Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Vestn Oftalmol ; 140(3): 110-116, 2024.
Article in Russian | MEDLINE | ID: mdl-38962986

ABSTRACT

Neovascular glaucoma is a type of secondary glaucoma characterized by the most severe course, and ranking second among the causes of irreversible blindness. This review summarizes the results of numerous studies devoted to the search for prevention measures and the most effective treatment strategy. The main ways of preventing the development of neovascular glaucoma are timely diagnosis and elimination of ischemic processes in the retina, combined with adequate control of intraocular pressure and treatment of the underlying disease.


Subject(s)
Glaucoma, Neovascular , Intraocular Pressure , Humans , Glaucoma, Neovascular/etiology , Glaucoma, Neovascular/therapy , Glaucoma, Neovascular/diagnosis , Glaucoma, Neovascular/physiopathology , Intraocular Pressure/physiology
2.
J Mol Histol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877338

ABSTRACT

The Omi/HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid (Ucf-101) has shown neuroprotective effects in the central nervous system. However, whether Ucf-101 can protect retinal ganglion cells (RGCs) after retinal ischemia/reperfusion (IR) has not been investigated. We aimed to investigate the effects of Ucf-101 on RGCs apoptosis and inflammation after IR-induced retinal injury in mice. We injected Ucf-101 into the mouse vitreous body immediately after IR injury. After 7 days, hematoxylin and eosin staining was conducted to assess retinal tissue damage. Next, retrograde labeling with FluoroGold, counting of RGCs and TUNEL staining were conducted to evaluate apoptosis. Immunohistochemistry, immunofluorescence staining, and western blotting were conducted to analyze protein levels. IR injury-induced retinal tissue damage could be prevented by Ucf-101 treatment. The number of TUNEL-positive RGCs was reduced by Ucf-101 treatment in mice with IR injury. Ucf-101 treatment inhibited the upregulation of Bax, cleaved caspase-3 and cleaved caspase-9 and activated the JNK/ERK/P38 signaling pathway. Furthermore, Ucf-101 treatment inhibited the upregulation of glial fibrillary acidic protein (GFAP), vimentin, Iba1 and CD68 in mice with IR injury. Ucf-101 prevents retinal tissue damage, improves the survival of RGCs, and suppresses microglial overactivation after IR injury. Ucf-101 might be a potential target to prevent RGCs apoptosis and inflammation in neurodegenerative eye diseases.

3.
Article in English | MEDLINE | ID: mdl-38909892

ABSTRACT

We present a case of diagnostic interest; we present the differential diagnosis and the complementary tests necessary to reach it, in addition to highlighting the importance of a correct collection of background and clinical history. A 54-year-old woman with a history of carcinoma of the floor of the mouth treated with radiotherapy and chemotherapy develops ischemic retinopathy. It was necessary to perform a systemic study and differential diagnosis with entities such as ocular ischemic syndrome and radiation retinopathy, due to the similarity in the clinical findings found. Radiation retinopathy should be ruled out in any patient with visual impairment and a history of radiotherapy treatment. A broad differential diagnosis and systemic study are required to rule out entities such as ocular ischemic syndrome and diabetic retinopathy, in addition to early treatment to avoid possible complications.

4.
Mol Ther Nucleic Acids ; 35(2): 102209, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38831900

ABSTRACT

Retinal ischemia is a common clinical event leading to retinal ganglion cell (RGC) death, resulting in irreversible vision loss. In the retina, glia-neuron communication is crucial for multiple functions and homeostasis. Extracellular vesicles, notably exosomes, play a critical role. The functions and mechanisms of retinal astrocyte-secreted exosomes remain unclear. Here, we isolated astrocyte-derived exosomes under hypoxia or normoxia and explored their role in an in vivo retinal ischemia-reperfusion (RIR) model. We found that hypoxia triggered astrocytes to produce a significantly increased number of exosomes, which could be internalized by RGCs in vivo or in vitro. Also, in the RIR model, the hypoxia-induced exosomes ameliorated the RIR injury and suppressed the RGC apoptosis. Furthermore, microRNA sequencing of retinal astrocyte-secreted exosomes revealed different patterns of exosomal miRNAs under hypoxia, particularly enriched with miR-329-5p. We verified that miR-329-5p was specifically bound to mitogen-activated protein kinase 8 mRNA, and subsequent JNK-pathway molecules were downregulated. We anticipated that the miR-329-5p/JNK pathway is a key to suppressing RGC apoptosis and preventing RIR injury. Such findings provided insights into the therapeutic potential of hypoxia-induced astrocyte-secreted exosomes and the miR-329-5p for treating retina ischemic diseases.

