Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Mar Environ Res ; 171: 105470, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34492367

ABSTRACT

Rhodolith beds increase the seabed complexity and are hotspots of biodiversity. Despite the crucial ecosystem services provided by rhodoliths, they are threatened by global change and local anthropogenic impacts. In this study, conducted on one of the largest beds of calcareous algae in the world located on the continental shelf of eastern Brazil, we tested whether the higher complexity of the seabed within rhodolith beds could explain the spatial biodiversity patterns of free-living nematodes. Our results show that beds with the highest densities of rhodoliths are associated with higher sedimentary organic matter (OM) contents and by a different biochemical composition. The higher OM nutritional quantity and nutritional quality, as shown by higher biopolymeric C contents and higher values of the protein to carbohydrate ratio, respectively, were associated with higher abundance, biomass, and diversity of nematode genera, thus supporting our hypothesis. Though based on a correlative approach, the results of this study suggest that a decrease in density of rhodoliths caused by human impacts may affect benthic biodiversity and, consequently, the range of ecosystem services they provide.


Subject(s)
Nematoda , Rhodophyta , Animals , Biodiversity , Biomass , Ecosystem , Humans
2.
PeerJ ; 9: e11903, 2021.
Article in English | MEDLINE | ID: mdl-34395104

ABSTRACT

Rhodoliths are free-living and morphologically diverse marine calcareous algae commonly distributed over the continental shelf seafloor. They increase the seabed structural complexity and are of potential value as feeding and reproductive grounds for a myriad of marine fauna. The higher structural seabed complexity within rhodolith beds may also increase benthic diversity by creating microhabitats, but this relationship has been rarely explored within rhodolith beds worldwide. Here we compared benthic macrofaunal (>500 µm) structure on rhodolith beds (nodule epifauna) and within unconsolidated sediments (sediment infauna) under high and low-density beds to test whether rhodolith bed density and nodule morphology influenced macrofaunal assemblages. We observed that macrofaunal density on nodules (2538 ± 288.7 ind·m-2) was 15-fold higher when compared to sediments under those beds (166 ± 38.8 ind·m-2). Rhodolith bed density was positively related to macrofaunal density, composition, and functional diversity on the rhodoliths. Low-density beds (61 ± 27.1 nodules·m-2) with discoid-shape nodules were dominated by peracarid crustaceans whereas high-density beds (204 ± 18.7 nodules·m-2) with spheroidal nodules were dominated by Annelid polychaetes. The sediment macrofauna was also positively influenced by the density of rhodolith nodules, which increased sediment carbonate and organic quality (protein and lipids) under high-density beds. Macrofaunal functional diversity was generally higher on rhodoliths, with low similarity (low nestedness) and high taxa turnover between macrofaunal assemblages of rhodoliths and sediments. These findings indicate that rhodolith beds provide an unique habitat for benthic macrofaunal communities, with exclusive functional and taxonomic richness that are likely not typical in the unconsolidated sediment below these beds in SE Brazil. This study highlights the importance of protecting rhodolith beds from multiple sources of anthropogenic disturbance and exploration on continental shelves.

3.
Mar Environ Res ; 169: 105394, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34166865

ABSTRACT

Given the ecological and biogeochemical importance of rhodolith beds, it is necessary to investigate how future environmental conditions will affect these organisms. We investigated the impacts of increased nutrient concentrations, acidification, and marine heatwaves on the performance of the rhodolith-forming species Lithothamnion crispatum in a short-term experiment, including the recovery of individuals after stressor removal. Furthermore, we developed an ecological niche model to establish which environmental conditions determine its current distribution along the Brazilian coast and to project responses to future climate scenarios. Although L. crispatum suffered a reduction in photosynthetic performance when exposed to stressors, they returned to pre-experiment values following the return of individuals to control conditions. The model showed that the most important variables in explaining the current distribution of L. crispatum on the Brazilian coast were maximum nitrate and temperature. In future ocean conditions, the model predicted a range expansion of habitat suitability for this species of approximately 58.5% under RCP 8.5. Physiological responses to experimental future environmental conditions corroborated model predictions of the expansion of this species' habitat suitability in the future. This study, therefore, demonstrates the benefits of applying combined approaches to examine potential species responses to climate-change drivers from multiple angles.


