Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Article in English | MEDLINE | ID: mdl-39037063

ABSTRACT

Rice bran oil is a type of rice oil made by leaching or pressing during rice processing and has a high absorption rate after consumption. When oxidative rancidity occurs, it may cause oxidative stress (OS) and affect intestinal function. Meanwhile, the toxic effects of oxidised rice bran oil have been less well studied in pigs. Therefore, the IPEC-J2 cells model was chosen to explore the regulatory mechanisms of oxidised rice bran oil on OS and apoptosis. Oxidised rice bran oil extract treatment (OR) significantly decreased the viability of IPEC-J2 cells. The results showed that OR significantly elevated apoptosis and reactive oxygen species levels and promoted the expression of pro-apoptotic gene Caspase-3 messenger RNA levels. The activation of Nrf2 signalling pathway by OR decreased the cellular antioxidant capacity. This was further evidenced by the expression of kelch-like ECH-associated protein 1, heme oxygenase 1, NADH: quinone oxidoreductase 1, superoxide dismutase 2 and heat shock 70 kDa protein genes and proteins were all downregulated. In conclusion, our results suggested that oxidised rice bran oil induced damage in IPEC-J2 cells through the Nrf2 signalling pathway.

2.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856105

ABSTRACT

Rice is an important food crop throughout the world. Rice bran, the outer layer of rice grain, is a by-product generated during the rice milling process. Rice bran oil (RBO) is extracted from rice bran and has also become increasingly popular. RBO is considered to be one of the healthiest cooking oils due to its balanced proportion of fatty acids, as well as high content of γ-oryzanol together with phytosterols, vitamin E, wax ester, trace and macro elements, carotenoids, and phenolics. The existence of these compounds provides RBO with various functions, including hypotensive and hypolipidemic functions, antioxidant, anticancer, and immunomodulatory functions, antidiabetic function, anti-inflammatory and anti-allergenic functions, hepatoprotective activity function, and in preventing neurological diseases. Recently, research on the nutrients in RBO focused on the detection of nutrients, functions, and processing methods. However, the processing and utilization of rice bran remain sufficiently ineffective, and the processing steps will also affect the nutrients in RBO to different degrees. Therefore, this review focuses on the contents and nutritional functions of different nutrients in RBO and the possible effects of processing methods on nutrients.

3.
Food Chem ; 455: 139927, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843714

ABSTRACT

To further enhance the stability of rice bran oil body (RBOB) emulsions, this study examined the impact of various concentrations of quercetin (QU) on the microstructure, rheological properties, oxidative stability, and digestive properties of RBOB emulsions. The results indicated that by incorporating QU concentration, the particle size of RBOB emulsions could be significantly reduced to 300 nm; QU could improve the surface hydrophobicity, the emulsifying activity index and emulsification stability index of RBOB emulsions of 550, 0.078 m2/g and 50.78 min, respectively; the storage stability of RBOB emulsions was further improved; the higher concentration of QU could delay the oxidation of RBOB emulsions, among which, the 500 µmol/L concentration inhibited the strongest effect of oil oxidation. It also improved the thermal stability of RBOB emulsions. After gastrointestinal digestion, the free fatty acids release rate of RBOB emulsions with QU addition decreased to 14.68%, and RBOB emulsions were slowly hydrolyzed. Therefore, adding QU to RBOB helps to improve its stability and delay digestion.


Subject(s)
Digestion , Emulsions , Oxidation-Reduction , Particle Size , Quercetin , Rice Bran Oil , Rice Bran Oil/chemistry , Emulsions/chemistry , Quercetin/chemistry , Quercetin/pharmacology , Hydrophobic and Hydrophilic Interactions , Humans
4.
Microorganisms ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792821