5.
BMC Genomics ; 25(1): 367, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622534

ABSTRACT

The tissue damage caused by transient ischemic injury is an essential component of the pathogenesis of retinal ischemia, which mainly hinges on the degree and duration of interruption of the blood supply and the subsequent damage caused by tissue reperfusion. Some research indicated that the retinal injury induced by ischemia-reperfusion (I/R) was related to reperfusion time.In this study, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model group and at different reperfusion time (24h, 72h, and 7d) with the aid of whole transcriptome sequencing technology, and the trend changes in time-varying mRNA, lncRNA, circRNA were obtained by chronological analysis. Then, candidate circRNAs, lncRNAs, and mRNAs were obtained as the intersection of differentially expression genes and trend change genes. Importance scores of the genes selected the key genes whose expression changed with the increase of reperfusion time. Also, the characteristic differentially expressed genes specific to the reperfusion time were analyzed, key genes specific to reperfusion time were selected to show the change in biological process with the increase of reperfusion time.As a result, 316 candidate mRNAs, 137 candidate lncRNAs, and 31 candidate circRNAs were obtained by the intersection of differentially expressed mRNAs, lncRNAs, and circRNAs with trend mRNAs, trend lncRNAs and trend circRNAs, 5 key genes (Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa) were selected by importance scores of the genes. The result of GSEA showed that key genes were found to play vital roles in antigen processing and presentation, regulation of the actin cytoskeleton, and the ribosome. A network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 34 miRNAs and 48 lncRNAs, and 81 regulatory relationship axes, and a network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 9 miRNAs and 3 circRNAs (circRNA_10572, circRNA_03219, circRNA_11359) and 12 regulatory relationship axes were constructed, the subcellular location, transcription factors, signaling network, targeted drugs and relationship to eye diseases of key genes were predicted. 1370 characteristic differentially expressed mRNAs (spec_24h mRNA), 558 characteristic differentially expressed mRNAs (spec_72h mRNA), and 92 characteristic differentially expressed mRNAs (spec_7d mRNA) were found, and their key genes and regulation networks were analyzed.In summary, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model groups and at different reperfusion time (24h, 72h, and 7d). 5 key genes, Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa, were selected. Key genes specific to reperfusion time were selected to show the change in biological process with the increased reperfusion time. These results provided theoretical support and a reference basis for the clinical treatment.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Reperfusion Injury , Rats , Animals , RNA, Circular/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Reperfusion Injury/genetics , Computational Biology/methods , Ischemia , Gene Regulatory Networks
6.
Ther Adv Ophthalmol ; 16: 25158414241240687, 2024.
Article in English | MEDLINE | ID: mdl-38628356

ABSTRACT

This case series describes the aggregate rate of recovery in five consecutive subjects (six eyes) with retinal vein occlusion (RVO) who received l-methylfolate and other vitamins via Ocufolin®, a medical food. Subjects were followed for 10-33 months by a single ophthalmologist. Ocufolin® was prescribed at the time of diagnosis and subjects remained on the regimen throughout the time of observation. Examinations were performed in an un-masked fashion at 3-month intervals with recording of best corrected visual acuity (BCVA), average retinal nerve fiber layer (ARNFL) and central macular thickness (CMT), and fundus (examination of the retina, macula, optic nerve, and vessels) photography. Testing was done for vitamin deficiencies, vascular and coagulable risk factors, and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Vitamin deficiencies and vascular risk factors were found in all subjects, and all four tested subjects carried at least one MTHFR polymorphism. By the end of the study period BCVA in all subjects was 20/25 or better. Cystoid macular edema was identified and measured by optical coherence tomography (OCT). The percent change was calculated and plotted at 3-month intervals using the percent change in thickness from the time of diagnosis and percent change toward normative values for ARNFL and CMT. The total reduction in thickness of ARNFL and CMT from time of diagnosis was 44.19% and 30.27%, respectively. The comparison to normative data shows a reduction of ARNFL from 164.2% to 94% and CMT from 154.4% to 112.7% of normal thickness (100%). Plots showed the aggregate recovery was most rapid over the first 3 months and slowed over the next 3 months with most of the recovery taking place within 6 months of treatment. The rate of improvement in BCVA and resolution of retinal thickening was found to be better than predicted on historical grounds. No subjects progressed from nonischemic to ischemic RVO. Vitamin deficiencies, vascular risk factors, and genetic predisposition to oxidative stress were common in this RVO series. It appears that addressing these factors with Ocufolin® had a salutary effect on recovery.

