Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
J Chromatogr A ; 1736: 465379, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39305540

ABSTRACT

Slalom chromatography (SC) re-emerged in 2024 due to the availability of low adsorption ultra-high pressure liquid chromatography (UHPLC) packed columns/instruments and large modalities being investigated in the context of cell and gene therapies. The physico-chemical principles of SC retention combined with hydrodynamic chromatography (HDC) exclusion have been recently reported. In SC, DNA macromolecules are retarded because: (1) they can be stretched to lengths comparable to the particle diameter, and (2) their elastic relaxation time is long enough to maintain them in non-equilibrium extended conformations under regular UHPLC shear flow conditions. Here, a quantitative HDC-SC retention model is consolidated. A general plate height model accounting for the band broadening of long DNA biopolymers along packed beds is also derived for supporting method development and predicting speed-resolution performance in SC. For illustration, the chromatographic speed-resolution properties in SC are predicted for the separation of specific critical pairs (4.0/4.5, 10/11, and 25/27 kbp) of linear dsDNA polymers. The calculations are performed for two available custom-made particle sizes, dp= 1.7 and 2.5µm, at a constant pressure of 10,000 psi. The predictions are directly validated from experimental data acquired using low adsorption MaxPeakTM 4.6 mm i.d. Columns packed with 1.7µm BEHTM 45 Å (15 cm long column) and 2.5µm BEH 125 Å (30 cm long column) Particles, and by injecting six linear dsDNAs (λ DNA-Hind III Digest). The LC system is very low dispersion ACQUITYTM UPLCTM I-class PLUS System, and the mobile phase is a 100 mM phosphate buffer at pH 8. Maximum resolution is always achieved when the average extended lengths of linear dsDNAs are equal to a critical length, which is proportional to the particle diameter and to the square root of the applied shear rate. Most advantageously, the experimental results reveal that the relaxation times of linear dsDNAs observed under shear flow conditions are two orders of magnitude shorter than those expected in the absence of flow: this enables the detection of the longest linear dsDNAs up to 25 kbp without irremediable loss in column performance. Finally, the retention-efficiency model elaborated in this work can be used to rapidly anticipate and develop methods (selection of particle size, column length, and operating pressure) for any targeted DNA and time-resolution constraints.

2.
J Chromatogr A ; 1736: 465333, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260151

ABSTRACT

A zwitterionic stationary phase comprising pyridinium cations and sulfonate anions was successfully developed through thiol-ene click chemistry. Using seven polar small molecules as probes, the zwitterionic stationary phase showed high separation selectivity and excellent column efficiency (35,200-54,800 plates/m) compared with two commercial columns. The influence of water proportion, salt concentration, and pH in the mobile phase, and column temperature, on the retention of six polar compounds was examined. The retention mechanism was explored by three hydrophilic retention models, Tanaka test and linear solvation energy relationship analysis. For the analysis of sample dairy products (milk powder, milk, and yogurt), the stationary phase was operated in hydrophilic interaction chromatography mode without the addition of buffer salts, facilitating rapid and efficient detection and quantification of melamine. The LOD and LOQ are 0.04 mg⋅g-1 and 0.13 mg⋅g-1, respectively, and the recovery rate is 90.3 - 102.8 %. The zwitterionic stationary phase has the advantages of simple preparation, good method reproducibility, good selectivity and high precision.