ABSTRACT

The Cunninghamella genus has been utilized for the production of PUFA-rich lipids. Therefore, we investigate the impact of plant oil supplementation in the culture medium (soybean oil, rice bran oil, and perilla oil), selected based on their different fatty acid predominant, on lipid production and fatty acid composition in C. elegans (TISTR 3370). All oils significantly boosted fungal growth, each influencing distinct patterns of lipid accumulation within the cells. The cells exhibited distinct patterns of lipid accumulation, forming intracellular lipid bodies, influenced by the different oils. Monounsaturated fatty acids (MUFAs) were found to be the most abundant, followed by polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) in the fungal lipid cultures. Oleic acid was identified as the primary MUFA, while palmitic acid was the predominant SFA in perilla oil supplements. Remarkably, perilla oil supplement provided the highest total lipid production with arachidonic acid being exclusively detected. The percentage of PUFAs ranged from 12% in the control to 33% in soybean oil, 32% in rice bran oil, and 61% in perilla oil supplements. These findings offer valuable opportunities for advancing biotechnological applications in lipid production and customization, with implications for food and nutrition as well as pharmaceuticals and cosmetics.

5.
Heliyon ; 10(10): e30880, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770285

ABSTRACT

Rice bran oil is one of oryzanol source oils. Oryzanol is an antioxidant compound that is related to the absorption of cholesterol, and is used in hyperlipidemia treatment and menopause problems. RBO extraction, purification and its γ-oryzanol content have been carefully reviewed. The quality and concentration of γ-oryzanol depend on the extraction process and purification. In selecting the extraction method to obtain the highest oryzanol content, in addition to comparing the concentration of oryzanol obtained and it can also be done by comparing the extraction kinetics parameters. Modeling according to physical or empirical kinetics can contribute in increasing the result of extraction. This study aims to determine the highest oryzanol content in rice bran oil, comparing several extraction methods and studies of rice bran oil extraction kinetic is necessary for scale up purposes. In this study is conducted Rice Bran Oil Extraction with n-Hexane solvent using several different methods, such as maceration, ultrasonication, and pneumatic press extractions. Independent variable that is used is the extraction time and yield as dependent variable. The study shows that the best extraction method to get the highest yield is 10.34 % by ultrasonicator and oryzanol content is 5.09 mg/g by a pneumatic press machine. According to kinetic parameter k2 is 0.001546, Cs is 0.0589, and h is 0.4707, R2 = 0.9715 obtained from extraction using ultrasonicator.

6.
Food Res Int ; 184: 114243, 2024 May.
Article in English | MEDLINE | ID: mdl-38609222

ABSTRACT

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Subject(s)
Lipidomics , Lipolysis , Fatty Acids , Fatty Acids, Nonesterified , Linoleic Acid , Rice Bran Oil
7.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474201

ABSTRACT

In recent years, the potent influence of tocotrienol (T3) on diminishing blood glucose and lipid concentrations in both Mus musculus (rats) and Homo sapiens (humans) has been established. However, the comprehensive exploration of tocotrienol's hypolipidemic impact and the corresponding mechanisms in aquatic species remains inadequate. In this study, we established a zebrafish model of a type 2 diabetes mellitus (T2DM) model through high-fat diet administration to zebrafish. In the T2DM zebrafish, the thickness of ocular vascular walls significantly increased compared to the control group, which was mitigated after treatment with T3. Additionally, our findings demonstrate the regulatory effect of T3 on lipid metabolism, leading to the reduced synthesis and storage of adipose tissue in zebrafish. We validated the expression patterns of genes relevant to these processes using RT-qPCR. In the T2DM model, there was an almost two-fold upregulation in pparγ and cyp7a1 mRNA levels, coupled with a significant downregulation in cpt1a mRNA (p < 0.01) compared to the control group. The ELISA revealed that the protein expression levels of Pparγ and Rxrα exhibited a two-fold elevation in the T2DM group relative to the control. In the T3-treated group, Pparγ and Rxrα protein expression levels consistently exhibited a two-fold decrease compared to the model group. Lipid metabolomics showed that T3 could affect the metabolic pathways of zebrafish lipid regulation, including lipid synthesis and decomposition. We provided experimental evidence that T3 could mitigate lipid accumulation in our zebrafish T2DM model. Elucidating the lipid-lowering effects of T3 could help to minimize the detrimental impacts of overfeeding in aquaculture.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperlipidemias , Tocotrienols , Humans , Mice , Rats , Animals , Tocotrienols/metabolism , Zebrafish/metabolism , Diet, High-Fat , Hyperlipidemias/metabolism , Rice Bran Oil , Diabetes Mellitus, Type 2/metabolism , PPAR gamma/metabolism , RNA, Messenger/metabolism , Lipid Metabolism , Liver/metabolism
8.
J Oleo Sci ; 73(4): 467-477, 2024.
Article in English | MEDLINE | ID: mdl-38556281