7.
Nano Lett ; 24(18): 5593-5602, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38619365

ABSTRACT

The design of intracellular delivery systems for protein drugs remains a challenge due to limited delivery efficacy and serum stability. Herein, we propose a reversible assembly strategy to assemble cargo proteins and phenolic polymers into stable nanoparticles for this purpose using a heterobifunctional adaptor (2-formylbenzeneboronic acid). The adaptor is easily decorated on cargo proteins via iminoboronate chemistry and further conjugates with catechol-bearing polymers to form nanoparticles via boronate diester linkages. The nanoparticles exhibit excellent serum stability in culture media but rapidly release the cargo proteins triggered by lysosomal acidity and GSH after endocytosis. In a proof-of-concept animal model, the strategy successfully transports superoxide dismutase to retina via intravitreal injection and efficiently ameliorates the oxidative stress and cellular damage in the retina induced by ischemia-reperfusion (I/R) with minimal adverse effects. The reversible assembly strategy represents a robust and efficient method to develop serum-stable systems for the intracellular delivery of biomacromolecules.


Subject(s)
Nanoparticles , Polymers , Animals , Polymers/chemistry , Nanoparticles/chemistry , Humans , Superoxide Dismutase/metabolism , Superoxide Dismutase/chemistry , Drug Delivery Systems , Phenols/chemistry , Oxidative Stress/drug effects , Boronic Acids/chemistry , Retina/metabolism , Mice
8.
Mol Neurobiol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517616

ABSTRACT

Glaucoma, as an ischemia-reperfusion (I/R) injury disease, leading irreversible blindness through the loss of retinal ganglion cells (RGCs), mediated by various pathways. Resveratrol (Res) is a polyphenolic compound that exerts protective effects against I/R injury in many tissues. This article aimed to expound the underlying mechanisms through which Res protects RGCs and reduces visual dysfunction in vivo. An experimental glaucoma model was created using 6-8-week wild-type male C57BL/6J mice. Res was injected intraperitoneally for 5 days. The mice were then grouped according to the number of days after surgery and whether Res treatment was administered. We applied the Brn3a-labeled immunofluorescence staining and flash electroretinography (ERG) to assess the survival of RGCs and visual function. The expression of components of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the interleukin-1-beta (IL-1ß), and vital indicators of kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway at the protein and RNA levels were detected respectively. The survival of RGCs was reduced after surgery compared to controls, whereas Res application rescued RGCs and improved visual dysfunction. In conclusion, our results discovered that Res administration showed neuroprotective effects through inhibition of the NLRP3 inflammasome pathway and activation of Keap1/Nrf2/HO-1 pathway. Thus, we further elucidated the potential of Res in glaucoma therapy.

9.
J Neuroinflammation ; 21(1): 65, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454477

ABSTRACT

Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.


Subject(s)
Diabetic Retinopathy , Retinal Diseases , Humans , Retinal Diseases/pathology , Retina/pathology , Macrophages/pathology , Ischemia/pathology
10.
Int J Ophthalmol ; 17(2): 228-238, 2024.
Article in English | MEDLINE | ID: mdl-38371266

ABSTRACT

AIM: To observe the effects of N-acetylserotonin (NAS) administration on retinal ischemia-reperfusion (RIR) injury in rats and explore the underlying mechanisms involving the high mobility group box 1 (HMGB1)/receptor for advanced glycation end-products (RAGE)/nuclear factor-kappa B (NF-κB) signaling pathway. METHODS: A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye. Eighty male Sprague Dawley were randomly divided into five groups: sham group (n=8), RIR group (n=28), RIR+NAS group (n=28), RIR+FPS-ZM1 group (n=8) and RIR+NAS+ FPS-ZM1 group (n=8). The therapeutic effects of NAS were examined by hematoxylin-eosin (H&E) staining, and retinal ganglion cells (RGCs) counting. The expression of interleukin 1 beta (IL-1ß), HMGB1, RAGE, and nod-like receptor 3 (NLRP3) proteins and the phosphorylation of nuclear factor-kappa B (p-NF-κB) were analyzed by immunohistochemistry staining and Western blot analysis. The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats. With NAS therapy, the HMGB1 and RAGE expression decreased significantly, and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression. Additionally, NAS exhibited an anti-inflammatory effect by reducing IL-1ß expression. The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression, so as to the IL-1ß expression and retinal edema, accompanied by an increase of RGCs in RIR rats. CONCLUSION: NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway, which may be a useful therapeutic target for retinal disease.