3.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39171986

ABSTRACT

During the drug discovery and design process, the acid-base dissociation constant (pKa) of a molecule is critically emphasized due to its crucial role in influencing the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and biological activity. However, the experimental determination of pKa values is often laborious and complex. Moreover, existing prediction methods exhibit limitations in both the quantity and quality of the training data, as well as in their capacity to handle the complex structural and physicochemical properties of compounds, consequently impeding accuracy and generalization. Therefore, developing a method that can quickly and accurately predict molecular pKa values will to some extent help the structural modification of molecules, and thus assist the development process of new drugs. In this study, we developed a cutting-edge pKa prediction model named GR-pKa (Graph Retention pKa), leveraging a message-passing neural network and employing a multi-fidelity learning strategy to accurately predict molecular pKa values. The GR-pKa model incorporates five quantum mechanical properties related to molecular thermodynamics and dynamics as key features to characterize molecules. Notably, we originally introduced the novel retention mechanism into the message-passing phase, which significantly improves the model's ability to capture and update molecular information. Our GR-pKa model outperforms several state-of-the-art models in predicting macro-pKa values, achieving impressive results with a low mean absolute error of 0.490 and root mean square error of 0.588, and a high R2 of 0.937 on the SAMPL7 dataset.


Subject(s)
Neural Networks, Computer , Thermodynamics , Drug Discovery/methods
4.
J Sep Sci ; 47(14): e2400065, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054584

ABSTRACT

A novel zwitterionic polymer grafted silica stationary phase, Sil-PZIC, was prepared by bonding poly(ethylene maleic anhydride) molecules on the surface of silica via multiple binding sites, followed by ammonolysis of maleic anhydride through a nucleophilic substitution reaction with ethylenediamine. The stationary phase was characterized by solid-state 13C nuclear magnetic resonance, zeta potential, and elemental analysis and the results show the successful encapsulation of zwitterionic polymer on the surface of silica. The chromatographic performance of Sil-PZIC was investigated by using nucleosides and nucleic bases as test analytes The variation of retention and separation performance of these model compounds were investigated by varying the chromatographic conditions such as the components of mobile phase, salt concentration, and pH. The results show that the retention of the Sil-PZIC phase was dominated by a hydrophilic partitioning mechanism accompanied by secondary interactions such as electrostatic and hydrogen bonding. In addition, saccharides and Amadori compounds were also well separated on the Sil-PZIC, indicating that the Sil-PZIC column has potential application for separation of the polar compound.

5.
Chemosphere ; 363: 142742, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971441

ABSTRACT

Uranium (U) is a chemical and radioactive toxic contaminant affecting many groundwater systems. The focus of this study was to evaluate the suitability of forward osmosis (FO) for uranium rejection from contaminated groundwater under field-relevant conditions. Laboratory experiments with aqueous solution containing uranium were performed with FO membrane to understand the uranium rejection mechanism under varied pH, draw solution concentration, and presence of co-ions. Further, experiments were performed with U-contaminated field groundwater. Results of the hydrogeochemcial modelling using PHREEQC indicated that the rejection mechanism of uranium was highly dependent on aqueous speciation. Uranium rejection was maximum at alkaline pH with ca. 99% rejection due to charge-based interactions between membrane and dominant uranyl complexes. The results of the co-ion study indicated that nitrate and phosphate ions decrease uranium rejection. Whereas, bicarbonates, calcium, and magnesium ions concentrated uranium in feed solution. Further, the uranium adsorption onto the membrane surface primarily depended on pH of the aqueous solution with maximum adsorption at pH 5.5. Our results show that the World Health Organization's drinking water guideline value of 30 µgL-1 for U could be achieved via FO process in field groundwater containing low dissolved solids.


Subject(s)
Groundwater , Osmosis , Uranium , Water Pollutants, Radioactive , Water Purification , Uranium/chemistry , Groundwater/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Adsorption , Water Pollutants, Radioactive/chemistry , Water Pollutants, Radioactive/analysis , Ions/chemistry
6.
J Chromatogr A ; 1729: 465050, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38852270