ABSTRACT

Rice bran (RB) and rice bran oil (RBO) are exploring as prominent food component worldwide and their compositional variation is being varied among the world due to regional and production process. In this study, Fermented Rice Bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus and Bifidobacterium bifidum) at 125×10 5 spore g -1 of rice bran, and investigated to evaluate nutritional quality. The Crude Rice Bran Oil (CRBO) was extracted from RB and its quality was also investigated compared to market available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (Threonine, valine, leucine, lysine, histidine and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, serine and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00 mg/g) were found in CRBO compared to MRBO (ranging 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% were found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%) respectively. The physiochemical parameters (density, refractive index, iodine value) were found satisfactory in all sample except acid value and peroxide value higher in CRBO. Heavy metal concentration was found within an acceptable range in both CRBO and MRBO. Thus FRB and RBO could be value added food supplement for human health.


Subject(s)
Antioxidants , Fatty Acids, Unsaturated , Humans , Rice Bran Oil/chemistry , Fatty Acids, Unsaturated/analysis , Antioxidants/analysis , Vitamin E , Phenols
9.
Nutrients ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337717

ABSTRACT

Lung inflammation and alveolar enlargement are the major pathological conditions of chronic obstructive pulmonary disease (COPD) patients. Rice bran oil (RBO), a natural anti-inflammatory and antioxidative agent, has been used for therapeutic purposes in several inflammatory diseases. This study aimed to investigate the anti-inflammatory and antioxidative effect of RBO on a cigarette smoke extract (CSE)-induced emphysema model in mice. The results indicated that CSE significantly induced airspace enlargement in mouse lung. Increased inflammatory cells, macrophage, and TNF-alpha levels in bronchoalveolar lavage fluid (BALF) were noticed in CSE-treated mice. RBO (low and high dose)-supplemented mice showed decreased total BALF inflammatory cell, macrophage, and neutrophil numbers and TNF-alpha levels (p < 0.05). Additionally, the administration of RBO decreased the mean linear alveolar intercept (MLI) in the CSE-treated group. Additionally, RBO treatment significantly increased the total antioxidant capacity in both mouse BALF and serum. However, RBO did not have an effect on the malondialdehyde (MDA) level. These findings suggested that RBO treatment ameliorates lung inflammation in a CSE-induced emphysema mice model through anti-inflammatory and antioxidant pathways. Therefore, the supplementation of RBO could be a new potential therapeutic to relieve the severity of COPD.


Subject(s)
Cigarette Smoking , Emphysema , Pneumonia , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Mice , Animals , Antioxidants/metabolism , Lung/pathology , Rice Bran Oil/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Cigarette Smoking/adverse effects , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Anti-Inflammatory Agents/therapeutic use , Pneumonia/drug therapy , Bronchoalveolar Lavage Fluid , Emphysema/chemically induced , Emphysema/drug therapy , Tobacco Products
10.
J Sci Food Agric ; 104(6): 3246-3255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081762

ABSTRACT

BACKGROUND: The aim of this research was to evaluate the possibility of lipid concomitant γ-oryzanol reducing oil absorbency of fried foods and the underlying mechanism. Therefore, the influence of γ-oryzanol on moisture and oil content, and distribution and micromorphology of French fries and the viscosity, fatty acid composition and total polar compounds content of rice bran oil (RBO) after frying were studied. RESULTS: Our results showed that the incorporation of low concentration of γ-oryzanol [low addition group (LAG)] (5.754 g/kg) decreased the oil absorbency and porous structure of French fries during frying. Additionally, LAG incorporation inhibited the degradation of linoleic acid, decreased the growth rate of saturated fatty acids, total polar compounds and viscosity of frying oil. CONCLUSIONS: Consequently, it was recommended to incorporate a small amount of γ-oryzanol in frying oil because it could inhibit oil absorption behavior of French fries. © 2023 Society of Chemical Industry.


