODS: Twenty-eight rs-fMRI data of C57BL/6J male mice which weighing about 24 ∼ 29 g and aged 12 ∼ 16 weeks were collected. The mice in the hyperthermia group (HT, 40 °C ± 0.5 °C, 40 min) were subjected to passive hyperthermia before the anesthesia preparation for scanning. While the normal control group (NC) was subjected to normothermia condition (NC, 20 °C ± 2 °C, 40 min). After data preprocessing, we performed independent component analysis (ICA) and region of interested (ROI)-ROI functional connectivity (FC) analyses on the data of both HT (n = 13) and NC (n = 15). RESULTS: The group ICA analysis showed that the HT and the NC both included 11 intrinsic connectivity networks (ICNs), and can be divided into four types of networks: the cortical network (CN), the subcortical network (SN), the default mode network (DMN), and cerebellar networks. CN and SN belongs to sensorimotor network. Compared with NC, the functional network organization of ICNs in the HT was altered and the overall functional intensity was decreased. Furthermore, 13 ROIs were selected in CN, SN, and DMN for further ROI-ROI FC analysis. The ROI-ROI FC analysis showed that passive hyperthermia exposure significantly reduced the FC strength in the overall brain represented by CN, SN, DMN of mice. CONCLUSION: Prolonged exposure to high temperature has a greater impact on the overall perception and cognitive level of mice, which might help understand the relationship between neuronal activities and physiological thermal sensation and regulation as well as behavioral changes.


Subject(s)
Brain , Hyperthermia , Mice, Inbred C57BL , Animals , Mice , Male , Brain/physiopathology , Brain/diagnostic imaging , Hyperthermia/physiopathology , Magnetic Resonance Imaging/methods
12.
Front Hum Neurosci ; 18: 1357900, 2024.
Article in English | MEDLINE | ID: mdl-38974482

ABSTRACT

Recent works point to the importance of emotions in special-numerical associations. There remains a notable gap in understanding the electrophysiological underpinnings of such associations. Exploring resting-state (rs) EEG, particularly in frontal regions, could elucidate emotional aspects, while other EEG measures might offer insights into the cognitive dimensions correlating with behavioral performance. The present work investigated the relationship between rs-EEG measures (emotional and cognitive traits) and performance in the mental number line (MNL). EEG activity in theta (3-7 Hz), alpha (8-12 Hz, further subdivided into low-alpha and high-alpha), sensorimotor rhythm (SMR, 13-15 Hz), beta (16-25 Hz), and high-beta/gamma (28-40 Hz) bands was assessed. 76 university students participated in the study, undergoing EEG recordings at rest before engaging in a computerized number-to-position (CNP) task. Analysis revealed significant associations between frontal asymmetry, specific EEG frequencies, and MNL performance metrics (i.e., mean direction bias, mean absolute error, and mean reaction time). Notably, theta and beta asymmetries correlated with direction bias, while alpha peak frequency (APF) and beta activity related to absolute errors in numerical estimation. Moreover, the study identified significant correlations between relative amplitude indices (i.e., theta/beta ratio, theta/SMR ratio) and both absolute errors and reaction times (RTs). Our findings offer novel insights into the emotional and cognitive aspects of EEG patterns and their links to MNL performance.

13.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38997211

ABSTRACT

To explore the effects of age and gender on the brain in children with autism spectrum disorder using magnetic resonance imaging. 185 patients with autism spectrum disorder and 110 typically developing children were enrolled. In terms of gender, boys with autism spectrum disorder had increased gray matter volumes in the insula and superior frontal gyrus and decreased gray matter volumes in the inferior frontal gyrus and thalamus. The brain regions with functional alterations are mainly distributed in the cerebellum, anterior cingulate gyrus, postcentral gyrus, and putamen. Girls with autism spectrum disorder only had increased gray matter volumes in the right cuneus and showed higher amplitude of low-frequency fluctuation in the paracentral lobule, higher regional homogeneity and degree centrality in the calcarine fissure, and greater right frontoparietal network-default mode network connectivity. In terms of age, preschool-aged children with autism spectrum disorder exhibited hypo-connectivity between and within auditory network, somatomotor network, and visual network. School-aged children with autism spectrum disorder showed increased gray matter volumes in the rectus gyrus, superior temporal gyrus, insula, and suboccipital gyrus, as well as increased amplitude of low-frequency fluctuation and regional homogeneity in the calcarine fissure and precentral gyrus and decreased in the cerebellum and anterior cingulate gyrus. The hyper-connectivity between somatomotor network and left frontoparietal network and within visual network was found. It is essential to consider the impact of age and gender on the neurophysiological alterations in autism spectrum disorder children when analyzing changes in brain structure and function.