Subject(s)
Ecosystem , Rhodophyta , Brazil , Climate Change , Humans , Temperature
4.
Sci Total Environ ; 760: 143411, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33243513

ABSTRACT

The Great Amazon Reef System (GARS) covers an estimated area of 56,000 km2 off the mouth of the Amazon River. Living rhodolith holobionts are major benthic components of the GARS. However, it is unclear whether environmental conditions modulate the rhodolith microbiomes. Previous studies suggest that environmental parameters such as light, temperature, depth, and nutrients are drivers of rhodolith health. However, it is unclear whether rhodoliths from different sectors (northern, central, and southern) from the GARS have different microbiomes. We analysed metagenomes of rhodoliths (n = 10) and seawater (n = 6), obtained from the three sectors, by illumina shotgun sequencing (total read counts: 25.73 million). Suspended particulate material and isotopic composition of dissolved organic carbon (δ13C) indicated a strong influence of the Amazon river plume over the entire study area. However, photosynthetically active radiation at the bottom (PARb) was higher in the southern sector reefs, ranging from 10.1 to 14.3 E.m-2 day-1. The coralline calcareous red algae (CCA) Corallina caespitosa, Corallina officinalis, Lithophyllum cabiochiae, and Hapalidiales were present in the three sectors and in most rhodolith samples. Rhodolith microbiomes were very homogeneous across the studied area and differed significantly from seawater microbiomes. However, some subtle differences were found when comparing the rhodolith microbiomes from the northern and central sectors to the ones from the southern. Consistent with the higher light availability, two phyla were more abundant in rhodolith microbiomes from southern sites (Bacteroidetes, and Cyanobacteria). In addition, two functional categories were enhanced in southern rhodolith microbiomes (iron acquisition and metabolism, and photosynthesis). Phycobiliprotein-coding genes were also more abundant in southern locations, while the functional categories of respiration and sulfur metabolism were enhanced in northern and central rhodolith microbiomes, consistent with higher nutrient loads. The results confirm the conserved nature of rhodolith microbiomes even under pronounced environmental gradients. Subtle taxonomic and functional differences observed in rhodolith microbiomes may enable rhodoliths to thrive in changing environmental conditions.


Subject(s)
Microbiota , Rhodophyta , Coral Reefs , Metagenome , Photosynthesis , Seawater
5.
Rev. bras. farmacogn ; 29(6): 715-719, Nov.-Dec. 2019. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1057861

ABSTRACT

ABSTRACT Chemical investigation of the aqueous fraction of the ethanol extract from the Brazilian endemic marine sponge Clathria (Clathria) nicoleae Vieira de Barros, Santos & Pinheiro, 2013, Microcionidae, sampled from a 55 m deep rhodolith bed at the Amazon River mouth, led to the isolation of a new hexapeptide, clathriamide (1). HP-20 resin was used to capture compound 1 from the aqueous fraction, which was purified by additional chromatographic steps. The absolute configuration of the amino acids of 1 was determined by advanced Marfey's analysis using 5-fluoro-2,4-dinitrophenyl-Nα-L-tryptophanamide. The amino acid derivatives analyzed by ultra-performance liquid chromatography coupled to a mass spectrometry using a C8 column enabled a good chromatographic resolution of L-Ile and L-allo-Ile, previously unfeasible using C18 column.

6.
J Fish Biol ; 95(5): 1346-1349, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31490544

ABSTRACT

The snow bass Serranus chionaraia is a small-bodied reef fish presumed to be restricted to the Caribbean Province, with a single specimen captured south of the Amazon River mouth. Recent surveys with baited remote underwater stereo-video systems detected the species c. 1900 km southward. Meristic and morphometric characters of two specimens examined in this study confirmed the species identity, which greatly extends the species' range southward on the eastern coast of Brazil and indicates the presence of an established population of S. chionaraia in the Brazilian Province.


Subject(s)
Perciformes/physiology , Animal Distribution , Animals , Brazil , Population Density , Population Dynamics
7.
Sci Total Environ ; 676: 455-468, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31048175

ABSTRACT

Rhodolith beds, like many other marine ecosystems, are affected by climate change that is causing an increase in the magnitude and frequency of extreme high temperature events (heat waves). Unfortunately, this does not represent the sole peril for these communities, as coastal urbanization in conjunction with altered precipitation patterns can increase terrestrial-derived nutrient input. In Brazil, rhodolith beds are among the most extensive coastal benthic ecosystems, but despite their vast distribution and great ecological and economic importance, studies on the productivity of these communities and the impact of changing environmental conditions are almost non-existent. This study addressed the individual and combined effects of increases in temperature and nutrient concentration on the physiological performance of two widely distributed rhodolith species, Lithothamnion crispatum and Melyvonnea erubescens. The results showed species-specific responses in net photosynthetic performance, with no response in L. crispatum, while M. erubescens responded negatively to both increase in temperature and nutrients. In contrast, calcification in both species showed a significant decline at high temperature. No interactive effects were found between temperature and nutrients, yet their combined negative effects were additive, resulting in negative daily-integrated net productivity and a large decline in daily carbonate production in both species. This has strong implications for rhodolith bed primary productivity and carbonate production, as heat waves may potentially cause a strong decline in carbonate production (ca. 50% loss), accompanied by a severe drop in primary productivity that will be even more pronounced under high-nutrient conditions. Also, the species-specific responses to changes in temperature and nutrient concentration suggest that the magnitude of impact of these factors on rhodolith bed productivity will depend on the species dominating the community and may finally result in changes in rhodolith community composition.


