Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Planta ; 260(1): 24, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858226

ABSTRACT

MAIN CONCLUSION: The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.


Subject(s)
Droughts , Microbiota , Soil Microbiology , Microbiota/genetics , Stress, Physiological , Bacteria/genetics , Bacteria/classification , Plant Roots/microbiology , Plant Roots/genetics , RNA, Ribosomal, 16S/genetics , Fungi/physiology , Fungi/genetics , Rhizosphere , Brassicaceae/microbiology , Brassicaceae/genetics , Brassicaceae/physiology , Plant Leaves/microbiology , Plant Leaves/genetics
2.
J Anim Ecol ; 93(7): 906-917, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807348

ABSTRACT

Predators can strongly influence prey populations not only through consumptive effects (CE) but also through non-consumptive effects (NCE) imposed by predation risk. Yet, the impact of NCE on bioenergetic and stoichiometric body contents of prey, traits that are shaping life histories, population and food web dynamics, is largely unknown. Moreover, the degree to which NCE can evolve and can drive evolution in prey populations is rarely studied. A 6-week outdoor mesocosm experiment with Caged-Fish (NCE) and Free-Ranging-Fish (CE and NCE) treatments was conducted to quantify and compare the effects of CE and NCE on population densities, bioenergetic and stoichiometric body contents of Daphnia magna, a keystone species in freshwater ecosystems. We tested for evolution of CE and NCE by using experimental populations consisting of D. magna clones from two periods of a resurrected natural pond population: a pre-fish period without fish and a high-fish period with high predation pressure. Both Caged-Fish and Free-Ranging-Fish treatments decreased the body size and population densities, especially in Daphnia from the high-fish period. Only the Free-Ranging-Fish treatment affected bioenergetic variables, while both the Caged-Fish and Free-Ranging-Fish treatments shaped body stoichiometry. The effects of CE and NCE were different between both periods indicating their rapid evolution in the natural resurrected population. Both the Caged-Fish and Free-Ranging-Fish treatments changed the clonal frequencies of the experimental Daphnia populations of the pre-fish as well as the high-fish period, indicating that not only CE but also NCE induced clonal sorting, hence rapid evolution during the mesocosm experiment in both periods. Our results demonstrate that CE as well as NCE have the potential to change not only the body size and population density but also the bioenergetic and stoichiometric characteristics of prey populations. Moreover, we show that these responses not only evolved in the studied resurrected population, but that CE and NCE also caused differential rapid evolution in a time frame of 6 weeks (ca. four to six generations). As NCE can evolve as well as can drive evolution, they may play an important role in shaping eco-evolutionary dynamics in predator-prey interactions.


Subject(s)
Daphnia , Energy Metabolism , Food Chain , Population Density , Predatory Behavior , Animals , Daphnia/physiology , Biological Evolution
3.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38621296

ABSTRACT

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors , Cholinesterase Reactivators , Organophosphorus Compounds , Animals , Cholinesterase Inhibitors/pharmacology , Humans , Acetylcholinesterase/metabolism , Acetylcholinesterase/drug effects , Mice , Butyrylcholinesterase/metabolism , Organophosphorus Compounds/pharmacology , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Indolequinones/pharmacology
4.
J Exp Bot ; 75(11): 3612-3623, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38511472

ABSTRACT

Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water-limited conditions. Many resurrection plants are polyploid, and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and were larger than plants with smaller genomes and lower ploidy. These data indicate that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance and are mediated by changes in ploidy.


Subject(s)
Poaceae , Polyploidy , Poaceae/genetics , Poaceae/physiology , South Africa , Desiccation , Adaptation, Physiological/genetics
6.
Zookeys ; 1193: 111-123, 2024.
Article in English | MEDLINE | ID: mdl-38481425

ABSTRACT

A taxonomic revision and redescription of the genus Eurymesosa Breuning, 1938 are presented, including a key to species. Three of the five currently accepted species are considered valid: Eurymesosaventralis (Pascoe, 1865), Eurymesosaallapsa (Pascoe, 1866) and Eurymesosaziranzhiyi Yamasako & Lin, 2016. Three junior synonyms are proposed for E.ventralis: Eurymesosaalbostictica Breuning, 1962, syn. nov., Eurymesosaaffinis Breuning, 1970, syn. nov., and Eurymesosamultinigromaculata Breuning, 1974, syn. nov. Additionally, E.allapsa (Pascoe, 1866) is resurrected from synonyms of E.ventralis. Females of E.allapsa and E.ziranzhiyi Yamasako & Lin, 2016 are described for the first time.