Subject(s)
Autism Spectrum Disorder , Brain , Magnetic Resonance Imaging , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/pathology , Male , Female , Child , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Child, Preschool , Sex Characteristics , Gray Matter/diagnostic imaging , Gray Matter/pathology , Adolescent , Age Factors , Brain Mapping/methods
14.
J Neural Eng ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986469

ABSTRACT

OBJECTIVE: Although Motor Imagery-based Brain-Computer Interface (MI-BCI) holds significant potential, its practical application faces challenges such as BCI-illiteracy. To mitigate this issue, researchers have attempted to predict BCI-illiteracy by using the resting state, as this was found to be associated with BCI performance. As connectivity's significance in neuroscience has grown, BCI researchers have applied connectivity to it. However, the issues of connectivity have not been considered fully. First, although various connectivity metrics exist, only some have been used to predict BCI-illiteracy. This is problematic because each metric has a distinct hypothesis and perspective to estimate connectivity, resulting in different outcomes according to the metric. Second, the frequency range affects the connectivity estimation. In addition, it is still unknown whether each metric has its own optimal frequency range. Third, the way that estimating connectivity may vary depending upon the dataset has not been investigated. Meanwhile, we still do not know a great deal about how the resting state EEG network differs between BCI-literacy and -illiteracy. APPROACH: To address the issues above, we analysed three large public EEG datasets using three functional connectivity (FC) and three effective connectivity (EC) metrics by employing diverse graph theory measures. Our analysis revealed that the appropriate frequency range to predict BCI-illiteracy varies depending upon the metric. The alpha range was found to be suitable for the metrics of the frequency domain, while alpha + theta were found to be appropriate for Multivariate Granger Causality (MVGC). The difference in network efficiency between BCI-literate and -illiterate groups was constant regardless of the metrics and datasets used. Although we observed that BCI-literacy had stronger connectivity, no other significant constructional differences were found. SIGNIFICANCE: Based upon our findings, we predicted MI-BCI performance for the entire dataset. We discovered that combining several graph features could improve the prediction's accuracy.

15.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20230167, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988188

ABSTRACT

OBJECTIVE: Loneliness reportedly increases the risk of dementia, especially Alzheimer's disease (AD). The authors' previous study demonstrated associations between loneliness and structural abnormalities observed in early-stage AD. The present study examined associations between the brain's functional characteristics and loneliness among older adults with concerns about cognitive decline. METHODS: This single-center study included 43 participants (13 with amnestic mild cognitive impairment and 30 with normal cognition). Participants were assessed with the revised University of California Los Angeles (UCLA) Loneliness Scale and underwent resting-state functional MRI. Functional images were preprocessed with the CONN toolbox. The selected seeds were within brain regions reportedly associated with loneliness. One-sample general linear model analysis was performed to examine regressions of UCLA Loneliness Scale scores and functional connectivity between the seeds and regions of interest. RESULTS: The revised UCLA Loneliness Scale scores were positively correlated with functional connectivity between the right hippocampus and left lateral parietal lobe and were negatively correlated with functional connectivity between the left amygdala and left frontal operculum and between the left amygdala and right supramarginal gyrus. Analyses were adjusted for age, sex, and education and scores on the Mini-Mental State Examination and Clinical Dementia Rating scale. CONCLUSIONS: Loneliness was associated with abnormal function of the hippocampus, parts of the parietal lobe and frontal cortex, and the amygdala. These findings may suggest a possible correlation between loneliness and neurological changes associated with dementia.