11.
Int Immunopharmacol ; 128: 111480, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38194747

ABSTRACT

BACKGROUND: Retinal ischemia-reperfusion (I/R) serves as a significant contributor to ocular diseases, triggering a cascade of pathological processes. The interplay between neuroinflammation and the apoptosis of retinal ganglion cell (RGC) is a well-explored aspect of retinal I/R-induced tissue damage. Within this intricate landscape, the inflammatory cytokine Interleukin-21 (IL21) emerges as a potent mediator of neuroinflammation with known detrimental effects on neuronal integrity. However, its specific impact on RGC apoptosis in the context of retinal I/R has remains to be uncovered. This study aims to unravel the potential anti-apoptotic effects of IL21 siRNA on RGC, shedding light on the neuroprotection of retinal I/R. METHODS: Sprague-Dawley (SD) rats underwent a controlled elevation of intraocular pressure (IOP) to 110 mmHg for 60 min to simulate retinal I/R conditions. To explore the influence of IL21 on RGC apoptosis and its underlying molecular mechanisms, a comprehensive array of techniques such immunohistochemistry, immunofluorescence, TUNEL, Hematoxylin-eosin (H&E), immunoblotting, and qRT-PCR were carried out. RESULTS: The landscape of retinal I/R injury revealed an increase in the expression of IL21, reaching its peak at 72 h. Notably, IL21 markedly induced RGC apoptosis within the retinal I/R milieu. The introduction of IL21 siRNA showed promising outcomes, manifesting as an amelioration of neurological function deficits, a reduction in RGC loss, and an increase in the thickness of the inner retinal layer at the 72-hour reperfusion. Additionally, IL21 siRNA demonstrated its ability to hinder the release of proteins associated with apoptosis via the JAK/STAT signaling pathway. In the in vitro setting, IL21 siRNA efficiently reduced R28 cell apoptosis by suppressing the production of proteins associated with apoptosis by regulating the JAK/STAT signaling pathway. CONCLUSIONS: This study provides evidence for the pathogenic role of IL21 in retinal I/R. The findings underscore IL21 siRNA as a promising therapeutic target for ischemic retinal injury. Its efficacy lies in its ability to mitigate RGC apoptosis by suppressing the JAK/STAT signaling pathway. These findings not only enhance our comprehension of retinal I/R pathology but also suggests IL21 siRNA as a potential transformative factor in the development of targeted therapies for ischemic retinal injuries.


Subject(s)
Interleukins , Reperfusion Injury , Retinal Diseases , Rats , Animals , Retinal Ganglion Cells , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Apoptosis , Retinal Diseases/pathology , Reperfusion Injury/drug therapy , Ischemia/metabolism , RNA, Small Interfering/metabolism
12.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279349

ABSTRACT

Retinal ischemia plays a vital role in vision-threatening retinal ischemic disorders, such as diabetic retinopathy, age-related macular degeneration, glaucoma, etc. The aim of this study was to investigate the effects of S-allyl L-cysteine (SAC) and its associated therapeutic mechanism. Oxidative stress was induced by administration of 500 µM H2O2 for 24 h; SAC demonstrated a dose-dependent neuroprotective effect with significant cell viability effects at 100 µM, and it concurrently downregulated angiogenesis factor PKM2 and inflammatory biomarker MCP-1. In a Wistar rat model of high intraocular pressure (HIOP)-induced retinal ischemia and reperfusion (I/R), post-administration of 100 µM SAC counteracted the ischemic-associated reduction of ERG b-wave amplitude and fluorogold-labeled RGC reduction. This study supports that SAC could protect against retinal ischemia through its anti-oxidative, anti-angiogenic, anti-inflammatory, and neuroprotective properties.


Subject(s)
Glaucoma , Neuroprotective Agents , Reperfusion Injury , Retinal Diseases , Rats , Animals , Rats, Wistar , Cysteine/pharmacology , Cysteine/therapeutic use , Hydrogen Peroxide/therapeutic use , Reperfusion Injury/drug therapy , Retinal Diseases/drug therapy , Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Glaucoma/drug therapy
13.
Ophthalmol Ther ; 13(3): 831-849, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38273048