ABSTRACT

Herein, an improved subtraction model was proposed to characterise the polar stationary phases in supercritical fluid chromatography (SFC). Fifteen stationary phases were selected, including two types of aromatic columns, Waters Torus and Viridis series columns, as well as silica and amino columns. Ethylbenzene and Torus 1-AA were defined as the reference solute and column, respectively. Identifying the interaction with the maximum contribution to retention in SFC separation and using it as the initial term is a key step in modelling. The dipole, or induced dipole interaction (θ'P), replaced the hydrophobic interaction (η'H) as the starting term. The improved model was expressed as logα=η'H+ß'A+α'B+κ'C+θ'P+ε'E+σ'S, where the term ε'E indicated that anion exchange interaction was intentionally supplemented. A 7-step modelling process, including bidirectional fitting and residual analysis, was proposed. The obtained column parameters had reasonable physical significance, with the adjusted determination coefficient (R2adj) greater than 0.999 and the standard error (SE) less than 0.029. Methodological validation was further performed using the other four columns and 12 solutes that were not involved in the modelling. The result revealed good predictions of solutes' retention, as demonstrated by R2adj from 0.9923 to 0.9979 and SE from 0.0636 to 0.1088. This study indicated the feasibility of using the improved subtraction model to characterise polar stationary phases in SFC, with the most crucial being the determination of an initial term, followed by the addition of a new descriptor and the selection of an appropriate reference column. The study expanded the application scope of the subtraction model in SFC, which will help gain an in-depth understanding of the SFC separation mechanism.


Subject(s)
Chromatography, Supercritical Fluid , Hydrophobic and Hydrophilic Interactions , Chromatography, Supercritical Fluid/methods , Models, Chemical , Benzene Derivatives/chemistry , Silicon Dioxide/chemistry
7.
J Chromatogr A ; 1730: 465075, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38909519

ABSTRACT

Slalom chromatography (SC) was discovered in 1988 for analyzing double-stranded (ds) DNA. However, its progress was impeded by practical issues such as low-purity particles, sample loss, and lack of a clear retention mechanism. With the rise of cell and gene therapies and the availability today of bio-inert ultra-high-pressure liquid chromatography (UHPLC) columns and systems, SC has regained interest. In SC, the elution order is opposite to that observed in hydrodynamic chromatography (HDC): larger DNA molecules are more retained than small ones. Yet, the underlying SC retention mechanism remains elusive. We provide the physicochemical background necessary to explain, at a microscopic scale, the full transition from a HDC to a SC retention mechanism. This includes the persistence length of the DNA macromolecule (representing DNA stiffness), their relaxation time (τR) from the non-equilibrium contour length to the equilibrium entropic configuration, and the relationship between the mobile phase shear rate (〈γ̇〉) in packed columns and the DNA extended length. We propose a relevant retention model to account for the simultaneous impact of hydrodynamic chromatography (HDC) and SC on the retention factors of a series of large and linear dsDNAs (ranging from 2 to 48 kbp). SC data were acquired using bio-inert MaxPeakTM Columns packed with 1.7µm BEHTM 45 Å, 1.8µm BEH 125 Å, 2.4µm BEH 125 Å, 5.3µm BEH 125 Å, and 11.3µm BEH 125 Å Particles, an ACQUITYTM UPLCTM I-class PLUS System, and either 1 × PBS (pH 7.4) or 100 mM phosphate buffer (pH 8) as the mobile phase. SC is a non-equilibrium retention mode that is dominant when the Weissenberg number (Wi=〈γ̇〉τR) is much larger than 10 and the average extended length of DNA exceeds the particle diameter. HDC, on the other hand, is an equilibrium retention mode that dominates when Wi<1 (DNA chains remaining in their non-extended configuration). Maximum dsDNA resolution is observed in a mixed HDC-SC retention mode when the extended length of the DNA is approximately half the particle diameter. This work facilitates the development of methods for characterizing various plasmid DNA mixtures, containing linear, supercoiled, and relaxed circular dsDNAs which all have different degree of molecular stiffness.