7.
Cell Mol Life Sci ; 81(1): 117, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443747

ABSTRACT

Haberlea rhodopensis, a resurrection species, is the only plant known to be able to survive multiple extreme environments, including desiccation, freezing temperatures, and long-term darkness. However, the molecular mechanisms underlying tolerance to these stresses are poorly studied. Here, we present a high-quality genome of Haberlea and found that ~ 23.55% of the 44,306 genes are orphan. Comparative genomics analysis identified 89 significantly expanded gene families, of which 25 were specific to Haberlea. Moreover, we demonstrated that Haberlea preserves its resurrection potential even in prolonged complete darkness. Transcriptome profiling of plants subjected to desiccation, darkness, and low temperatures revealed both common and specific footprints of these stresses, and their combinations. For example, PROTEIN PHOSPHATASE 2C (PP2C) genes were substantially induced in all stress combinations, while PHYTOCHROME INTERACTING FACTOR 1 (PIF1) and GROWTH RESPONSE FACTOR 4 (GRF4) were induced only in darkness. Additionally, 733 genes with unknown functions and three genes encoding transcription factors specific to Haberlea were specifically induced/repressed upon combination of stresses, rendering them attractive targets for future functional studies. The study provides a comprehensive understanding of the genomic architecture and reports details of the mechanisms of multi-stress tolerance of this resurrection species that will aid in developing strategies that allow crops to survive extreme and multiple abiotic stresses.


Subject(s)
Cold Temperature , Genomics , Crops, Agricultural , Extreme Environments , Gene Expression Profiling
8.
Evolution ; 78(6): 1067-1077, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38490751

ABSTRACT

Climate anomalies are increasing and posing strong selection, which can lead to rapid evolution. This is occurring on a backdrop of interannual variability that might weaken or even reverse selection. However, the effect of interannual climatic variability on rapid evolution is rarely considered. We study the climatic differences that contribute to rapid evolution throughout a 7-year period, encompassing a severe drought across 12 populations of Mimulus cardinalis (scarlet monkeyflower). Plants were grown in a common greenhouse environment under wet and dry treatments, where specific leaf area and date of flowering were measured. We examine the association between trait values and different climate metrics at different time periods, including the collection year, prior years, and cumulative metrics across sequential years. Of the climatic variables we assessed, we find that anomalies in mean annual precipitation best describe trait differences over our study period. Past climates, of 1-2 years prior, are often related to trait values in a conflicting direction to collection-year climate. Uncovering these complex climatic impacts on evolution is critical to better predict and interpret the impacts of climate change.


Subject(s)
Biological Evolution , Climate Change , Droughts , Mimulus , Mimulus/genetics , Mimulus/physiology , Phenotype , Climate , Flowers/physiology , Flowers/genetics
9.
Metabolites ; 14(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38393005

ABSTRACT

Resurrection plant species are a group of higher plants whose vegetative tissues are able to withstand long periods of almost full desiccation and recover quickly upon rewatering. Apart from being a model system for studying desiccation tolerance, resurrection plant species appear to be a valuable source of metabolites, with various areas of application. A significant number of papers have been published in recent years with respect to the extraction and application of bioactive compounds from higher resurrection plant species in various test systems. Promising results have been obtained with respect to antioxidative and antiaging effects in various test systems, particularly regarding valuable anticancer effects in human cell lines. Here, we review the latest advances in the field and propose potential mechanisms of action of myconoside-a predominant secondary compound in the European members of the Gesneriaceae family. In addition, we shed light on the possibilities for the sustainable use of natural products derived from resurrection plants.

10.
Genome Biol Evol ; 16(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38290535

ABSTRACT

We investigated the flowering plant salicylic acid methyl transferase (SAMT) enzyme lineage to understand the evolution of substrate preference change. Previous studies indicated that a single amino acid replacement to the SAMT active site (H150M) was sufficient to change ancestral enzyme substrate preference from benzoic acid to the structurally similar substrate, salicylic acid (SA). Yet, subsequent studies have shown that the H150M function-changing replacement did not likely occur during the historical episode of enzymatic divergence studied. Therefore, we reinvestigated the origin of SA methylation preference here and additionally assessed the extent to which epistasis may act to limit mutational paths. We found that the SAMT lineage of enzymes acquired preference to methylate SA from an ancestor that preferred to methylate benzoic acid as previously reported. In contrast, we found that a different amino acid replacement, Y267Q, was sufficient to change substrate preference with others providing small positive-magnitude epistatic improvements. We show that the kinetic basis for the ancestral enzymatic change in substate preference by Y267Q appears to be due to both a reduced specificity constant, kcat/KM, for benzoic acid and an improvement in KM for SA. Therefore, this lineage of enzymes appears to have had multiple mutational paths available to achieve the same evolutionary divergence. While the reasons remain unclear for why one path was taken, and the other was not, the mutational distance between ancestral and descendant codons may be a factor.