16.
Front Aging Neurosci ; 16: 1420072, 2024.
Article in English | MEDLINE | ID: mdl-39026994

ABSTRACT

Introduction: Studies on the aging brain often occur in active settings, but comparatively few investigate brain activity in resting states. However, exploring brain activity in a resting state offers valuable insights into spontaneous neural processes unaffected by task-specific influences. Objective: To investigate the relationship between self-care practices, cognitive function, and patterns of brain activity in healthy older adults, taking into account predictions from aging brain models. Methodology: 77 older adults aged 61 to 87 completing a self-care practices questionnaire, neuropsychological tests, and resting-state electroencephalogram (EEG) recordings. Participants were classified into two groups according to their self-care practices: traditional self-care (T-SC) and developmental self-care (D-SC). Results: Although neuropsychological tests did not yield significant differences between the D-SC and T-SC groups, patterns of brain activity revealed distinct behaviors. The T-SC group demonstrated patterns more consistent with established aging brain models, contrasting with the D-SC group, which exhibited brain activity akin to that observed in younger adults. Specifically, the T-SC group displayed hyperactivation related to memory and executive function performance, alongside heightened alpha power in posterior regions. Furthermore, bilateral frontal activation in the beta band was evident. Conclusions: The findings suggest a nuanced relationship between self-care practices and brain activity in older adults. While the T-SC group demonstrated brain activity patterns consistent with conservative aging, indicating the preservation of typical aging characteristics, the D-SC group displayed activity suggestive of a potential protective effect. This effect may be linked to self-care strategies that foster development and resilience in cognitive aging.

17.
J Pain ; : 104641, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029880

ABSTRACT

Increasing research points to a decline in the ability to internally regulate pain as a contributing factor to the increased pain susceptibility in aging. This study investigated the connection between pain regulation and resting-state functional connectivity (rsFC) in older adults with chronic pain. We compared functional magnetic resonance imaging rsFC of 30 older adults with chronic pain (69,5±6.58 years; 14 males), 29 pain-free older (70.48±4.60; 15 males), and 30 younger adults (20.0±1.58; 15 males). Pain inhibition and facilitatory capabilities were assessed using Conditioned Pain Modulation (CPM) and Temporal Summation. Older adults with chronic pain displayed lower pain inhibition during the CPM than pain-free older and younger adults. rsFC analysis showed that older adults with chronic pain, in comparison to younger participants, displayed an abnormal hyperconnectivity between right dorsolateral prefrontal cortex (dlPFC) and left amygdala (AMY), which was significantly correlated with lower pain inhibition during the CPM. Older adults with chronic pain displayed higher connectivity between primary somatosensory cortex and nucleus accumbens (NAc) than pain-free older adults. Finally, both older adults groups displayed reduced connectivity between brain structures involved in pain inhibition and processing in comparison to younger adults. Altogether, our results suggest that suffering from pain during aging leads to a dysfunction of pain inhibitory processes, which significantly surpass those caused by normal aging. Furthermore, our results point to a key role of emotional and motivational brain areas, and their interaction with executive and somatosensory areas, in the reduced inhibitory capacity and likely the maintenance of chronic pain in aging. PERSPECTIVE: This study examines the link between reduced pain inhibition capacity and increased resting-state connectivity between affective, sensory, and executive brain structures in older adults with chronic pain. These findings could inform new pain assessment and treatment programs for this population.