Subject(s)
DNA , Genetic Therapy , Hydrodynamics , DNA/chemistry , Chromatography, High Pressure Liquid/methods
8.
J Cheminform ; 16(1): 72, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907264

ABSTRACT

Temperature-responsive liquid chromatography (TRLC) offers a promising alternative to reversed-phase liquid chromatography (RPLC) for environmentally friendly analytical techniques by utilizing pure water as a mobile phase, eliminating the need for harmful organic solvents. TRLC columns, packed with temperature-responsive polymers coupled to silica particles, exhibit a unique retention mechanism influenced by temperature-induced polymer hydration. An investigation of the physicochemical parameters driving separation at high and low temperatures is crucial for better column manufacturing and selectivity control. Assessment of predictability using a dataset of 139 molecules analyzed at different temperatures elucidated the molecular descriptors (MDs) relevant to retention mechanisms. Linear regression, support vector regression (SVR), and tree-based ensemble models were evaluated, with no standout performer. The precision, accuracy, and robustness of models were validated through metrics, such as r and mean absolute error (MAE), and statistical analysis. At 45 ∘ C , logP predominantly influenced retention, akin to reversed-phase columns, while at 5 ∘ C , complex interactions with lipophilic and negative MDs, along with specific functional groups, dictated retention. These findings provide deeper insights into TRLC mechanisms, facilitating method development and maximizing column potential.

9.
Anal Chim Acta ; 1311: 342735, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816164

ABSTRACT

BACKGROUND: In reversed-phase liquid chromatography, the C18 alkyl bonded phase, as the primary stationary phase, is widely used in pharmaceutical and food analysis. The phenyl bonded phase often serves as a complementary choice to the C18 phase to enhance the separation performance of specific categories of compounds. However, both C18 and the currently available phenyl bonded phase chromatography columns show room for further optimization in improving the separation efficiency of specific compound classes, such as dihydroflavonoids. Additionally, the potential role and impact of introducing phosphorus groups into chromatographic stationary phases have not been fully explored, indicating a promising direction for research. RESULTS: In the present work, we prepared a novel phenyl stationary phase by bonding 9-oxa-10-phosphaphenanthrene 10-oxide onto silica gel. The obtained material was characterized by scanning electron microscopy, fourier transforms infrared spectroscopy, and elemental analysis. The results show that 9-oxa-10-phosphaphenanthrene 10-oxide was successfully bonded on the silica surface with a load of 3.90 %. Further chromatographic characterization in high-performance liquid chromatography exhibited high column efficiency (40,792 plates m-1 for the determination of biphenyl) and good stability (RSD of 0.28 %∼5.38 %). Moreover, we made a detailed study of the column separation mechanism by nuclear magnetic resonance spectroscopy titration experiment. Comparing to commercial phenyl column, the proposed stationary phase showed shorter retention time and higher throughput. In addition, the stationary phase has a strong ability to separate multiple types of compounds, which provides a new strategy for the separation of complex samples, such as active ingredients in traditional Chinese medicine. SIGNIFICANCE: We have developed a novel phenyl column and conducted a comprehensive examination of its chromatographic performance, demonstrating excellent separation capabilities and high efficiency for both nonpolar and moderately polar aromatic compounds. Additionally, we explored the impact of phosphorus-containing groups on the separation performance of chromatographic stationary phases.

10.
Chemosphere ; 354: 141714, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521106

ABSTRACT

The widespread use of nanomaterials has raised the threat of nanoparticles (NPs) infection of soils and groundwater resources. This research aims to investigate three parameters including flow velocity, ionic strength (IS), and initial particle concentration effects on transport behavior and retention mechanism of functionalization form of graphene oxide with polyvinylpyrrolidone (GO-PVP). The transport of GO-PVP was investigated in a laboratory-scale study through saturated/unsaturated (Saturation Degree = 0.91) sand columns. Experiments were conducted on flow velocity from 1.20 to 2.04 cm min-1, initial particle concentration from 10 to 50 mg L-1, and IS of 5-20 mM. The retention of GO-PVP was best described using the one-site kinetic attachment model in HYDRUS-1D, which accounted for the time and depth-dependent retention. According to breakthrough curves (BTCs), the lower transport related to the rate of mass recovery of GO-PVP was obtained by decreasing flow velocity and initial particle concentration and increasing IS through the sand columns. Increasing IS could improve the GO-PVP retention (based on katt and Smax) in saturated/unsaturated media; katt increases from 2.81 × 10-3 to 3.54 × 10-3 s-1 and Smax increases from 0.37 to 0.42 mg g-1 in saturated/unsaturated conditions, respectively. Our findings showed that the increasing retention of GO-PVP through the sand column under unsaturated condition could be recommended for the reduction of nanoparticles danger of ecosystem exposure.


