ABSTRACT
When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time.
Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse contexto, o objetivo deste trabalho foi apresentar a modelagem não linear bayesiana do crescimento em altura de plantas do cafeeiro, irrigadas e não irrigadas (NI), considerando a autocorrelação residual e os modelos não lineares Logístico, Brody, von Bertalanffy e Richards. Em vista dos resultados, verificou-se que, para as plantas NI, o DIC e CPOc, indicaram que, dentre os modelos avaliados, o modelo Logístico é o que melhor descreve o crescimento em altura do cafeeiro ao longo do tempo. E, para as plantas irrigadas, esses mesmos critérios indicaram o modelo Brody. Assim, o crescimento da planta do cafeeiro não irrigado e irrigado seguiram padrões de crescimento distintos, a altura do cafeeiro não irrigado apresentou crescimento sigmoidal com taxa máxima de crescimento aos 726 dias após o plantio, já o cafeeiro irrigado inicia seu desenvolvimento com altas taxas de crescimento que vão diminuindo aos poucos com o tempo.
Subject(s)
Bayes Theorem , Nonlinear Dynamics , Coffea/growth & development , Reference StandardsABSTRACT
The objective of this study was to compare non-linear models fitted to the growth curves of quail to determine which model best describes their growth and check the similarity between models by analyzing parameter estimates.Weight and age data of meat-type European quail (Coturnix coturnix coturnix) of three lines were used, from an experiment in a 2 × 4 factorial arrangement in a completely randomized design, consisting of two metabolizable energy levels, four crude protein levels and six replicates. The non-linear Brody, Von Bertalanffy, Richards, Logistic and Gompertz models were used. To choose the best model, the Adjusted Coefficient of Determination, Convergence Rate, Residual Mean Square, Durbin-Watson Test, Akaike Information Criterion and Bayesian Information Criterion were applied as goodness-of-fit indicators. Cluster analysis was performed to check the similarity between models based on the mean parameter estimates. Among the studied models, Richards was the most suitable to describe the growth curves. The Logistic and Richards models were considered similar in the analysis with no distinction of lines as well as in the analyses of Lines 1, 2 and 3.(AU)
Objetivou-se, neste estudo, comparar modelos não lineares ajustados às curvas de crescimento de codornas para determinar qual modelo que melhor descreve o crescimento de codornas e verificar a similaridade dos modelos analisando as estimativas dos parâmetros. Para as análises foram utilizados os dados peso e idade de codornas européias de corte (Coturnix coturnix coturnix) proveniente de três linhagens, em um esquema fatorial 2x4, instalado em um delineamento inteiramente casualizado, com dois níveis de energia metabolizável e quatro níveis de proteína bruta, com seis repetições. Os modelos não lineares utilizados foram: Brody, Von Bertalanffy, Richards, Logístico e Gompertz. Para a escolha do melhor modelo utilizou-se o Coeficiente de Determinação Ajustado, o Percentual de Convergência, o Quadrado Médio do Resíduo, o Teste de Durbin-Watson, o Critério de informação Akaike e o Critério de informação Bayesiano como avaliadores da qualidade do ajuste. Utilizou-se a análise de agrupamento para verificar, baseado nas estimativas médias dos parâmetros, a similaridades entre os modelos. Entre os modelos estudados, o Richard foi o mais adequado para descrever as curvas de crescimento. Os modelos Logístico e Richards foram considerados similares nas análises sem distinção de linhagem, bem como nas análises das Linhagem 1, 2 e 3.(AU)
Subject(s)
Animals , Coturnix/growth & developmentABSTRACT
ABSTRACT: The objective of this study was to compare non-linear models fitted to the growth curves of quail to determine which model best describes their growth and check the similarity between models by analyzing parameter estimates.Weight and age data of meat-type European quail (Coturnix coturnix coturnix) of three lines were used, from an experiment in a 2 × 4 factorial arrangement in a completely randomized design, consisting of two metabolizable energy levels, four crude protein levels and six replicates. The non-linear Brody, Von Bertalanffy, Richards, Logistic and Gompertz models were used. To choose the best model, the Adjusted Coefficient of Determination, Convergence Rate, Residual Mean Square, Durbin-Watson Test, Akaike Information Criterion and Bayesian Information Criterion were applied as goodness-of-fit indicators. Cluster analysis was performed to check the similarity between models based on the mean parameter estimates. Among the studied models, Richards' was the most suitable to describe the growth curves. The Logistic and Richards models were considered similar in the analysis with no distinction of lines as well as in the analyses of Lines 1, 2 and 3.