18.
Brain Commun ; 6(4): fcae228, 2024.
Article in English | MEDLINE | ID: mdl-39035415

ABSTRACT

Whilst the average lifespan of persons with HIV now approximates that of the general population, these individuals are at a much higher risk of developing cognitive impairment with ∼35-70% experiencing at least subtle cognitive deficits. Previous works suggest that HIV impacts both low-level primary sensory regions and higher-level association cortices. Notably, multiple neuroHIV studies have reported elevated levels of spontaneous cortical activity during the pre-stimulus baseline period of task-based experiments, but only a few have examined such activity during resting-state conditions. In the current study, we examined such spontaneous cortical activity using magnetoencephalography in 79 persons with HIV and 83 demographically matched seronegative controls and related this neural activity to performance on neuropsychological assessments of cognitive function. Consistent with previous works, persons with HIV exhibited stronger spontaneous gamma activity, particularly in inferior parietal, prefrontal and superior temporal cortices. In addition, serostatus moderated the relationship between spontaneous beta activity and attention, motor and processing speed scores, with controls but not persons with HIV showing stronger beta activity with better performance. The current results suggest that HIV predominantly impacts spontaneous activity in association cortices, consistent with alterations in higher-order brain function, and may be attributable to deficient GABAergic signalling, given its known role in the generation of gamma and beta oscillations. Overall, these effects align with previous studies showing aberrant spontaneous activity in persons with HIV and provide a critical new linkage to domain-specific cognitive dysfunction.

19.
EBioMedicine ; 106: 105255, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032426

ABSTRACT

BACKGROUND: Controllability analysis is an approach developed for evaluating the ability of a brain region to modulate function in other regions, which has been found to be altered in major depressive disorder (MDD). Both depressive symptoms and cognitive impairments are prominent features of MDD, but the case-control differences of controllability between MDD and controls can not fully interpret the contribution of both clinical symptoms and cognition to brain controllability and linked patterns among them in MDD. METHODS: Sparse canonical correlation analysis was used to investigate the associations between resting-state functional brain controllability at the network level and clinical symptoms and cognition in 99 first-episode medication-naïve patients with MDD. FINDINGS: Average controllability was significantly correlated with clinical features. The average controllability of the dorsal attention network (DAN) and visual network had the highest correlations with clinical variables. Among clinical variables, depressed mood, suicidal ideation and behaviour, impaired work and activities, and gastrointestinal symptoms were significantly negatively associated with average controllability, and reduced cognitive flexibility was associated with reduced average controllability. INTERPRETATION: These findings highlight the importance of brain regions in modulating activity across brain networks in MDD, given their associations with symptoms and cognitive impairments observed in our study. Disrupted control of brain reconfiguration of DAN and visual network during their state transitions may represent a core brain mechanism for the behavioural impairments observed in MDD. FUNDING: National Natural Science Foundation of China (82001795 and 82027808), National Key R&D Program (2022YFC2009900), and Sichuan Science and Technology Program (2024NSFSC0653).

20.
Biol Psychiatry ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032726

ABSTRACT

BACKGROUND: Neurocognitive impairment is a well-known phenomenon in schizophrenia that begins prior to psychosis onset. Connectome-wide association studies have inconsistently linked cognitive performance to resting-state fMRI. We hypothesized a carefully selected cognitive instrument and refined population would allow identification of reliable brain-behavior associations with connectome-wide association studies. To test this hypothesis, we first identified brain-cognition correlations via a connectome-wide association study in early psychosis. We then asked, in an independent dataset, if these brain-cognition relationships would generalize to individuals who develop psychosis in the future. METHODS: The Seidman Auditory Continuous Performance Task (ACPT) effectively differentiates healthy participants from those with psychosis. Our connectome-wide association study used the Human Connectome Project for Early Psychosis (n=183) to identify links between connectivity and ACPT performance. We then analyzed the North American Prodrome Longitudinal Study 2 (n=345), a multi-site prospective study of individuals at risk for psychosis. We tested the connectome-wide association study-identified cognition-connectivity relationship in both individuals at risk for psychosis and controls. RESULTS: Our connectome-wide association study in early-course psychosis identified robust associations between better ACPT performance and higher prefrontal-somatomotor connectivity (p<.005). Prefrontal-somatomotor connectivity was also related to ACPT performance in at-risk individuals who would develop psychosis (n=17). This finding was not observed in nonconverters (n=196) or controls (n=132). CONCLUSIONS: This connectome-wide association study identified reproducible links between connectivity and cognition in separate samples of psychosis and at-risk individuals who would later develop psychosis. A carefully selected task and population improves the ability of connectome-wide association studies to identify reliable brain-phenotype relationships.

SELECTION OF CITATIONS
SEARCH DETAIL
...