Subject(s)
Methyltransferases , Salicylic Acid , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Amino Acid Sequence , Salicylic Acid/metabolism , Plants , Benzoic Acid/metabolism , Amino Acids/genetics , Evolution, Molecular , Substrate Specificity
11.
New Phytol ; 242(2): 717-726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38113924

ABSTRACT

Plant-pollinator interactions evolved early in the angiosperm radiation. Ongoing environmental changes are however leading to pollinator declines that may cause pollen limitation to plants and change the evolutionary pressures shaping plant mating systems. We used resurrection ecology methodology to contrast ancestors and contemporary descendants in four natural populations of the field pansy (Viola arvensis) in the Paris region (France), a depauperate pollinator environment. We combine population genetics analysis, phenotypic measurements and behavioural tests on a common garden experiment. Population genetics analysis reveals 27% increase in realized selfing rates in the field during this period. We documented trait evolution towards smaller and less conspicuous corollas, reduced nectar production and reduced attractiveness to bumblebees, with these trait shifts convergent across the four studied populations. We demonstrate the rapid evolution of a selfing syndrome in the four studied plant populations, associated with a weakening of the interactions with pollinators over the last three decades. This study demonstrates that plant mating systems can evolve rapidly in natural populations in the face of ongoing environmental changes. The rapid evolution towards a selfing syndrome may in turn further accelerate pollinator declines, in an eco-evolutionary feedback loop with broader implications to natural ecosystems.


Subject(s)
Ecosystem , Pollination , Reproduction , Plants , Pollen , Flowers
12.
Small ; 20(23): e2309068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38149506

ABSTRACT

In direct methanol fuel cells (DMFCs), the poisoning of noble metals is considered to be a major impediment to their commercial development. Here, it is found that the loss of surface Pt is one main reason for the attenuation of catalyst performance during long-time methanol oxidation reaction (MOR). A strategy to realize in situ resurrection of the deactivated catalyst by migrating Pt atoms inside to the surface is innovatively proposed. A high-activity Pt-SnO2 is designed, whose MOR activity is resurrected to 97.4% of the initial value. Based on this, the multiple resurrection of a DMFC device is also achieved for the first time. This work provides a new approach for the solution of catalyst deactivation and the development of sustainable catalysts as well as fuel cells.

13.
J Hazard Mater ; 464: 133011, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37988868

ABSTRACT

Microwave discharge electrodeless lamp (MDEL) is a novel ultraviolet (UV) light source. Synergistic disinfection using UV light emitted by MDEL (MWUV) coupled with ozone (O3) at an ultra-low dose was investigated. Escherichia coli and Bacillus subtilis were deactivated more effectively by MWUV/O3 than by either MWUV or O3 alone. MWUV/O3 treatment using an O3 concentration of 0.4 mg/L gave an E. coli inactivation rate of 5.52 log. The photoreactivation degree and rate of E. coli were lower after inactivation by MWUV/O3 treatment than after MWUV treatment alone. The maximum photoreactivation rates after the MWUV/O3 and MWUV treatments were 2.90% and 16.08%, respectively. MWUV/O3 disinfection also inhibited dark resurrection of E. coli and gave a maximum dark resurrection rate of 0.0036%. Electron paramagnetic resonance spectroscopy indicated that more hydroxyl radicals were generated during MWUV/O3 treatment. Scanning electron microscopy and laser confocal scanning microscopy observations indicated that O3 played a key role in breaking down the cell structure. MWUV/O3 treatment gave a good disinfection effect on fecal coliform bacteria in actual domestic wastewater. The results indicated that inactivation of bacteria can be more effectively achieved by MWUV treatment with O3.