Subject(s)
Cooking , Phenylpropionates , Cooking/methods , Fatty Acids , Rice Bran Oil
11.
Nat Prod Res ; : 1-10, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787031

ABSTRACT

This study investigated the extraction of capsaicin from Capsicum chinense cv Bhut Jolokia using rice bran oil (RBO) as a 'green solvent' via microwave- and ultrasound-mediated techniques (MME and UME) as an alternative to hazardous organic solvents. Extraction conditions were optimised using MME at 180 and 300 W for 2 and 8 min and UME at 300 and 400 W for 10 and 30 min. The maximum capsaicin yield obtained was 12.47 mg/mL, with a corresponding gamma oryzanol content of 8.46 mg/mL. The peroxide value of the extract (capsaicin-infused RBO) was found to be within permissible limits as per Codex Alimentarius specifications. Results strongly suggest the potential of RBO as a novel solvent for extraction of capsaicin. The capsaicin-enriched oil can be used as a functional food ingredient due to its health-promoting properties.

12.
J Oleo Sci ; 72(8): 755-765, 2023.
Article in English | MEDLINE | ID: mdl-37532566

ABSTRACT

This study compared the effect of five different adsorbents (activated clay, activated carbon, attapulgite clay, bentonite, diatomite) on the levels of nutrients, harmful substance retention, and decolorization in rice bran oil. Among the adsorbents tested, activated carbon displayed the highest decolorization efficiency (82.90%) and adsorption effect on 3,4-benzopyrene (BaP, 89.53%) and 3-monochloropropane-1,2-diol ester (41.55%), whereas activated clay had the highest oryzanol retention percentages (85.98%) and affordability. Activated carbon and activated clay were therefore selected as composite decolorizing agents. Based on single-factor and Box-Behnken response surface tests, the optimal conditions for decolorization efficiency (97.08%), oryzanol retention (89.62%), sterol retention (90.16%), vitamin E retention (79.91%), and benzo(a)pyrene adsorption percentages (95.98%) were determined to be achieved by using a 5% (w/w) composite decolorant (activated clay:activated carbon=5:1), at a temperature of 116℃, with an incubation time of 33 min. This study provides evidence to support the efficacy of compound decolorants, which may have practical use in large-scale industrial applications of edible oil decolorization during refinement.


Subject(s)
Charcoal , Rice Bran Oil , Clay , Nutritive Value
13.
J Oleo Sci ; 72(7): 655-665, 2023.
Article in English | MEDLINE | ID: mdl-37380482

ABSTRACT

Vitamin E (tocopherols and tocotrienols) and γ-oryzanol are two minor constituents of rice bran oil (RBO) and are known to be potential bioactive compounds. The content of γ-oryzanol, a unique antioxidant found only in RBO, is a key factor in determining the retail price of the oil. Limitations of conventional HPLC columns for vitamin E and γ-oryzanol analysis are the alteration of these components and the time-consuming need for pretreatment of samples by saponification. High-performance size exclusion chromatography (HPSEC) equipped with a universal evaporative light scattering detector (ELSD) is a versatile tool for screening optimum mobile phase conditions because components of the sample can be separated and detected in the same run. In this work, the RBO components (triacylglycerol, tocopherols, tocotrienols, and γ-oryzanol) assessed on a single 100-Å Phenogel column using ethyl acetate/isooctane/acetic acid (30:70:0.1, v/v/v) as the mobile phase provided baseline separations (R s >1.5) with a total run time of 20 min. The HPSEC condition was then transferred to determine the content of tocopherols, tocotrienols, and γ-oryzanol in RBO products using a selective PDA detector. The limit of detection (LOD) and limit of quantification (LOQ) of α-tocopherol, α-tocotrienol, and γ-oryzanol were 0.34 and 1.03 µg/mL, 0.26 and 0.79 µg/mL and 2.04 and 6.17 µg/mL, respectively. This method was precise and accurate, with a percentage of relative standard deviation (%RSD) of the retention time of less than 0.21%. The intra-day and inter-day variations were 0.15-5.05% and 0.98-4.29% for vitamin E and γ-oryzanol, respectively. The recoveries of tocopherols, tocotrienols, and γ-oryzanol ranged between 90.75% and 107.98%. Thus, the developed HPSEC-ELSD-PDA method is a powerful analytical tool for determining the vitamin E and γ-oryzanol present in oil samples without requiring any sample pretreatment.