ABSTRACT

INTRODUCTION: There is a high and ever-increasing global prevalence of diabetic retinopathy (DR) and invasive imaging techniques are often required to confirm the presence of proliferative disease. The aim of this study was to explore the images of a rapid and non-invasive technique, widefield optical coherence tomography angiography (OCT-A), to study differences between patients with severe non-proliferative and proliferative DR (PDR). METHODS: We conducted an observational longitudinal study from November 2022 to March 2023. We recruited 75 patients who were classified into a proliferative group (28 patients) and severe non-proliferative group (47 patients). Classification was done by specialist clinicians who had full access to any multimodal imaging they required to be confident of their diagnosis, including fluorescein angiography. For all patients, we performed single-shot 4 × 4 and 10 × 10 mm (widefield) OCT-A imaging and when possible, the multiple images required for mosaic 17.5 × 17.5 mm (ultra widefield) OCT-A imaging. We assessed the frequency with which proliferative disease was identifiable solely from these OCT-A images and used custom-built MATLAB software to analyze the images and determine computerized metrics such as density and intensity of vessels, foveal avascular zone, and ischemic areas. RESULTS: On clinically assessing the OCT-A 10 × 10 fields, we were only able to detect new vessels in 25% of known proliferative images. Using ultra-widefield mosaic images, however, we were able to detect new vessels in 100% of PDR patients. The image analysis metrics of 4 × 4 and 10 × 10 mm images did not show any significant differences between the two clinical groups. For mosaics, however, there were significant differences in the capillary density in patients with PDR compared to severe non-PDR (9.1% ± 1.9 in the PDR group versus 11.0% ± 1.9 for severe group). We also found with mosaics a significant difference in the metrics of ischemic areas; average area of ischemic zones (253,930.1 ± 108,636 for the proliferative group versus 149,104.2 ± 55,101.8 for the severe group. CONCLUSIONS: Our study showed a high sensitivity for detecting PDR using only ultra-widefield mosaic OCT-A imaging, compared to multimodal including fluorescein angiography imaging. It also suggests that image analysis of aspects such as ischemia levels may be useful in identifying higher risk groups as a warning sign for future conversion to neovascularization.

14.
Eur Stroke J ; 9(2): 486-493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38189284

ABSTRACT

INTRODUCTION: Reperfusion therapies represent promising treatments for patients with Central Retinal Artery Occlusion (CRAO), but access is limited due to low incidence and lack of protocols. We aimed to describe the benefit of implementing a Retinal Stroke-Code protocol regarding access to reperfusion, visual acuity and aetiological assessment. PATIENTS AND METHODS: Prospective cohort study performed at a Comprehensive Stroke Centre. Criteria for activation were sudden monocular, painless vision loss within 6 h from onset. Eligible patients received IAT when immediately available and IVT otherwise. All patients were followed by ophthalmologists to assess best-corrected visual acuity (BCVA) and visual complications, and by neurologists for aetiological workup. Visual amelioration was defined as improvement of at least one Early Treatment Diabetic Retinopathy Study (ETDRS) letter from baseline to 1 week. RESULTS: Of 49 patients with CRAO, 15 (30.6%) received reperfusion therapies (12 IVT, 3 IAT). Presentation beyond 6 h was the main contraindication. Patients receiving reperfusion therapies had better rates of visual improvement (33.3% vs 5.9%, p = 0.022). There were no complications related to reperfusion therapies. Rates of neovascular glaucoma were non-significantly lower in patients receiving reperfusion therapies (13.3% vs 20.6%, p = 0.701). Similar rates of atherosclerotic, cardioembolic and undetermined aetiologies were observed, leading to 10 new diagnosed atrial fibrillation and five carotid revascularizations. CONCLUSION: A comprehensive acute management of CRAO is feasible despite low incidence. In our study, reperfusion therapies were safe and associated with higher rates of visual recovery. A similar etiological workup than ischemic stroke led to of high proportion of underlying aetiologies.


Subject(s)
Reperfusion , Retinal Artery Occlusion , Visual Acuity , Humans , Female , Male , Aged , Retinal Artery Occlusion/therapy , Prospective Studies , Middle Aged , Reperfusion/methods , Recovery of Function , Aged, 80 and over , Stroke/therapy , Treatment Outcome
15.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1777-1783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38244084