RESUMO: Objetivou-se, neste estudo, comparar modelos não lineares ajustados às curvas de crescimento de codornas para determinar qual modelo que melhor descreve o crescimento de codornas e verificar a similaridade dos modelos analisando as estimativas dos parâmetros. Para as análises foram utilizados os dados peso e idade de codornas européias de corte (Coturnix coturnix coturnix) proveniente de três linhagens, em um esquema fatorial 2x4, instalado em um delineamento inteiramente casualizado, com dois níveis de energia metabolizável e quatro níveis de proteína bruta, com seis repetições. Os modelos não lineares utilizados foram: Brody, Von Bertalanffy, Richards, Logístico e Gompertz. Para a escolha do melhor modelo utilizou-se o Coeficiente de Determinação Ajustado, o Percentual de Convergência, o Quadrado Médio do Resíduo, o Teste de Durbin-Watson, o Critério de informação Akaike e o Critério de informação Bayesiano como avaliadores da qualidade do ajuste. Utilizou-se a análise de agrupamento para verificar, baseado nas estimativas médias dos parâmetros, a similaridades entre os modelos. Entre os modelos estudados, o Richard foi o mais adequado para descrever as curvas de crescimento. Os modelos Logístico e Richards foram considerados similares nas análises sem distinção de linhagem, bem como nas análises das Linhagem 1, 2 e 3.
ABSTRACT
Mathematical models are often used to predict microbial growth in food products. An important class of these models involves the adaptation of classical sigmoid functions, such as the Gompertz and logistic functions. This study aimed to validate the use of the modified Richards model in various situations, which have not previously been tested. The model was obtained through solving a system of two differential equations and could be applied to both isothermal and non-isothermal environments. To test and validate this model, we used published datasets containing data for the growth of Pseudomonas spp. in fish products. The results obtained after fitting the model showed that it could be effectively used to describe and predict the Pseudomonas growth curves under various temperature regimens. However, the influence of the shape parameter on the growth curve is an issue that needs further evaluation.(AU)
Subject(s)
/methods , Food Microbiology , Forecasting , Food SafetyABSTRACT
Abstract Mathematical models are often used to predict microbial growth in food products. An important class of these models involves the adaptation of classical sigmoid functions, such as the Gompertz and logistic functions. This study aimed to validate the use of the modified Richards model in various situations, which have not previously been tested. The model was obtained through solving a system of two differential equations and could be applied to both isothermal and non-isothermal environments. To test and validate this model, we used published datasets containing data for the growth of Pseudomonas spp. in fish products. The results obtained after fitting the model showed that it could be effectively used to describe and predict the Pseudomonas growth curves under various temperature regimens. However, the influence of the shape parameter on the growth curve is an issue that needs further evaluation.
Subject(s)
Animals , Pseudomonas/growth & development , Kinetics , Pseudomonas/chemistry , Temperature , Fish Products/microbiology , Models, TheoreticalABSTRACT
Mathematical models are often used to predict microbial growth in food products. An important class of these models involves the adaptation of classical sigmoid functions, such as the Gompertz and logistic functions. This study aimed to validate the use of the modified Richards model in various situations, which have not previously been tested. The model was obtained through solving a system of two differential equations and could be applied to both isothermal and non-isothermal environments. To test and validate this model, we used published datasets containing data for the growth of Pseudomonas spp. in fish products. The results obtained after fitting the model showed that it could be effectively used to describe and predict the Pseudomonas growth curves under various temperature regimens. However, the influence of the shape parameter on the growth curve is an issue that needs further evaluation.