Subject(s)
Graphite , Nanoparticles , Sand , Porosity , Ecosystem , Osmolar Concentration , Silicon Dioxide
11.
J Chromatogr A ; 1719: 464731, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38377661

ABSTRACT

In the pharmaceutical industry, the need for analytical standards is a bottleneck for comprehensive evaluation and quality control of intermediate and end products. These are complex mixtures containing structurally related molecules. In this regard, chromatographic peak annotation, especially for critical pairs of isomers and closest structural analogs, can be supported by using a Quantitative Structure Retention Relationship (QSRR) approach. In our study, we investigated the fundamental basis of the reversed-phase (RP) retention mechanism for 1141 isomeric compounds from the METLIN SMRT dataset. Nine different descriptor calculation tools combined with different feature selection methods (genetic algorithm (GA), stepwise, Boruta) and machine learning (ML) approaches (support vector machine (SVM), multiple linear regression (MLR), random forest (RF), XGBoost) were applied to provide a reliable molecular structure-based interpretation of RP retention behaviour of the isomeric compounds. Strict internal and external validation metrics were used to select models with the best predictive capabilities (rtest > 0.73, order of elution > 60 %). For the developed models, mean absolute errors were in the range of 60 to 110 s. Stepwise and GA showed the most suitable performance as descriptor selection methods, while SVM and XGBoost modeling gave satisfactory predictive characteristics in most cases. Validation performed on the published experimental data for structurally related pharmaceutical compounds confirmed the best accuracy of MLR modeling in combination with GA feature selection of general physico-chemical properties. The resulting models will be useful for the prediction of separation and identification of structurally related compounds in pharmaceutical analysis, providing a simultaneous understanding of the interaction mechanisms leading to their retention under RP conditions.


Subject(s)
Chromatography , Quantitative Structure-Activity Relationship , Models, Molecular , Linear Models , Pharmaceutical Preparations
12.
Front Chem ; 12: 1324426, 2024.
Article in English | MEDLINE | ID: mdl-38389725

ABSTRACT

Nanomaterial combined polymeric membranes such as polyurethane foams (PUFs) have garnered enormous attention in the field of water purification due to their ease of management and surface modification, cost-effectiveness, and mechanical, chemical, and thermal properties. Thus, this study reports the use of novel Sol-gel impregnated polyurethane foams (Sol-gel/PUFs) as new dispersive solid phase microextractors (d- µ SPME) for the efficient separation and subsequent spectrophotometric detection of Eosin Y (EY) textile dye in an aqueous solution with a pH of 3-3.8. The Sol gel, PUFs, and Sol gel-impregnated PUFs were characterized using scanning electron microscopy (SEM), goniometry measurements, dynamic light scattering (DLS), energy dispersive spectroscopy (EDS), UV-Visible, and FTIR spectra. Batch experiment results displayed a remarkable removal percentage (96% ± 5.4%) of the EY from the aqueous solution, with the total sorption time not exceeding 60 min. These data indicate rate-limited sorption via diffusion and/or surface complex ion associate formations after the rapid initial sorption steps. A pseudo-second order kinetic model thoroughly explained the sorption kinetics, providing a sorption capacity (qe) of 37.64 mg g-1, a half-life time (t1/2) of 0.8 ± 0.01 min, and intrinsic penetration control dye retention. The thermodynamic results revealed a negative value for ΔG° (-78.07 kJ mol-1 at 293 K), clearly signifying that the dye uptake was spontaneous, as well as a negative value for ΔH° (-69.58 kJ mol-1) and a positive value for ΔS° (147.65 J mol-1 K-1), making clear the exothermic nature of EY adsorption onto the sorbent, with a growth in randomness at the molecular level. A ternary retention mechanism is proposed, involving the "weak base anion exchanger" of {(-CH2-OH+ -CH2-) (Dye anion)-}Sol-gel/PUF and/or {(-NH2 + -COO-) (Dye anion)-}Sol-gel/PUF via solvent extraction and "surface adsorption" of the dye anion on/in the Sol-gel/PUFs membranes in addition to H-bonding, including surface complexation and electrostatic π-π interaction, between the dye and the silicon/zirconium oxide (Si-O-Zr) and siloxane (Si-O-Si) groups on the sorbent. Complete extraction and recovery (93.65 ± 0.2, -102.28 ± 2.01) of EY dye with NaOH (0.5 M) as a proper eluting agent was achieved using a sorbent-packed mini column. In addition, the established extractor displayed excellent reusability and does not require organic solvents for EY enrichment in water samples, making it a talented nominee as a novel sorbent for EY sorption from wastewater. This study is of great consequence for expanding the applicatio1n of Sol-gel/PUFs in developing innovative spectrophotometric sensing strategies for dye determination. In view of this, it would also be remarkable to perform future studies to explore the analytical implications of this extractor regarding safety and environmental and public health issues associated to the pollutant.