Subject(s)
Tocotrienols , Vitamin E , Rice Bran Oil , Tocopherols , Chromatography, Gel
14.
J Zhejiang Univ Sci B ; 24(5): 430-441, 2023 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-37190892

ABSTRACT

Early weaned piglets suffer from oxidative stress and enteral infection, which usually results in gut microbial dysbiosis, serve diarrhea, and even death. Rice bran oil (RBO), a polyphenol-enriched by-product of rice processing, has been shown to have antioxidant and anti-inflammatory properties both in vivo and in vitro. Here, we ascertained the proper RBO supplementation level, and subsequently determined its effects on lipopolysaccharide (LPS)-induced intestinal dysfunction in weaned piglets. A total of 168 piglets were randomly allocated into four groups of seven replicates (42 piglets each group, (21±1) d of age, body weight (7.60±0.04) kg, and half males and half females) and were given basal diet (Ctrl) or basal diet supplemented with 0.01% (mass fraction) RBO (RBO1), 0.02% RBO (RBO2), or 0.03% RBO (RBO3) for 21 d. Then, seven piglets from the Ctrl and the RBO were treated with LPS (100 µg/kg body weight (BW)) as LPS group and RBO+LPS group, respectively. Meanwhile, seven piglets from the Ctrl were treated with the saline vehicle (Ctrl group). Four hours later, all treated piglets were sacrificed for taking samples of plasma, jejunum tissues, and feces. The results showed that 0.02% was the optimal dose of dietary RBO supplementation based on diarrhea, average daily gain, and average daily feed intake indices in early weaning piglets. Furthermore, RBO protected piglets against LPS-induced jejunal epithelium damage, which was indicated by the increases in villus height, villus height/crypt depth ratio, and Claudin-1 levels, as well as a decreased level of jejunal epithelium apoptosis. RBO also improved the antioxidant ability of LPS-challenged piglets, which was indicated by the elevated concentrations of catalase and superoxide dismutase, and increased total antioxidant capacity, as well as the decreased concentrations of diamine oxidase and malondialdehyde in plasma. Meanwhile, RBO improved the immune function of LPS-challenged weaned piglets, which was indicated by elevated immunoglobulin A (IgA), IgM, ß||-defensin-1, and lysozyme levels in the plasma. In addition, RBO supplementation improved the LPS challenge-induced dysbiosis of gut microbiota. Particularly, the indices of antioxidant capacity, intestinal damage, and immunity were significantly associated with the RBO-regulated gut microbiota. These findings suggested that 0.02% RBO is a suitable dose to protect against LPS-induced intestinal damage, oxidative stress, and jejunal microbiota dysbiosis in early weaned piglets.


Subject(s)
Antioxidants , Lipopolysaccharides , Animals , Female , Male , Antioxidants/pharmacology , Body Weight , Diarrhea/chemically induced , Diarrhea/prevention & control , Diarrhea/veterinary , Dietary Supplements , Dysbiosis , Lipopolysaccharides/toxicity , Rice Bran Oil , Swine , Weaning
15.
J Food Sci Technol ; 60(7): 1870-1887, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37206426

ABSTRACT

Rice products, including those given to infants, could be naturally polluted with arsenic. This issue for all age groups should be a top priority for the world food industry and the public. Food regulators assume incorrectly that infants' food and other rice products are safe, and health, agriculture and commerce authorities follow no clear guidelines. A common measure has been to place a ML on the amount of iAs in white rice and food intended for children and pregnant women. Although oAs is less toxic than iAs, it is still toxic; consequently, the ML of arsenic for the different age groups should be also specified. However, the ML of iAs in polished white rice for infants is very low (100 µg/kg for infants and 200 µg/kg for adults) and is difficult to measure. Using neutron activation for research is very useful in improving safety standards in the food industry. The second purpose of this review study is to report on the experimental results and methods used for measurements adopted at the Delft Reactor in the Netherlands with a colleague of the quantity of arsenic in 21 samples of different rice products from a variety of brands.