Subject(s)
Fish Products/microbiology , Pseudomonas/growth & development , Animals , Kinetics , Models, Theoretical , Pseudomonas/chemistry , TemperatureABSTRACT
The main objective of this study was to compare the goodness of fit of five non-linear growth models, i.e. Brody, Gompertz, Logistic, Richards and von Bertalanffy in different animals. It also aimed to evaluate the influence of the shape parameter on the growth curve. To accomplish this task, published growth data of 14 different groups of animals were used and four goodness of fit statistics were adopted: coefficient of determination (R2 ), root mean square error (RMSE), Akaike information criterion (AIC) and Bayesian information criterion (BIC). In general, the Richards growth equation provided better fits to experimental data than the other models. However, for some animals, different models exhibited better performance. It was obtained a possible interpretation for the shape parameter, in such a way that can provide useful insights to predict animal growth behavior.
O principal objetivo deste estudo foi comparar a qualidade do ajuste de cinco modelos matemáticos recorrentemente utilizados na literatura para a descrição do ganho de peso animal. Ele também teve o objetivo de estudar a influência do parâmetro de forma sobre as curvas de crescimento. Os modelos de Brody, Gompertz, Logístico, von Bertalanffy e Richards, foram ajustados a dados experimentais de 14 grupos de animais diferentes. Como critério de qualidade de ajuste quatro índices estatísticos foram adotados: coeficiente de determinação (R2 ), raiz do quadrado médio do erro (RMSE) e os critérios de informação, Akaike (AIC) e Bayesian (BIC). Em geral, o modelo de Richards forneceu os melhores ajustes aos dados experimentais comparados aos demais modelos. No entanto, para alguns animais, diferentes modelos exibiram melhor desempenho. Foi possível obter uma possível interpretação para o significado do parâmetro de modo a fornecer ferramentas úteis para prever o comportamento do crescimento animal.
Subject(s)
Animals , Weight Gain , GrowthABSTRACT
The main objective of this study was to compare the goodness of fit of five non-linear growth models, i.e. Brody, Gompertz, Logistic, Richards and von Bertalanffy in different animals. It also aimed to evaluate the influence of the shape parameter on the growth curve. To accomplish this task, published growth data of 14 different groups of animals were used and four goodness of fit statistics were adopted: coefficient of determination (R2 ), root mean square error (RMSE), Akaike information criterion (AIC) and Bayesian information criterion (BIC). In general, the Richards growth equation provided better fits to experimental data than the other models. However, for some animals, different models exhibited better performance. It was obtained a possible interpretation for the shape parameter, in such a way that can provide useful insights to predict animal growth behavior.(AU)
O principal objetivo deste estudo foi comparar a qualidade do ajuste de cinco modelos matemáticos recorrentemente utilizados na literatura para a descrição do ganho de peso animal. Ele também teve o objetivo de estudar a influência do parâmetro de forma sobre as curvas de crescimento. Os modelos de Brody, Gompertz, Logístico, von Bertalanffy e Richards, foram ajustados a dados experimentais de 14 grupos de animais diferentes. Como critério de qualidade de ajuste quatro índices estatísticos foram adotados: coeficiente de determinação (R2 ), raiz do quadrado médio do erro (RMSE) e os critérios de informação, Akaike (AIC) e Bayesian (BIC). Em geral, o modelo de Richards forneceu os melhores ajustes aos dados experimentais comparados aos demais modelos. No entanto, para alguns animais, diferentes modelos exibiram melhor desempenho. Foi possível obter uma possível interpretação para o significado do parâmetro de modo a fornecer ferramentas úteis para prever o comportamento do crescimento animal.(AU)