13.
Sci Total Environ ; 915: 170020, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38224895

ABSTRACT

Stover mulching in no-tillage farming has been widely proposed as an optimized agricultural management practice to increase soil carbon storage and improve fertilizer nitrogen (N) use efficiency in current agroecosystems. However, the regulation of soil internal gross N transformation dynamics on NO3--N leaching potential in response to long-term conservation tillage practices is still lacking. Here, based on a combination of 15N-tracing incubation and in situ monitoring experiments, we investigated the effect of 9-year no-tillage and maize stover mulching on the vertical migration of fertilizer-derived NO3--N into a deeper soil profile and the associated gross NO3--N transformation dynamics in the Mollisol of Northeast China. The net positive NO3--N production rates (varied from 3.14 to 6.22 mg N kg-1 d-1) were observed across all management practices in the studied Mollisol, indicating a relatively high NO3--N leaching potential in the cropland of Northeast China, which was further confirmed by an average of 7.4 % fertilizer-derived NO3--N being vertically transferred to the 80-100 cm soil layer after a complete maize growing period. Compared with traditional ridge tillage, long-term stover mulching in no-tillage farming significantly reduced total NO3--N production by decreasing autotrophic nitrification while simultaneously enhancing total NO3--N consumption by stimulating nitrate reduction and microbial NO3--N immobilization, revealing a markedly reduction of net NO3--N production in the no-tillage agroecosystem. Therefore, converting traditional ridge tillage toward no-tillage with maize stover mulching can effectively decrease fertilizer-derived NO3--N leaching amounts and thus formulate targeted mitigation strategies for sustainable agriculture in Mollisols of Northeast China.

14.
J Chromatogr A ; 1716: 464640, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38219626

ABSTRACT

In the last decade, the separation application based on aromatic stationary phases has been demonstrated in supercritical fluid chromatography (SFC). In this paper, four aromatic stationary phases involving aniline (S-aniline), 1-aminonaphthalene (S-1-ami-naph), 1-aminoanthracene (S-1-ami-anth) and 1-aminopyrene (S-1-ami-py) were synthesized based on full porous particles (FPP) silica, which were not end-capped for providing extra electrostatic interaction. Retention mechanism of these phases in SFC was investigated using a linear solvation energy relationship (LSER) model. The aromatic stationary phases with five positive parameters (a, b, s, e and d+) can provide hydrogen bonding, π-π, dipole-dipole and cation exchange interactions, which belong to the moderate polar phases. The LSER results obtained using routine test solutes demonstrated that the aforementioned interactions of four aromatic stationary phases were influenced by the type and bonding density of the ligand, but to a certain extent. Furthermore, the LSER data verified that the S-1-ami-anth column based on full porous particles silica had higher cation exchange capacity (d+ value), compared to the commercialized 1-AA column (based on the ethylene-bridged hybrid particles). The relationship between the d+ value and SFC additive was quantitatively proved so as to regulate electrostatic interaction reasonably. This value was greatly increased by phosphoric acid, slightly increased by trifluoroacetic acid and formic acid, but significantly reduced by ammonium formate and diethylamine. Taking the S-1-ami-naph column as an example, better peek shape of the flavonoids was obtained after the addition of 0.1 % phosphoric acid in MeOH while isoquinoline alkaloids were eluted successfully within 11 min after adding 0.1 % diethylamine in MeOH. Combined with the unique π-π interaction and controllable electrostatic interaction, the aromatic stationary phases in this study have been proven to have expandable application potential in SFC separation.