Subject(s)
Ozone , Water Purification , Disinfection/methods , Wastewater , Escherichia coli , Microwaves , Ultraviolet Rays , Water Purification/methods
14.
Am J Bot ; 110(12): e16265, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38102863

ABSTRACT

PREMISE: Increased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. METHODS: We utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations of Plantago patagonica from the semi-arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. RESULTS: Descendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above- and below-ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. CONCLUSIONS: Our results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi-arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments.


Subject(s)
Drought Resistance , Life History Traits , Adaptation, Physiological , Droughts , Plants , Seeds
15.
BMC Plant Biol ; 23(1): 654, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110858

ABSTRACT

BACKGROUND: Drought is one of the main consequences of global climate change and this problem is expected to intensify in the future. Resurrection plants evolved the ability to withstand the negative impact of long periods of almost complete desiccation and to recover at rewatering. In this respect, many physiological, transcriptomic, proteomic and genomic investigations have been performed in recent years, however, few epigenetic control studies have been performed on these valuable desiccation-tolerant plants so far. RESULTS: In the present study, for the first time for resurrection plants we provide evidences about the differential chromatin accessibility of Haberlea rhodopensis during desiccation stress by ATAC-seq (Assay for Transposase Accessible Chromatin with high-throughput sequencing). Based on gene similarity between species, we used the available genome of the closely related resurrection plant Dorcoceras hygrometricum to identify approximately nine hundred transposase hypersensitive sites (THSs) in H. rhodopensis. The majority of them corresponds to proximal and distal regulatory elements of different genes involved in photosynthesis, carbon metabolism, synthesis of secondary metabolites, cell signalling and transcriptional regulation, cell growth, cell wall, stomata conditioning, chaperons, oxidative stress, autophagy and others. Various types of binding motifs recognized by several families of transcription factors have been enriched from the THSs found in different stages of drought. Further, we used the previously published RNA-seq data from H. rhodopensis to evaluate the expression of transcription factors putatively interacting with the enriched motifs, and the potential correlation between the identified THS and the expression of their corresponding genes. CONCLUSIONS: These results provide a blueprint for investigating the epigenetic regulation of desiccation tolerance in resurrection plant H. rhodopensis and comparative genomics between resurrection and non-resurrection species with available genome information.


Subject(s)
Craterostigma , Lamiales , Craterostigma/genetics , Craterostigma/metabolism , Desiccation , Chromatin , Epigenesis, Genetic , Proteomics , Lamiales/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transposases/genetics , Transposases/metabolism
16.
Plant Physiol Biochem ; 203: 108062, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37778114

ABSTRACT

The complexities of a genome are underpinned to the vast expanses of the intergenic region, which constitutes ∼97-98% of the genome. This region is essentially composed of what is colloquially referred to as the "junk DNA" and is composed of various elements like transposons, repeats, pseudogenes, etc. The latter have long been considered as dead elements merely contributing to transcriptional noise in the genome. Many studies now describe the previously unknown regulatory functions of these genes. Recent advances in the Next-generation sequencing (NGS) technologies have allowed unprecedented access to these regions. With the availability of whole genome sequences of more than 788 different plant species in past 20 years, genome annotation has become feasible like never before. Different bioinformatic pipelines are available for the identification of pseudogenes. However, still little is known about their biological functions. The functional validation of these genes remains challenging and research in this area is still in infancy, particularly in plants. CRISPR/Cas-based genome editing could provide solutions to understand the biological roles of these genes by allowing creation of precise edits within these genes. The possibility of pseudogene reactivation or resurrection as has been demonstrated in a few studies might open new avenues of genetic manipulation to yield a desirable phenotype. This review aims at comprehensively summarizing the progress made with regards to the identification of pseudogenes and understanding their biological functions in plants.


Subject(s)
Genome , Pseudogenes , Pseudogenes/genetics
17.
World J Microbiol Biotechnol ; 39(10): 256, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37474779