16.
Funct Integr Genomics ; 23(2): 150, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37156920

ABSTRACT

In rice (Oryza sativa L.), rice bran contains valuable nutritional constituents, such as high unsaturated fat content, tocotrienols, inositol, γ-oryzanol, and phytosterols, all of which are of nutritional and pharmaceuticals interest. There is now a rising market demand for rice bran oil, which makes research into their content and fatty acid profile an area of interest. As it is evident that lipid content has a substantial impact on the eating, cooking, and storage quality of rice, an understanding of the genetic mechanisms that determine oil content in rice is of great importance, equal to that of rice quality. Therefore, in this study, we performed a genome-wide association study on the composition and oil concentration of 161 Vietnamese rice varieties. Five categories of fatty acids in rice bran were discovered and the bran oil concentration profile in different rice accessions was identified. We also identified 229 important markers related to the fatty acid composition of bran oil, distributed mainly on chromosomes 1 and 7. Seven quantitative trait loci and five potential genes related to unsaturated fatty acid content were detected, including OsKASI, OsFAD, OsARF, OsGAPDH, and OsMADS29. These results provide insights into the genetic basis of rice bran oil composition, which is pivotal to the metabolic engineering of rice plants with desirable bran oil content through candidate genes selection.


Subject(s)
Fatty Acids , Oryza , Rice Bran Oil , Fatty Acids/chemistry , Genome-Wide Association Study , Oryza/genetics , Quantitative Trait Loci , Rice Bran Oil/chemistry
17.
Food Chem ; 418: 136030, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37004315

ABSTRACT

This work investigated the effects of different concentrations (0.10 %, 0.15 % or 0.20 %, w/v) of gellan gum (GG) with/without 0.50 % (v/v) basil essential oil (BEO) on physicochemical properties of gellan gum-rice bran oil (GG-RBO) emulsions. The results showed that GG-RBO emulsions with 0.15 % or 0.20 % GG were more stable than GG-RBO emulsion with 0.10 % GG (as evidenced by higher apparent viscosity and absolute zeta potential, but smaller average particle size and lower turbidity), thus displaying better coating performances (as evidenced by bigger contact angle but lower moisture content). The presence of BEO further improved their stability and coating performances. Coating with GG-BRO or GG-RBO-BEO emulsion with 0.15 % GG significantly delayed the increase in weight loss, and the decrease in haugh unit, yolk index and albumen pH of eggs during 42 days storage; moreover, GG-RBO-BEO emulsion caused lower total aerobic plate count. Therefore, GG-RBO, especially GG-RBO-BEO emulsion has potential in egg preservation.


Subject(s)
Ocimum basilicum , Oils, Volatile , Emulsions/chemistry , Rice Bran Oil , Chemical Phenomena
18.
Fish Shellfish Immunol ; 136: 108740, 2023 May.
Article in English | MEDLINE | ID: mdl-37061070

ABSTRACT

Tocotrienols have strong antioxidant properties; however, tocotrienol has not been investigated in detail in aquatic products. In this study, the anti-inflammatory and antioxidant activities of the tocotrienol-rich fraction from rice bran oil and its potential mechanism were verified in a zebrafish CuSO4 inflammation model. The in vitro antioxidant activity was evaluated using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) stable radical method. The copper chelating activity was determined using the pyrocatechol violet method. Intracellular reactive oxygen species in zebrafish were detected using a fluorescent ROS probe. Transgenic Tg (lyz: DsRed2) zebrafish were used for neutrophil transmigration assays. The mRNA expression levels of antioxidant and pro-inflammatory factor genes were measured using quantitative real-time reverse transcription PCR. In the concentration range tested, 100 µg/mL TRF had the highest copper chelating activity (10%). TRF showed DPPH-free radical scavenging ability, which was 53% at 100 µg/mL TRF. TRF effectively repressed ROS generation and inhibited neutrophil migration to the inflamed site. Moreover, TRF upregulated the expression of antioxidant genes sod and gpx4b, inhibited the expression of pro-inflammatory factors tnfa and il8, and suppressed CuSO4-induced inflammation. In conclusion, TRF has significant anti-inflammatory and antioxidant properties, which supports the use of TRF as an aquatic feed additive to improve the anti-inflammatory and antioxidant capacity of aquatic products.