Subject(s)
Chromatography, Supercritical Fluid , Phosphoric Acids , Chromatography, Supercritical Fluid/methods , Silicon Dioxide/chemistry , Cations , Aniline Compounds , Diethylamines
15.
J Chromatogr A ; 1715: 464604, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38176351

ABSTRACT

G-quadruplexes (G4s) play an important role in a variety of biological processes and have extensive application prospects. Due to the significance of G4s in physiology and biosensing, studies on G4s have attracted much attention, stimulating the development or improvement of methods for G4 structures and polymorphism analysis. In this work, ionic liquids (ILs) were involved as mobile phase additives in reversed-phase high performance liquid chromatography (RP-HPLC) to analyse G4s with various conformations for the first time. How ILs affected the retention behaviors of G4s was investigated comprehensively. It was found that the addition of ILs markedly enhanced G4 retention, along with obvious amelioration on chromatographic peak shapes and separation. The influence of pH of mobile phase and types of ILs were also included in order to acquire an in-depth understanding. It appeared that the effect of ILs on G4 retention behaviors was the result of a combination of various interactions between G4s with the hydrophobic stationary phase and with the IL-containing mobile phase, where ion pair mechanism and enhanced hydrophobic interaction dominated. The findings of this work revealed that ILs could effectively improve the separation of G4s in RP-HPLC, which was conducive to G4 structural analysis, especially for G4s polymorphism elucidation.


Subject(s)
G-Quadruplexes , Ionic Liquids , Chromatography, High Pressure Liquid/methods , Ionic Liquids/chemistry , Chromatography, Reverse-Phase/methods
17.
Sci Total Environ ; 912: 168962, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38049002

ABSTRACT

About 200 million tons of coal fly ash (CFA) is not effectively used in China every year. To enhance the utilization of biomass waste quinoa husk (QH) and solid waste CFA and reduce the preparation cost of superabsorbent resin (SAR), a low-cost, biodegradable modified quinoa husk-g-poly (acrylic acid)/coal fly ash superabsorbent resin (MQH-g-PAA/CFA SAR) was synthesized using modified quinoa husk (MQH), acrylic acid and CFA and used to improve the drought resistance and fertilizer conservation ability of soil. The surface morphology and performance of SAR were characterized by Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), which provided evidence for improving the properties of SAR by grafting MQH and adding CFA. In addition, the synthesis conditions were studied and optimized, together with the contents of initiator, crosslinker, MQH, and CFA to acrylic acid as well as the neutralization degree of acrylic acid. After optimization, the optimum water absorbency of SAR in deionized water, tap water, and physiological saline was 1302, 356, and 91 g/g respectively. The swelling and water-retention mechanisms of SARs were analyzed by a dynamic model and the results were in good agreement with the experimental data. In the soil experiment, the addition of SAR improved the drought resistance ability of soil, and reduced the leaching loss of fertilizer in the soil (from 49.5 % to 36.7 %). Therefore, this material exhibits significant potential in the field of agriculture and offers a novel approach with economic benefit for the utilization of MQH and CFA.

