Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Indian J Tuberc ; 71(1): 41-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38296390

ABSTRACT

BACKGROUND: Pulmonary tuberculosis has emerged as one of the leading causes of deaths across the globe. The prevalence of Mycobacterium tuberculosis has also shown an increasing trend over the time which may be attributed to the increase in multidrug resistant strains and HIV epidemics. There are several factors like change in the gene structure and cellular activities of the host and the bacterium which may have changed the host response towards tuberculosis. Additionally, the recent reports have suggested that Toll-Like Receptors (TLRs) play an important role in the activation of immune responses against various pathogens. Therefore, this study has been designed to investigate the possible correlation of TLR gene polymorphism and prevalence of pulmonary tuberculosis. METHOD: This study investigates 300 samples collected from patients with pulmonary tuberculosis (150) and healthy controls (150) from the Doda region of Jammu, India. For analysis purpose, DNA from the collected samples were isolated and subjected to sequence specific PCR amplification of TLR-1 and TLR-2 genes. The amplicons of TLR-1 and TLR-2 were further digested with restriction enzymes PvuII and Xbal, respectively, and visualized on agarose gel, subsequently. RESULT: The results suggest that frequency of TLR2 gene polymorphism (73.9%) is high in the patients below the age of 50 years, whereas, frequency of TLR-1 gene polymorphism is high (71%) in the patients above 50 years of age (p = 0.005). Further, the restriction digestion analysis of TLR1 genes has shown that nearly 78% of the confirmed normal cases exhibit homozygous normal conditions followed by 12% cases with heterozygous conditions and 10% cases of homozygous mutants. Similarly for TLR2 genes, nearly 78.6% of the confirmed normal cases have shown homozygous normal conditions followed heterozygous conditions (12.6%) and homozygous mutants (8.6%). CONCLUSION: This study establishes a preliminary correlation between TLR polymorphism and tuberculosis.


Subject(s)
Toll-Like Receptor 1 , Toll-Like Receptor 2 , Tuberculosis, Pulmonary , Humans , Middle Aged , Case-Control Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptors/genetics , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/genetics , India/epidemiology
2.
Mol Biol Rep ; 50(6): 5495-5499, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37031321

ABSTRACT

BACKGROUND: Type-IIS restriction enzymes cut outside their recognition sites, allowing them to remove their binding sites upon digestion. This feature has resulted in their wide application in molecular biology techniques, including seamless cloning methods, enzymatic CRISPR library generation, and others. We studied the ability of the Type-IIS restriction enzyme MmeI, which recognizes an asymmetric sequence TCCRAC and cuts 20 bp downstream, to cut across a double-strand break (DSB). METHODS AND RESULTS: We used synthetic double-stranded oligos with MmeI recognition sites close to 5' end and different overhang lengths to measure digestion after different periods of time and at different temperatures. We found that the MmeI binding and cutting sites can be situated on opposite sides of a DSB if the edges of the DNA molecules are held together by transient base-pairing interactions between compatible overhangs. CONCLUSION: We found that MmeI can cut across a DSB, and the efficiency of the cutting depends on both overhang length and temperature.


Subject(s)
DNA , Deoxyribonucleases, Type II Site-Specific , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , DNA/metabolism , DNA Methylation , Binding Sites
3.
Appl Biochem Biotechnol ; 195(12): 7821-7831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37093531

ABSTRACT

The PIK3CA mutation is considered a potential target for treatment of colorectal cancer. We evaluated a PIK3CA mutation assay on plasma cell-free DNA (cfDNA) using a newly developed PCR with restriction digestion integrated and followed by Sanger's sequencing. We analyzed PIK3CA mutation in plasma with our newly developed assays and in matching tumor tissues by routine methods. We detected the PIK3CA gene mutation status by both methods in samples from 40 colorectal cancer patients. Three H1047R mutations of PIK3CA gene were detected in the cfDNA of the 40 patients by restriction digestion PCR. Neither E545K nor H1047R mutations were detected in the cfDNA by routine PCR/sequencing. The PIK3CA H1047R and E545K mutations in cfDNA can be sensitively detected with our newly developed assays. The colorectal cancer has been used as a clinical example in testing our new assays, which indicates that the new assays may have wider applications in detecting mutations in precision oncology. Trial registration: Current Controlled Trials ChiCTR-DDT-12002848, 8 October 2012.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Humans , Circulating Tumor DNA/genetics , Precision Medicine , Mutation , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics
4.
J Basic Microbiol ; 63(5): 481-488, 2023 May.
Article in English | MEDLINE | ID: mdl-36670071

ABSTRACT

Bacteriophage therapy targeting the increasingly resistant Vibrio cholerae is highly needed. Hence, studying the phenotypic behavior of potential phages under different conditions is a prerequisite to delivering the phage in an active infective form. The objective of this study was to characterize phage VP4 (vB_vcM_Kuja), an environmental vibriophage isolated from River Kuja in Migori County, Kenya in 2015. The phenotypic characteristics of the phage were determined using a one-step growth curve, restriction digestion profile, pH, and temperature stability tests. The results revealed that the phage is stable through a wide range of temperatures (20-50°C) and maintains its plaque-forming ability at pH ranging from 6 to 12. The one-step growth curve showed a latent period falling between 40 and 60 min, while burst size ranged from 23 to 30 plaque-forming units/10 µl at the same host strain. The restriction digestion pattern using EcoRI, SalI, HindIII, and XhoI enzymes showed that HindIII could cut the phage genome. The phage DNA could not be restricted by the other three enzymes. The findings of this study can be used in future studies to determine phage-host interactions.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Kenya , Genome, Viral
5.
Appl Biochem Biotechnol ; 195(5): 2933-2946, 2023 May.
Article in English | MEDLINE | ID: mdl-36445680

ABSTRACT

Due to morphological convergence and the application of numerous taxonomic concepts, the systematics of filamentous cyanobacteria is still a significant problem. The incorporation and integration of modern molecular, cyto-morphological and ecological approaches in cyanobacterial taxonomy are essential and must be acknowledged as the valid methods for the development of their modern systematics. In this study, method of using 16S rRNA gene sequences to infer the genetic relationships of twelve freshwater cyanobacterial isolates amongst themselves was evaluated. The taxonomic resolution was inferred from their phylogenetic tree, in silico restriction digestion analysis and secondary structure prediction. These methods allowed cyanobacterial genera to be well distinguished with their genotypic and phenotypic differences. Amongst twelve strains, Spirulina subsalsa with highest protein content was used in this study for evaluating the stability of Curcumin which is a curcuminoid compound reported from Curcuma longa. Though they have wide properties, they still lack stability and bioavailability. It is reported previously that microbes are used for biotransformation and act as a carrier molecule. Therefore, in this study, Spirulina incorporated with curcumin resulted with pH stability of curcumin and were found to have a biotransformation into Calebin-A, curcuminoid compound originally present in smaller amount (0.005%) in C. longa with various biomedical applications.


Subject(s)
Curcumin , Spirulina , Spirulina/genetics , RNA, Ribosomal, 16S/genetics , Phylogeny
6.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563297

ABSTRACT

Golden gate/modular cloning facilitates faster and more efficient cloning by utilizing the unique features of the type IIS restriction enzymes. However, it is known that targeted insertion of DNA fragment(s) must not include internal type IIS restriction recognition sites. In the case of cloning CRISPR constructs by using golden gate (GG) cloning, this narrows down the scope of guide RNA (gRNA) picks because the selection of a good gRNA for successful genome editing requires some obligation of fulfillment, and it is unwanted if a good gRNA candidate cannot be picked only because it has an internal type IIS restriction recognition site. In this article, we have shown that the presence of a type IIS restriction recognition site in a gRNA does not affect cloning and subsequent genome editing. After each step of GG reactions, correct insertions of gRNAs were verified by colony color and restriction digestion and were further confirmed by sequencing. Finally, the final vector containing a Cas12a nuclease and four gRNAs was used for Agrobacterium-mediated citrus cell transformation. Sequencing of PCR amplicons flanking gRNA-2 showed a substitution (C to T) mutation in transgenic plants. The knowledge derived from this study could widen the scope of GG cloning, particularly of gRNAs selection for GG-mediated cloning into CRISPR vectors.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , Base Sequence , CRISPR-Cas Systems/genetics , Cloning, Molecular , Gene Editing , Mutagenesis , RNA, Guide, Kinetoplastida/genetics
7.
Saudi J Biol Sci ; 29(5): 3097-3106, 2022 May.
Article in English | MEDLINE | ID: mdl-35360502

ABSTRACT

Background: Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen to humans causing life-threatening infections. MRSA have the capability to grow resistance to many antibiotics, and phage therapy is one treatment option for this infection. Objectives: The aim of the present study was to isolate and characterize the lytic bacteriophages specific to MRSA from domestic sewage water at a tertiary care hospital in Egypt. Methods: Thirty MRSA strains were isolated from different clinical samples admitted to the microbiology lab at Theodor Bilharz Research institute (TBRI) hospital, Giza, Egypt. They were confirmed to be MRSA through phenotypic detection and conventional PCR for mecA gene. They were used for the isolation of phages from sewage water of TBRI hospital. Plaque assay was applied to purify and quantify the titer of the isolated phages. The host range of the isolated phages was detected using the spot test assay. The morphology of phages was confirmed using transmission electron microscope (TEM). Digestion of DNA extracted from phages with endonuclease enzymes including EcoRI and SmaI was performed. SDS-PAGE was performed to analyze MRSA specific phage proteins. As a positive control prophages were isolated from a mitomycin C (MitC) treated culture of S. aureus strain ATCC25923. Further characterization using conventional polymerase chain reaction (PCR) was used to select three known Staphylophages by detecting the endolysin gene of phage K, the polymerase gene of phage 44AHJD, and the minor tail gene of phage P68. Results: Isolated phages in this research displayed a wide host range against MRSA using the spot test, out of thirty tested MRSA isolates 24 were sensitive and got lysed (80%). The titer of the phages was estimated to be 1.04 × 106 pfu/ml using plaque test. Identification of head and tail morphology of the phages was achieved using TEM and they were designated to tailed phages of order Caudovirales, they composed an icosahedral capsid. Prophages were isolated through MitC induction. DNA of phages was digested by endonuclease enzymes. Conventional PCR yielded 341 bp of phage K endolysin gene and phage P68 minor tail protein gene 501 bp. Protein analysis using SDS-PAGE showed 4 proteins of sizes between 42 kDa and 140 kDa. Conclusion: Phages isolated here are alike to others mentioned in previous studies. The high broad host range of the isolated phages is promising to control MRSA and can be in the future commercially suitable for treatment as lysate preparations. Animal models of phage-bacterial interaction will be our next step that may help in resolving the multidrug resistant crisis of MRSA in Egypt.

8.
Methods Mol Biol ; 2351: 229-248, 2021.
Article in English | MEDLINE | ID: mdl-34382193

ABSTRACT

Chromosome conformation capture and its variants interrogate population-average chromatin structure at a higher resolution and throughput than microscopic methods. Capture Hi-C is a variant tailored for the simultaneous assessment of all interactions with thousands of specific bait sequences, so is particularly suited to genome-wide studies of promoter interactions with distal regulatory elements, such as enhancers. We present the principles and methods for Promoter Capture Hi-C (PCHi-C), from experimental design to data analysis.


Subject(s)
Chromosome Mapping/methods , High-Throughput Nucleotide Sequencing/methods , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Chromatin/genetics , Chromatin/metabolism , Chromosomes , Data Analysis , Enhancer Elements, Genetic , Genome-Wide Association Study
9.
BMC Genomics ; 22(1): 355, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34000993

ABSTRACT

BACKGROUND: Brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) is native to East Asia but has invaded many countries in the world. BMSB is a polyphagous insect pest and causes significant economic losses to agriculture worldwide. Knowledge on the genetic diversity among BMSB populations is scarce but is essential to understand the patterns of colonization and invasion history of local populations. Efforts have been made to assess the genetic diversity of BMSB using partial mitochondrial DNA sequences but genetic divergence on mitochondria is not high enough to precisely accurately identify and distinguish various BMSB populations. Therefore, in this study, we applied a ddRAD (double digest restriction-site associated DNA) sequencing approach to ascertain the genetic diversity of BMSB populations collected from 12 countries (2 native and 10 invaded) across four continents with the ultimate aim to trace the origin of BMSBs intercepted during border inspections and post-border surveillance. RESULT: A total of 1775 high confidence single nucleotide polymorphisms (SNPs) were identified from ddRAD sequencing data collected from 389 adult BMSB individuals. Principal component analysis (PCA) of the identified SNPs indicated the existence of two main distinct genetic clusters representing individuals sampled from regions where BMSB is native to, China and Japan, respectively, and one broad cluster comprised individuals sampled from countries which have been invaded by BMSB. The population genetic structure analysis further discriminated the genetic diversity among the BMSB populations at a higher resolution and distinguished them into five potential genetic clusters. CONCLUSION: The study revealed hidden genetic diversity among the studied BMSB populations across the continents. The BMSB populations from Japan were genetically distant from the other studied populations. Similarly, the BMSB populations from China were also genetically differentiated from the Japanese and other populations. Further genetic structure analysis revealed the presence of at least three genetic clusters of BMSB in the invaded countries, possibly originating via multiple invasions. Furthermore, this study has produced novel set of SNP markers to enhance the knowledge of genetic diversity among BMSB populations and demonstrates the potential to trace the origin of BMSB individuals for future invasion events.


Subject(s)
Heteroptera , Animals , China , Heteroptera/genetics , Humans , Japan , Technology
10.
Biochem Mol Biol Educ ; 49(4): 598-604, 2021 07.
Article in English | MEDLINE | ID: mdl-33900019

ABSTRACT

COVID 19 has changed about every aspect of life including how we teach in higher education. Laboratory experiments vital for learning hands-on techniques are limited due to social distancing requirements and increased numbers of distance-learning students. The solution to loss of hands-on activities has been to compensate with virtual laboratory modules. Although virtual labs are engaging and offer a simulated hands-on approach to teaching essential molecular techniques, these simulations do not replace hands-on experience. I designed two molecular biology laboratory exercises in response to the current teaching limitations that can be completed 'at-home' and enable low cost hands-on instruction of essential molecular techniques in any distance-learning environment including during the COVID 19 pandemic.


Subject(s)
COVID-19/epidemiology , DNA/chemistry , Education, Distance , Laboratories , Molecular Biology/education , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Humans , Students
11.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668897

ABSTRACT

Plastid inheritance in angiosperms is presumed to be largely maternal, with the potential to inherit plastids biparentally estimated for about 20% of species. In Passiflora, maternal, paternal and biparental inheritance has been reported; however, these studies were limited in the number of crosses and progeny examined. To improve the understanding of plastid transmission in Passiflora, the progeny of 45 interspecific crosses were analyzed in the three subgenera: Passiflora, Decaloba and Astrophea. Plastid types were assessed following restriction digestion of PCR amplified plastid DNA in hybrid embryos, cotyledons and leaves at different developmental stages. Clade-specific patterns of inheritance were detected such that hybrid progeny from subgenera Passiflora and Astrophea predominantly inherited paternal plastids with occasional incidences of maternal inheritance, whereas subgenus Decaloba showed predominantly maternal and biparental inheritance. Biparental plastid inheritance was also detected in some hybrids from subgenus Passiflora. Heteroplasmy due to biparental inheritance was restricted to hybrid cotyledons and first leaves with a single parental plastid type detectable in mature plants. This indicates that in Passiflora, plastid retention at later stages of plant development may not reflect the plastid inheritance patterns in embryos. Passiflora exhibits diverse patterns of plastid inheritance, providing an excellent system to investigate underlying mechanisms in angiosperms.


Subject(s)
Crosses, Genetic , Inheritance Patterns/genetics , Passiflora/genetics , Phylogeny , Plastids/genetics , Hybridization, Genetic , Passiflora/embryology , Phenotype , Plant Leaves/genetics , Seedlings/genetics , Species Specificity
12.
Methods Mol Biol ; 2157: 19-34, 2021.
Article in English | MEDLINE | ID: mdl-32820397

ABSTRACT

Chromosome conformation capture and its variants have allowed chromatin topology to be interrogated at a superior resolution and throughput than by microscopic methods. Among the method derivatives, 4C-seq (circular chromosome conformation capture, coupled to high-throughput sequencing) is a versatile, cost-effective means of assessing all chromatin interactions with a specific genomic region of interest, making it particularly suitable for interrogating chromatin looping events. We present the principles and procedures for designing and implementing successful 4C-seq experiments.


Subject(s)
Chromatin/metabolism , Chromosomes, Human/genetics , Genome, Human/genetics , Chromatin/genetics , Chromosome Mapping , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
13.
J Food Compost Anal ; 92: 103565, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32546895

ABSTRACT

Determination of feline meat in food products is an important issue for social, health, economic and religious concern. Hence this paper documented the application of species specific polymerase chain reaction-restriction fragment length polymorphism (SP-PCR-RFLP) assay targeting a short-fragments (69 bp) of mitochondrial cytochrome b (cytb) gene to screen feline meat in commercial meat products using lab-on-a-chip. The SP-PCR assay proved its specificity theoretically and experimentally while testing with different common animal, aquatic and plant species of DNA. The feline specific (69 bp, 43- and 26-bp) characteristic molecular DNA pattern was observed by SP-PCR and RFLP analysis. For assay performance, it was tested in three different types of commercial dummy meat products such as frankfurters, nuggets and meatballs and digested with AluI-restriction enzyme. The highest sensitivity of the assay using lab-on-a-chip was as low as 0.1 pg or 0.01 % (w/w) in commercial dummy meat products. We have also applied this assay to screen three important commercial meat products of six different brand from six supermarket chains located at three different states of Malaysia. Thus total 378 samples were tested to validate the specificity, sensitivity, stability of the assay and utilization of it for commercial meat product screening.

14.
Biochem Biophys Res Commun ; 531(1): 75-83, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32586625

ABSTRACT

G-quadrupex is now known to play crucial roles in various biological reactions. However, direct evidence for its presence in cells has been limited, due to the lack of versatile and non-biased methodology. We use Rif1 binding sites on the fission yeast genome, which has been shown to adopt G4 structures, as a model to prove that Rif1 BS indeed adopt G4 structure in cells. We take advantage of the presence of a single-stranded loop in the G4 structure. Rif1BS is unique in that they contain unusually long loop sequences, and we replace them with a 18 bp I-SceI restriction site. We show in vitro that I-SceI in the loop is not cleaved when G4 is formed on duplex Rif1BS DNA, but is cleaved when G4 is not formed due to a mutation in the G-tracts. This is observed both heat-induced and transcription-induced G4 structure, and gives proof of evidence for this procedure. We apply this strategy for detection of a G4 structure at the same Rif1BS in fission yeast cells. We present evidence that in vivo cleavage of I-SceI can be a measure for the presence of G4 at the target sequence in cells as well. The method described here gives a platform strategy for genome-wide analyses of cellular G4 and their dynamic formation and disruption.


Subject(s)
G-Quadruplexes , Genome, Fungal , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Telomere-Binding Proteins/metabolism , Binding Sites , Nucleic Acid Denaturation , Schizosaccharomyces/metabolism
15.
Genomics ; 111(4): 567-578, 2019 07.
Article in English | MEDLINE | ID: mdl-29550497

ABSTRACT

Single molecule analysis can help us study genomics efficiently. It involves studying single DNA molecules for genomic studies. DNA combing is one of such techniques which allowed us to study single DNA molecules for multiple uses. DNA combing technology can be used to perform Fiber-FISH and optical mapping. Physical mapping of genomes can be studied by restriction digestion of combed DNA on glass slides. Restriction fragments can be arranged into optical maps by gathering fluorescent intensity data by CCD camera and image analysis by softwares. Physical mapping and DNA segment rearrangements can be studied by Fiber-FISH which involves application of probes on genomic DNA combed over glass slides. We developed a novel methodology involving combing solution optimization, denatured combed DNA and performed restriction digestion of combed DNA. Thus we provided an efficient and robust combing platform for its application in Fiber-FISH and optical mapping.


Subject(s)
DNA, Single-Stranded/chemistry , In Situ Hybridization, Fluorescence/methods , Single Molecule Imaging/methods , DNA, Single-Stranded/ultrastructure , Humans , Nucleic Acid Denaturation
16.
Plant Methods ; 14: 91, 2018.
Article in English | MEDLINE | ID: mdl-30349582

ABSTRACT

BACKGROUND: Insertion of engineered DNA fragments into bacterial vectors is the foundation of recombinant DNA technology, yet existing methods are still laborious, require many steps, depend on specific vector configuration, or require expensive reagents. RESULTS: We have developed a method, called "Pyrite" cloning that combines the traditional restriction enzyme digestion and ligation reaction in a single tube and uses a programmed thermocycler reaction, allowing rapid and flexible cloning in a single tube. After the Pyrite reaction and transformation, approximately 50% colonies contain the expected insert, which can be easily and quickly determined by colony PCR or blue-white colony screening. We also demonstrated that Pyrite cloning can be applied for different cloning purposes. CONCLUSIONS: The Pyrite cloning method reported here is a single tube and programmed reaction cloning with restriction enzymes. Compared to other cloning methods, Pyrite cloning is flexible, inexpensive, simple, and highly efficient.

17.
PeerJ ; 6: e4920, 2018.
Article in English | MEDLINE | ID: mdl-29892505

ABSTRACT

Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

18.
Arch Dermatol Res ; 310(3): 241-243, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29353331

ABSTRACT

The objective of this study was to construct a plasmid vector for EGFR-hm-1 and C-Junh-825 small interfering RNA (siRNA). EGFR-hm-1 and C-Jun-hm-825 oligonucleotide fragments were synthesized and short hairpin RNA (shRNA) were amplified by PCR. Plasmids were isolated from E. coli TOP10 bacterium by restriction enzyme digestion using pst1 and BamH1 and oligonucleotide fragments were cloned into the pSilencer plasmid containing the U6 promoter. Recombinant clones were generated by transforming JM109 competent cells with plasmid vectors containing shRNA molecules. 58 base-paired EGFR-hm-1 and 59 base-paired C-Jun-hm-825 oligonucleotide fragments were isolated. The fragments were 100% homologous with human sequences available on GenBank. The recombinant pSilencer1.0 vector containing a 58-bp EGFR-hm-1 and 59-bp C-Jun-hm-825 fragment was constructed. These vectors have the potential to be used as treatment to combat skin photoaging under UV exposure.


Subject(s)
ErbB Receptors/genetics , Escherichia coli/genetics , Genes, erbB-1/genetics , Genetic Vectors/genetics , Plasmids/genetics , RNA, Small Interfering/genetics , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/therapy , Genetic Therapy/methods , Humans
19.
3 Biotech ; 7(3): 182, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28664369

ABSTRACT

Metagenomic DNA from sediments of selective estuaries of Goa, India was extracted using a simple, fast, efficient and environment friendly method. The recovery of pure metagenomic DNA from our method was significantly high as compared to other well-known methods since the concentration of recovered metagenomic DNA ranged from 1185.1 to 4579.7 µg/g of sediment. The purity of metagenomic DNA was also considerably high as the ratio of absorbance at 260 and 280 nm ranged from 1.88 to 1.94. Therefore, the recovered metagenomic DNA was directly used to perform various molecular biology experiments viz. restriction digestion, PCR amplification, cloning and metagenomic library construction. This clearly proved that our protocol for metagenomic DNA extraction using silica gel efficiently removed the contaminants and prevented shearing of the metagenomic DNA. Thus, this modified method can be used to recover pure metagenomic DNA from various estuarine sediments in a rapid, efficient and eco-friendly manner.

20.
Mech Ageing Dev ; 164: 20-26, 2017 06.
Article in English | MEDLINE | ID: mdl-28327364

ABSTRACT

Human reproductive fitness depends upon telomere chemistry. Maternal age, meiotic nondisjunction error and telomere length of mother of trisomic child are someway associated. Reports exhibiting maternal inheritance of telomere length in Down syndrome child are very scanty. To investigate this, we collected peripheral blood from 170 mothers of Down syndrome child and 186 age matched mothers of euploid child with their newly born babies. Telomere length was measured by restriction digestion - southern blotting technique. Meiotic nondisjunction error was detected by STR genotyping. Subjects are classified by age (old >35 years and young ˂35 years) and by meiotic error (MI and MII). Linear regression was run to explore the age - telomere length relationship in each maternal groups. The study reveals that with age, telomere erodes in length. Old MII mothers carry the shortest (p˂0.001), control mothers have the longest telomere and MI lies in between. Babies from older mother have longer telomere (p˂0.001) moreover; telomeres are longer in Down syndrome babies than control babies (p˂0.001). To conclude, this study represents not only the relation between maternal aging and telomere length but also explore the maternal heritability of telomere length in families with Down syndrome child.


Subject(s)
Aging , Down Syndrome , Genotyping Techniques , Telomere Homeostasis/genetics , Telomere , Adult , Aging/genetics , Aging/metabolism , Aging/pathology , Down Syndrome/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Female , Humans , Infant, Newborn , Male , Telomere/genetics , Telomere/metabolism , Telomere/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...