ABSTRACT

PURPOSE: To investigate the relationship between the macular values of fractal dimension (FD) and lacunarity (LAC) on optical coherence tomography angiography (OCTA) images and the presence of peripheral retina non-perfusion areas (NPAs) on fluorescein angiography (FA) in patients with treatment-naïve diabetic macular edema (DME). METHODS: Fifty patients with treatment-naïve DME underwent a full ophthalmic examination, including best-corrected visual acuity measurement, FA, spectral-domain optical coherence tomography, and OCTA. Specifically, FA was performed to detect the presence of retinal NPAs, whereas fractal OCTA analysis was used to determine macular FD and LAC values at the level of the superficial and deep capillary plexus (SCP and DCP). FA montage frames of the posterior pole and peripheral retina, as well as macular OCTA slabs of the SCP and DCP, were obtained. RESULTS: Thirty (60%) eyes with FA evidence of peripheral retinal NPAs in at least one quadrant showed significantly lower FD and higher LAC in both SCP and DCP, when compared with eyes presenting a well-perfused peripheral retina. Furthermore, macular FD and LAC values were found to be significantly associated with the extent of retinal NPAs. CONCLUSIONS: Macular FD and LAC of both SCP and DCP seem to be strongly associated with the extent of peripheral retinal NPAs, thus suggesting that may be useful predictive biomarkers of peripheral ischemia in treatment-naïve DME eyes.


Subject(s)
Diabetic Retinopathy , Fluorescein Angiography , Fundus Oculi , Ischemia , Macular Edema , Retinal Vessels , Tomography, Optical Coherence , Visual Acuity , Humans , Tomography, Optical Coherence/methods , Macular Edema/diagnosis , Macular Edema/etiology , Macular Edema/metabolism , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/physiopathology , Fluorescein Angiography/methods , Male , Female , Retinal Vessels/diagnostic imaging , Ischemia/diagnosis , Ischemia/physiopathology , Ischemia/metabolism , Middle Aged , Macula Lutea , Aged , Biomarkers/metabolism , Fovea Centralis , Follow-Up Studies , Prospective Studies
16.
Exp Eye Res ; 238: 109743, 2024 01.
Article in English | MEDLINE | ID: mdl-38056550

ABSTRACT

Pigment epithelium-derived factor (PEDF) is widely recognized as a neuroprotective factor expressed in the retina and has shown therapeutic potential in several retinal diseases. Our study aimed to identify the neuroprotective fragment in PEDF and investigate its protective activity in retinas under ischemia-reperfusion (IR) condition. We synthesized a series of shorter synthetic peptides, 6-mer (Ser93-Gln98) and its d-form variant (6 dS) derived from the 44-mer (Val78-Thr121; a PEDF neurotrophic fragment), to determine their cytoprotective activity in IR injury, which was induced in rat retinas by injection of saline into the anterior chamber to increase the intraocular pressure (IOP) followed by reperfusion. We found the cytoprotective effect of 6-mer on glutamate-treated Neuro-2a cells and tert-butyl hydroperoxide (tBHP)-treated 661W cells were 2.6-fold and 1.5-fold higher than the 44-mer, respectively. The cytoprotective effect was blocked by a chemical inhibitor atglistatin and blocking antibody targeting PEDF receptor (PEDF-R). IR induced several impairments in retina, including cell apoptosis, activation of microglia/macroglia, degeneration of retinal capillaries, reduction in electroretinography (ERG) amplitudes, and retinal atrophy. Such IR injuries were ameliorated by treatment with 6-mer and 6 dS eye drops. Also, the neuroprotective activity of 6-mer and 6 dS in ischemic retinas were dramatically reversed by atglistatin preconditioning. Taken together, our data demonstrate smallest neuroprotective fragment of PEDF has potential to treat retinal degeneration-related diseases.


Subject(s)
Eye Proteins , Nerve Growth Factors , Reperfusion Injury , Retina , Retinitis , Serpins , Animals , Rats , Rabbits , Nerve Growth Factors/administration & dosage , Nerve Growth Factors/chemistry , Nerve Growth Factors/metabolism , Eye Proteins/administration & dosage , Eye Proteins/chemistry , Eye Proteins/metabolism , Serpins/administration & dosage , Serpins/chemistry , Serpins/metabolism , Retina/metabolism , Retina/pathology , Reperfusion Injury/metabolism , Cytoprotection , Apoptosis , Neurons/metabolism , Retinitis/drug therapy , Retinitis/metabolism , Administration, Topical , Peptides/administration & dosage , Peptides/metabolism
17.
Curr Eye Res ; 49(3): 280-287, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37970666