18.
Talanta ; 270: 125547, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38101029

ABSTRACT

To realize the potential of ionic liquid functionalized silica to prepare mixed-mode and chiral stationary phases, two ionic liquid silane reagents with different anions were synthesized via a high-efficiency click reaction. Then they were decorated onto the surface of silica by a one-step bonding reaction. The functionalized silica was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and elemental analysis (EA). Two stationary phases provided satisfactory performance when compared with a commercial mixed-mode column. Notably, Sil-C10Im-D-BCS with D-3-bromocamphor-8-sulfonate (D-BCS) as anion presented chiral separation capacity towards 1,2,3,4-Tetrahydro-1-naphthol. The separation mechanism was investigated through multiple pathways, and the results revealed that the prepared stationary phases can retain and separate solutes through multiple interactions, like hydrophobic effect, ion exchange, hydrogen-bond interaction, etc. Quantum chemical calculation (QC) was employed to obtain the optimized structures and the binding energy of anions to cations. The results provided some insights into the retention mechanism from a molecular perspective. This work demonstrated the superiority of ionic liquid functionalized silica as mixed-mode stationary phases and the potential of chiral ionic liquid as chiral selectors.

19.
J Chromatogr A ; 1714: 464586, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38118242

ABSTRACT

Zwitterions are a promising choice to prepare separation materials because of their hydrophilicity and biocompatibility. We described the preparation of two zwitterionic polymer functionalized stationary phases and evaluation under mixed-mode chromatography. A zwitterionic monomer, S-(4-vinylbenzyl) cysteine (SVC), was synthesized and bonded to silica via reversible addition fragmentation chain transfer (RAFT) polymerization to afford a zwitterionic stationary phase, Sil-SVC. A hydrophobic monomer, N-(4-phenylbutan-2-yl) acrylamide (NPA), was copolymerized with SVC onto the stationary phase (Sil-SVCNPA) for comparison. The stationary phases were characterized with FT-IR, TGA, EA, and zeta-potential measurements. Mobile phase composition (ACN content, pH and salt concentration) was varied to study the retention property. Linear solvation energy relationship and Van't Hoff plot were used to investigate the retention mechanism and how chromatographic conditions influenced it. Both stationary phases showed a mixed-mode of RPLC/HILIC/IEC and satisfactory performance in separating hydrophobic analytes (alkylbenzenes and polycyclic aromatic hydrocarbons), hydrophilic nucleotide and bases, and anions, high column efficiency of 60,000 plates·m-1 was achieved. In summary, zwitterionic polymers are attractive options to prepare stationary phases and the retention property can be easily regulated by copolymer.


Subject(s)
Chromatography, Reverse-Phase , Polymers , Spectroscopy, Fourier Transform Infrared , Chromatography, Ion Exchange/methods , Hydrophobic and Hydrophilic Interactions , Silicon Dioxide/chemistry
20.
J Chromatogr A ; 1715: 464596, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38159406

ABSTRACT

The adsorption behaviour of caffeine and theophylline under hydrophilic interaction chromatography and purely aqueous conditions was investigated on four phosphodiester stationary phases. Solute adsorption isotherms were determined by frontal analysis or inverse method. The bi-Langmuir model was found to be the best choice to describe the behaviour of caffeine and theophylline adsorption in purely aqueous conditions, whereas the bi-Moreau model describes the adsorption phenomena in HILIC conditions. The results obtained demonstrate that the interaction of caffeine and theophylline with the stationary phase surface varies depending on the mobile phase composition. Both in pure aqueous mobile phase and in HILIC mode, the heterogeneity of the surface of the studied stationary phases is confirmed. In hydrophilic solutions, the sample molecules interact with the stationary phase only. In hydrophobic conditions, a lateral interaction occurs between caffeine or theophylline molecules, which are poorly soluble in acetonitrile-rich solvents. This confirms that the same compound on the same stationary phase can behave rather differently, depending on the mobile phase composition. Thus, the mobile phase may govern and control the retention mechanism.


Subject(s)
Caffeine , Theophylline , Chromatography, Liquid/methods , Water/chemistry , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL