Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
J Plant Res ; 130(5): 791-807, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28536982

ABSTRACT

Rhizomatosae is a taxonomic section of the South American genus Arachis, whose diagnostic character is the presence of rhizomes in all its species. This section is of particular evolutionary interest because it has three polyploid (A. pseudovillosa, A. nitida and A. glabrata, 2n = 4x = 40) and only one diploid (A. burkartii, 2n = 2x = 20) species. The phylogenetic relationships of these species as well as the polyploidy nature and the origin of the tetraploids are still controversial. The present study provides an exhaustive analysis of the karyotypes of all rhizomatous species and six closely related diploid species of the sections Erectoides and Procumbentes by cytogenetic mapping of DAPI/CMA heterochromatin bands and 5S and 18-26S rDNA loci. Chromosome banding showed variation in the DAPI heterochromatin distribution pattern, which, together with the number and distribution of rDNA loci, allowed the characterization of all species studied here. The bulk of chromosomal markers suggest that the three rhizomatous tetraploid species constitute a natural group and may have at least one common diploid ancestor. The cytogenetic data of the diploid species analyzed evidenced that the only rhizomatous diploid species-A. burkartii-has a karyotype pattern different from those of the rhizomatous tetraploids, showing that it is not likely the genome donor of the tetraploids and the non-monophyletic nature of the section Rhizomatosae. Thus, the tetraploid species should be excluded from the R genome, which should remain exclusively for A. burkartii. Instead, the karyotype features of these tetraploids are compatible with those of different species of the sections Erectoides and Procumbentes (E genome species), suggesting the hypothesis of multiple origins of these tetraploids. In addition, the polyploid nature and the group of diploid species closer to the tetraploids are discussed.


Subject(s)
Arachis/genetics , Genome, Plant/genetics , Heterochromatin/genetics , Arachis/cytology , Biological Evolution , Chromosome Mapping , Chromosomes, Plant/genetics , DNA, Plant/genetics , DNA, Ribosomal/genetics , Diploidy , Karyotype , Karyotyping , Phylogeny , Polyploidy , Tetraploidy
2.
Genet. mol. biol ; 31(1): 79-88, 2008. graf, tab
Article in English | LILACS | ID: lil-476156

ABSTRACT

The genus Arachis (Fabaceae) native to South America, contains 80 species divided into nine sections, three of which contain species of special economic importance such as the cultivated peanut (Arachis hypogaea), belonging to the section Arachis, and some perennial forage species from sections Caulorrhizae and Rhizomatosae. We used microsatellite markers to assay genetic variability among 77 accessions of four species from section Rhizomatosae, the diploid Arachis burkartii (2n = 2x = 20) and the tetraploid Arachis glabrata, Arachis pseudovillosa and Arachis nitida (2n = 4x = 40). A total of 249 alleles were found in the fifteen loci analyzed and a high degree of intra and interspecific polymorphism was detected. The lowest intraspecific variation occurred in Arachis burkartii, while the smallest estimated interspecific value was between A. nitida and A. pseudovillosa and the largest was between A. burkartii and A. nitida. High observed heterozygosity was detected in A. glabrata. The diploid accessions grouped in one cluster and the tetraploid accessions in another. It was possible to distinguish all 77 accessions and the genetic distance between accessions could not be correlated with geographic origin.


Subject(s)
Arachis/genetics , Microsatellite Repeats , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...