ABSTRACT

Rhizosphere microbial communities play an important role in maintaining the health and productivity of the plant host. The rhizobacteria Pseudomonas putida P2 of Ramonda serbica and Bacillus cereus P5 of R. nathaliae were selected for treatment of the Belija wheat cultivar because of their plant growth-promoting (PGP) properties. Compared to the non-treated drought-stressed plants, the plants treated with rhizobacteria showed increased activity of the two major antioxidant enzymes, superoxide dismutase, and ascorbate peroxidase. Plants treated with the B. cereus P5 strain exhibited higher proline content under drought stress, suggesting that proline accumulation depends on the relative water content (RWC) status of the plants studied. Inoculation of wheat seeds with the P. putida P2 strain improved water status by increasing RWC and alleviating oxidative stress by reducing H2O2 and malondialdehyde concentrations in plants exposed to severe drought, possibly also helping plants to overcome drought through its 1-aminocyclopropane-1-carboxylic acid deaminase activity. Analysis of data from Next Generation sequencing (NGS) revealed that the dominant bacterial taxa in the rhizosphere of resurrection plants R. serbica and R. nathaliae were extremophilic, thermotolerant, Vicinamibacter silvestris, Chthoniobacter flavus, and Gaiella occulta. From the fungi detected Penicillium was the most abundant in both samples, while Fusarium and Mucor were present only in the rhizosphere of R. serbica and the entomopathogenic fungi Metarhizium, and Tolypocladiumu only in the rhizosphere of R. nathaliae. The fungal communities varied among plants, suggesting a stronger environmental influence than plant species. Our study demonstrates the importance of in vivo experiments to confirm the properties of PGP bacteria and indicates that the rhizosphere of resurrection plants is a valuable source of unique microorganisms that can be used to improve the drought stress tolerance of crops.


Subject(s)
Craterostigma , Microbiota , Triticum/microbiology , Droughts , Rhizosphere , Hydrogen Peroxide , Water , Bacillus cereus , Proline , Plant Roots/microbiology
18.
Oecologia ; 202(3): 497-511, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37462737

ABSTRACT

Ongoing global warming and increasing drought frequencies impact plant populations and potentially drive rapid evolutionary adaptations. Historical comparisons, where plants grown from seeds collected in the past are compared to plants grown from freshly collected seeds from populations of the same sites, are a powerful method to investigate recent evolutionary changes across many taxa. We used 21-38 years old seeds of 13 European plant species, stored in seed banks and originating from Mediterranean and temperate regions, together with recently collected seeds from the same sites for a greenhouse experiment to investigate shifts in flowering phenology as a potential result of adaptive evolution to changes in drought intensities over the last decades. We further used single nucleotide polymorphism (SNP) markers to quantify relatedness and levels of genetic variation. We found that, across species, current populations grew faster and advanced their flowering. These shifts were correlated with changes in aridity at the population origins, suggesting that increased drought induced evolution of earlier flowering, whereas decreased drought lead to weak or inverse shifts in flowering phenology. In five out of the 13 species, however, the SNP markers detected strong differences in genetic variation and relatedness between the past and current populations collected, indicating that other evolutionary processes may have contributed to changes in phenotypes. Our results suggest that changes in aridity may have influenced the evolutionary trajectories of many plant species in different regions of Europe, and that flowering phenology may be one of the key traits that is rapidly evolving.


Subject(s)
Plants , Reproduction , Seeds , Phenotype , Time Factors , Flowers , Climate Change
20.
Proc Natl Acad Sci U S A ; 120(20): e2221166120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155838

ABSTRACT

Pheromone communication is an essential component of reproductive isolation in animals. As such, evolution of pheromone signaling can be linked to speciation. For example, the evolution of sex pheromones is thought to have played a major role in the diversification of moths. In the crop pests Spodoptera littoralis and S. litura, the major component of the sex pheromone blend is (Z,E)-9,11-tetradecadienyl acetate, which is lacking in other Spodoptera species. It indicates that a major shift occurred in their common ancestor. It has been shown recently in S. littoralis that this compound is detected with high specificity by an atypical pheromone receptor, named SlitOR5. Here, we studied its evolutionary history through functional characterization of receptors from different Spodoptera species. SlitOR5 orthologs in S. exigua and S. frugiperda exhibited a broad tuning to several pheromone compounds. We evidenced a duplication of OR5 in a common ancestor of S. littoralis and S. litura and found that in these two species, one duplicate is also broadly tuned while the other is specific to (Z,E)-9,11-tetradecadienyl acetate. By using ancestral gene resurrection, we confirmed that this narrow tuning evolved only in one of the two copies issued from the OR5 duplication. Finally, we identified eight amino acid positions in the binding pocket of these receptors whose evolution has been responsible for narrowing the response spectrum to a single ligand. The evolution of OR5 is a clear case of subfunctionalization that could have had a determinant impact in the speciation process in Spodoptera species.


Subject(s)
Moths , Sex Attractants , Animals , Moths/genetics , Moths/metabolism , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Sex Attractants/metabolism , Spodoptera/genetics , Pheromones/genetics , Pheromones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...