ABSTRACT

PURPOSE: N-acetylserotonin (NAS) can reduce retinal ischemia-reperfusion injury (RIRI) by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway. Aflibercept is an anti-VEGF drug used to treat a variety of eye diseases. This study was performed to investigate the effect of combination therapy with N-acetylserotonin and aflibercept on RIRI and its mechanism. METHODS: The RIRI model was established by elevating the intraocular pressure. H&E staining was used to observe the pathological changes in the retinal tissue. Cell apoptosis was evaluated by TUNEL. The expression of cleaved caspase-3 in the retina was detected by immunofluorescence and western blotting. The levels of SOD, GSH-Px, and MDA in retinal tissue were measured by ELISA. The protein expression of cytoplasmic Nrf2, nuclear Nrf2, HO-1, Akt, and p-Akt was determined by western blotting. RESULTS: The results showed that combination therapy with NAS and aflibercept significantly alleviated retinal histopathological damage, decreased retinal thickness (from 335.49 ± 30.50 µm to 226.16 ± 17.20 µm, p < 0.001) and the rate of retinal apoptosis (from 28.27 ± 0.39% to 7.87 ± 0.19%, p < 0.001), and downregulated protein expression (from 2.42 ± 0.03 to 1.39 ± 0.03, p < 0.001) and positive expression (from 31.88 ± 0.52 to 25.36 ± 0.58, p < 0.001) of cleaved caspase-3. In addition, combination therapy with NAS and aflibercept also upregulated the levels of SOD (from 20.31 ± 0.18 to 29.66 ± 0.83, p < 0.001) and GSH-Px (from 13.62 ± 0.36 to 19.31 ± 0.82, p < 0.001) and downregulated the level of MDA (from 0.51 ± 0.01 to 0.41 ± 0.01, p < 0.001) to inhibit oxidative stress. Finally, combination therapy with NAS and aflibercept increased the protein expression of cytoplasmic Nrf2 (from 0.10 ± 0.002 to 0.85 ± 0.01, p < 0.001), nuclear Nrf2 (from 0.43 ± 0.01 to 0.88 ± 0.04, p < 0.001), and HO-1 (from 0.45 ± 0.03 to 0.91 ± 0.04, p < 0.001) and the p-Akt/Akt ratio (from 0.45 ± 0.02 to 0.81 ± 0.07, p < 0.001). CONCLUSIONS: Overall, combination therapy with NAS and aflibercept attenuated RIRI, and its mechanism may be related to inhibiting apoptosis and oxidative stress and activating the Akt/Nrf2 pathway.


Subject(s)
Proto-Oncogene Proteins c-akt , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins , Reperfusion Injury , Serotonin/analogs & derivatives , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Rats, Sprague-Dawley , Oxidative Stress , Reperfusion Injury/pathology , Retina/metabolism , Apoptosis , Superoxide Dismutase/metabolism
18.
Ophthalmic Res ; 67(1): 125-136, 2024.
Article in English | MEDLINE | ID: mdl-38128509

ABSTRACT

INTRODUCTION: The objective of this study was to investigate the impact of N-acetylserotonin (NAS) on the autophagy of retinal cells in rats with retinal ischemia-reperfusion injury (RIRI) and to explore the mechanisms by which NAS administration can alleviate RIRI through the tropomyosin-related kinase receptor B (TrkB)/protein kinase B (Akt)/nuclear factor erythroid-derived factor 2-related factor (Nrf2) signaling pathway. METHODS: Healthy adult male rats were randomly assigned to four groups: sham, RIRI, RIRI+NAS, and RIRI+NAS+ANA-12. The RIRI group was induced by elevating intraocular pressure, and changes in retinal structure and edema were assessed using H&E staining. The RIRI+NAS and RIRI+NAS+ANA-12 groups received intraperitoneal injections of NAS before and after modeling. The RIRI+NAS+ANA-12 group was also administered ANA-12, a TrkB antagonist. Immunohistochemical staining and Western blot analysis were used to evaluate phosphorylated TrkB (p-TrkB), phosphorylated Akt (p-Akt), Nrf2, sequestosome 1 (P62), and microtubule-associated protein 1 light chain 3 (LC3-II) levels in the retinas of each group. Electroretinogram was recorded to detect retinal function in each group of rats 24 h after modeling. RESULTS: The RIRI+NAS group had a thinner retina and more retinal ganglion cells (RGCs) than RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Immunohistochemical staining and Western blot results showed that p-TrkB, p-Akt, n-Nrf2, and P62 levels in the RIRI+NAS group were higher compared with those in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Also, lower LC3-II levels were observed in the RIRI+NAS group compared with that in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Electroretinogram recording results showed that 24 h after retinal ischemia-reperfusion, the magnitude of b-wave changes was attenuated in the RIRI+NAS group compared with the RIRI group (p < 0.05). CONCLUSION: The administration of NAS activates the TrkB/Akt/Nrf2 signaling pathway, reduces autophagy, alleviates retinal edema, promotes the survival of retinal ganglion cells (RGCs), and provides neuroprotection against retinal injury.


Subject(s)
Reperfusion Injury , Retinal Diseases , Serotonin/analogs & derivatives , Rats , Male , Animals , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Retina/metabolism , Retinal Diseases/drug therapy , Retinal Diseases/prevention & control , Signal Transduction , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism
19.
Biomed Pharmacother ; 170: 116042, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118351

ABSTRACT

Glaucoma, a prevalent cause of permanent visual impairment worldwide, is characterized by the progressive degeneration of retinal ganglion cells (RGCs). NADPH oxidase (NOX) 1 and NOX4 are pivotal nodes in various retinal diseases. Setanaxib, a potent and highly selective inhibitor of NOX1 and NOX4, can impede the progression of various diseases. This study investigated the efficacy of setanaxib in ameliorating retinal ischemia-reperfusion (I/R) injury and elucidated its underlying mechanisms. The model of retinal I/R induced by acute intraocular hypertension and the oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary RGCs were established. By suppressing NOX1 and NOX4 expression in RGCs, setanaxib mitigated I/R-induced retinal neuronal loss, structural disruption, and dysfunction. Setanaxib reduced TUNEL-positive cells, upregulated Bcl-2, and inhibited Bax, Bad, and cleaved-caspase-3 overexpression after I/R injury in vitro and in vivo. Moreover, setanaxib also significantly reduced cellular senescence, as demonstrated by downregulating SA-ß-gal-positive and p16-INK4a expression. Furthermore, setanaxib significantly suppressed ROS production, Hif-1α and FOXO1 upregulation, and NRF2 downregulation in damaged RGCs. These findings highlight that the setanaxib effectively inhibited NOX1 and NOX4, thereby regulating ROS production and redox signal activation. This inhibition further prevents the activation of apoptosis and senescence related factors in RGCs, ultimately protecting them against retinal I/R injury. Consequently, setanaxib exhibits promising potential as a therapeutic intervention for glaucoma.


Subject(s)
Glaucoma , Reperfusion Injury , Retinal Diseases , Humans , Reactive Oxygen Species/metabolism , Retinal Ganglion Cells , Oxidative Stress , Apoptosis , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Retinal Diseases/drug therapy , Retinal Diseases/metabolism , Ischemia/metabolism , Reperfusion , Glaucoma/drug therapy , Glaucoma/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 1
20.
J Neuroinflammation ; 20(1): 296, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082266

ABSTRACT

BACKGROUND: Neuroinflammation and mitochondrial dysfunction play crucial roles in retinal ischemia and reperfusion (IR) injury. Recent studies have identified mitochondrial function as a promising target for immunomodulation. Empagliflozin (EMPA), an anti-diabetic drug, has exhibited great potential as both an anti-inflammatory agent and a protector of mitochondrial health. This study aimed to assess the therapeutic efficacy of EMPA in retinal IR injury. METHODS: To evaluate the protective effects of EMPA, the drug was injected into the vitreous body of mice post-retinal IR. Single-cell RNA sequencing (scRNA-seq) analysis was conducted to uncover the underlying mechanisms, and the results were further validated through in vivo and in vitro experiments. RESULTS: EMPA effectively protected retinal ganglion cells (RGCs) from IR injury by attenuating local retinal inflammation. The scRNA-seq analysis revealed that EMPA downregulated the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) signaling pathway and restored mitochondrial dynamics by upregulating the expression of mitochondrial fusion-related genes, Mitofusin 1 (Mfn1) and optic atrophy 1 (Opa1). These findings were further corroborated by Western blotting. In vitro experiments provided additional insights, demonstrating that EMPA suppressed lipopolysaccharide (LPS)-induced cell inflammation and NLRP3 inflammasome activation. Moreover, EMPA enhanced mitochondrial fusion, neutralized mitochondrial reactive oxygen species (mtROS), and restored mitochondrial membrane potential (MMP) in BV2 microglia. Notably, genetic ablation of Mfn1 or Opa1 abolished the anti-inflammatory effects of EMPA. CONCLUSIONS: Our findings highlight the positive contribution of Mfn1 and Opa1 to the anti-inflammatory therapeutic effect of EMPA. By restoring mitochondrial dynamics, EMPA effectively mitigates microglia-mediated neuroinflammation and prevents RGC loss in retinal IR injury.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Reperfusion Injury , Mice , Animals , Neuroinflammatory Diseases , Microglia/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Ischemia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , GTP Phosphohydrolases
SELECTION OF CITATIONS
SEARCH DETAIL
...