Subject(s)
Antioxidants , Tocotrienols , Animals , Antioxidants/pharmacology , Rice Bran Oil , Zebrafish , Tocotrienols/pharmacology , Copper Sulfate , Reactive Oxygen Species , Copper , Anti-Inflammatory Agents/pharmacology , Inflammation/chemically induced
19.
Foods ; 12(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36981226

ABSTRACT

Rice is a major cereal crop and a staple food for nearly 50% of people worldwide. Rice bran (RB) is a nutrient-rich by-product of rice processing. RB is rich in carbohydrates, fibers, proteins, lipids, minerals, and several trace elements (phosphorus, calcium, magnesium, potassium, and manganese). The extraction process and storage have influenced RB extracts and RB oil's quality. The RB composition has also varied on the rice cultivars. The color of RB indicates the richness of the bioactive compounds, especially anthocyanins. γ-oryzanol, tocopherols, tocotrienols, and unsaturated fatty acids are major components of RB oil. It has been established that RB supplementation could improve the host's health status. Several preclinical and clinical studies have reported that RB has antioxidant, anticancer, anti-inflammatory, anticolitis, and antidiabetic properties. The beneficial biological properties of RB are partially attributed to its ability to alter the host microbiome and help to maintain and restore eubiosis. Non-communicable diseases (NCDs), including heart disease, diabetes, cancer, and lung disease, account for 74% of deaths worldwide. Obesity is a global health problem and is a major reason for the development of NCDs. The medical procedures for managing obesity are expensive and long-term health supplements are required to maintain a healthy weight. Thus, cost-effective natural adjuvant therapeutic strategy is crucial to treat and manage obesity. Several studies have revealed that RB could be a complementary pharmacological candidate to treat obesity. A comprehensive document with basic information and recent scientific results on the anti-obesity activity of RB and RB compounds is obligatory. Thus, the current manuscript was prepared to summarize the composition of RB and the influence of RB on the host microbiome, possible mechanisms, and preclinical and clinical studies on the anti-obesity properties of RB. This study suggested that the consumption of RB oil and dietary RB extracts might assist in managing obesity-associated health consequences. Further, extended clinical studies in several ethnic groups are required to develop dietary RB-based functional and nutritional supplements, which could serve as an adjuvant therapeutic strategy to treat obesity.

20.
Food Res Int ; 164: 112457, 2023 02.
Article in English | MEDLINE | ID: mdl-36738012

ABSTRACT

The isolated plant oil bodies (OBs) have shown promising applications as natural pre-emulsified O/W emulsions. Rice bran OBs can be used as a new type plant-based resource with superior fatty acids composition and abundant γ-oryzanol. This paper investigated the method of extracting structurally intact and stable rice bran OBs. Due to the adequate steric hindrance and electrostatic repulsion effects, rice bran OBs extracted by NaHCO3 medium had smaller particle size, better physical stability, and natural structure. The protein profile of NaHCO3-extracted rice bran OBs showed oleosin-L and oleosin-H, while exogenous proteins in PBS and enzyme-assisted- extracted rice bran OBs could interact with interfacial proteins through hydrophobic forces to aggregate adjacent OBs, further remodeling the OBs interface. It was also found that the small-sized rice bran OBs could adsorb on the interface of the larger-sized rice bran OBs like Pickering stabilizers. Rice bran OBs exhibited pseudoplastic fluids characteristic, but underwent a transition from solid-like to liquid-like behavior depending on the extraction method. The disorder of NaHCO3-extracted rice bran OBs protein molecules increased their surface hydrophobicity. The random coil structure favored more proteins adsorption at the interface of rice bran OBs extracted by PBS. Enzyme-assisted extraction of rice bran OBs had the highest content of ß-sheet structure, which facilitated the stretching and aggregation of protein spatial structure. It was also confirmed the hydrogen bonding and hydrophobic interaction between the triacylglycerol or phospholipid and proteins molecules, and the membrane compositions of rice bran OBs differed between extraction methods.


Subject(s)
Plant Oils , Rice Bran Oil/chemistry , Emulsions/chemistry , Plant Oils/chemistry , Particle Size , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL
...