Subject(s)
Climate Change , Ecosystem , Rhodophyta/physiology , Brazil , Carbonates , Environmental Monitoring , Hydrogen-Ion Concentration , Nitrogen/analysis , Oceans and Seas , Phosphorus/analysis , Photosynthesis , Seawater/chemistry , Temperature
8.
BMC Genomics ; 19(1): 701, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30249182

ABSTRACT

BACKGROUND: Life in the ocean will increasingly have to contend with a complex matrix of concurrent shifts in environmental properties that impact their physiology and control their life histories. Rhodoliths are coralline red algae (Corallinales, Rhodophyta) that are photosynthesizers, calcifiers, and ecosystem engineers and therefore represent important targets for ocean acidification (OA) research. Here, we exposed live rhodoliths to near-future OA conditions to investigate responses in their photosynthetic capacity, calcium carbonate production, and associated microbiome using carbon uptake, decalcification assays, and whole genome shotgun sequencing metagenomic analysis, respectively. The results from our live rhodolith assays were compared to similar manipulations on dead rhodolith (calcareous skeleton) biofilms and water column microbial communities, thereby enabling the assessment of host-microbiome interaction under climate-driven environmental perturbations. RESULTS: Under high pCO2 conditions, live rhodoliths exhibited positive physiological responses, i.e. increased photosynthetic activity, and no calcium carbonate biomass loss over time. Further, whereas the microbiome associated with live rhodoliths remained stable and resembled a healthy holobiont, the microbial community associated with the water column changed after exposure to elevated pCO2. CONCLUSIONS: Our results suggest that a tightly regulated microbial-host interaction, as evidenced by the stability of the rhodolith microbiome recorded here under OA-like conditions, is important for host resilience to environmental stress. This study extends the scarce comprehension of microbes associated with rhodolith beds and their reaction to increased pCO2, providing a more comprehensive approach to OA studies by assessing the host holobiont.


Subject(s)
Microbiota , Rhodophyta/microbiology , Biodiversity , Hydrogen-Ion Concentration , Metagenome , Microbiota/genetics , Oceans and Seas , Photosynthesis , Rhodophyta/metabolism , Rhodophyta/physiology , Seawater/chemistry , Seawater/microbiology , Stress, Physiological
9.
J Fish Biol ; 89(1): 990-1001, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27094882

ABSTRACT

Fishes inhabiting rhodolith beds and reefs at mesophotic depths on the Abrolhos Shelf, which encompasses the largest and richest coral reef formation in the South Atlantic Ocean, were assessed through technical diving and remotely operated vehicles (ROVs). A total of 74 fish species were recorded, including at least one new species, one new record for the south-western Atlantic and six new records for the Abrolhos region. Overfishing, mining and port activities are already threatening many endangered and commercially important species recorded on the mesophotic reefs of Abrolhos Shelf, and the establishment of marine protected areas and off-reserve fisheries regulations are urgently needed.


Subject(s)
Coral Reefs , Ecosystem , Fishes/physiology , Animal Distribution , Animals , Atlantic Ocean , Biodiversity , Conservation of Natural Resources , Population Dynamics
10.
Micron ; 72: 34-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25777060

ABSTRACT

Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (µCT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths.


Subject(s)
Anthozoa , Fossils , Rhodophyta , X-Ray Microtomography/methods , Animals , Biodiversity , Brazil , Ecosystem , Oceans and Seas , Seawater
11.
Rev. bras. farmacogn ; 22(4): 782-788, jul.-ago. 2012. ilus
Article in English | LILACS | ID: lil-640346

ABSTRACT

Rhodoliths are the free-living forms of a number of nongeniculate coralline algae. Rhodolith beds are a common feature of subtidal environments and have been recognized as important carbonate producers and paleoenvironmental indicators, as well as recognized as habitat-forming species. The rhodolith structure provides a hard three-dimensional substrate serving as microhabitat for a wide range of biodiversity, including commercially importance species. The largest known latitudinal occurrence range of rhodolith beds ais on the Brazilian coastal shelf from 2°N to 25°S. Despite their importance for the Brazilian benthic communities, only in the last decade sampling efforts allowed a more comprehensive understanding of the beds' distribution, their structure and associated communities, as well as data concerning the influence of environmental factors on rhodolith bed structure and dynamics. In this work, we review the available information on the biodiversity associated with the recently described Brazilian rhodolith beds of the continental shelf and oceanic islands, focusing on the associated organisms with potential for bioprospection research.

SELECTION OF CITATIONS
SEARCH DETAIL