Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 648: 1263-1274, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30340272

ABSTRACT

Samples of an open-air pyrite roasting heap from the 19th century in the Riotinto mine area (SW Spain) and surrounding sediments and soil along a seasonal surface runoff channel were analyzed to study thallium (Tl) phase transformations during historical roasting of Tl-bearing arsenian pyrite, secondary weathering processes, Tl dispersion and current environmental pollution. Results from Electron Probe Microanalyses (EPMA) indicate an even distribution of Tl in pyrite grains of an ore sample (22 mg kg-1 total Tl), suggesting that Tl is incorporated in the pyrite structure rather than in discrete Tl-sulfide microparticles. The roasting residue (122 mg kg-1 total Tl) consists mainly of hematite. EPMA suggested that Tl in the roasting residue and contaminated soil was co-occurring with Fe oxide particles, with a mean Tl point concentration of 0.12% in samples from the roasting residues. Total concentrations of Tl in soil samples decrease with distance from the roasting heap to 14 mg kg-1. X-ray absorption near-edge structure (XANES) spectra collected on pyrite roasting residue and a soil sample suggest that most Tl is Tl(I) substituting K in jarosite. Sequential extractions show that most Tl (85-99%) in the soil and sediment samples is concentrated in the residual fraction and, thus, is rather strongly bound. Lastly, water extracts indicate that colloidal particles (i.e. <1 µm size) may contribute to the dispersion of Tl around and away from the roasting heaps.

2.
Med Hist ; 61(3): 424-443, 2017 07.
Article in English | MEDLINE | ID: mdl-28604295

ABSTRACT

Huelva's copper mines (Spain) have been active for centuries but in the second half of the nineteenth century extractive activities in Riotinto, Tharsis, and other mines in the region were intensified in order to reach world leadership. The method used in these mines for copper extraction from low grade ores generated continuous emissions of fumes that were extremely controversial. The inhabitants had complained about the fumes for decades but as activity intensified so did complaints. The killing of anti-fumes demonstrators in 1888 led to the passing of a Royal Decree banning the open-air roasting of ore and to the drafting of numerous reports on the hazards of the fumes. Major state and provincial medical institutions, as well as renowned hygienists and engineers, took part in the assessment, contributing to a scientific controversy especially rich in content. In my paper I will analyse the production and circulation of knowledge and ignorance about the impact of fumes on public health, as well as the role of medical experts and expertise in the controversy. The analysis will focus on the reports drafted between the 1888 ban and its 1890 repeal, and will show the changing nature of the expert assessment and the numerous paths followed by experts in producing ignorance. The paper will conclude by considering other stakeholders, who may shed some light on the reasons behind the performance of the medical experts.


Subject(s)
Air Pollution/history , Copper/history , Knowledge , Mining/history , Air Pollution/legislation & jurisprudence , Copper/toxicity , History, 19th Century , Humans , Mining/legislation & jurisprudence , Spain
3.
Chemosphere ; 181: 447-460, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28458220

ABSTRACT

In the frame of a research project on microscopic distribution and speciation of geogenic thallium (Tl) from contaminated mine soils, Tl-bearing pyrite ore samples from Riotinto mining district (Huelva, SW Spain) were experimentally fired to simulate a roasting process. Concentration and volatility behavior of Tl and other toxic heavy metals was determined by quantitative ICP-MS, whereas semi-quantitative mineral phase transitions were identified by in situ thermo X-Ray Diffraction (HT-XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) analyses after each firing temperature. Sample with initial highest amount of quartz (higher Si content), lowest quantity of pyrite and traces of jarosite (lower S content) developed hematite and concentrated Tl (from 10 up to 72 mg kg-1) after roasting at 900 °C in an oxidizing atmosphere. However, samples with lower or absent quartz content and higher pyrite amount mainly developed magnetite, accumulating Tl between 400 and 500 °C and releasing Tl from 700 up to 900 °C (from 10-29 mg kg-1 down to 4-1 mg kg-1). These results show the varied accumulative, or volatile, behaviors of one of the most toxic elements for life and environment, in which oxidation of Tl-bearing Fe sulfides produce Fe oxides wastes with or without Tl. The initial chemistry and mineralogy of pyrite ores should be taken into account in coal-fired power stations, cement or sulfuric acid production industry involving pyrite roasting processes, and steel, brick or paint industries, which use iron ore from roasted pyrite ash, where large amounts of Tl entail significant environmental pollution.


Subject(s)
Hot Temperature , Iron/toxicity , Mining , Soil Pollutants/chemistry , Sulfides/toxicity , Thallium/toxicity , Environmental Pollution , Ferric Compounds , Minerals/analysis , Spain , Sulfuric Acids , Thallium/analysis , X-Ray Diffraction
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 203-10, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25064504

ABSTRACT

Mine drainages of La Poderosa (El Campillo, Huelva, Spain), located in the Rio Tinto Basin (Iberian Pyrite Belt) generate carotenoid complexes mixed with copper sulfates presenting good natural models for the production of carotenoids from microorganisms. The environmental conditions of Rio Tinto Basin include important environmental stresses to force the microorganisms to accumulate carotenoids. Here we show as carotenoid compounds in sediments can be analyzed directly in the solid state by Raman and Luminescence spectroscopy techniques to identify solid carotenoid, avoiding dissolution and pre-concentration treatments, since the hydrous copper-salted paragenesis do not mask the Raman emission of carotenoids. Raman spectra recorded from one of these specimens' exhibit major features at approximately 1006, 1154, and 1520 cm(-1). The bands at 1520 cm(-1) and 1154 cm(-1) can be assigned to in-phase C=C (γ(-1)) and C-C stretching (γ(-2)) vibrations of the polyene chain in carotenoids. The in-plane rocking deformations of CH3 groups linked to this chain coupled with C-C bonds are observed in the 1006 cm(-1) region. X-irradiation pretreatments enhance the cathodoluminescence spectra emission of carotenoids enough to distinguish organic compounds including hydroxyl and carboxyl groups. Carotenoids in copper-sulfates could be used as biomarkers and useful proxies for understanding remote mineral formations as well as for terrestrial environmental investigations related to mine drainage contamination including biological activity and photo-oxidation processes.


Subject(s)
Carotenoids/chemistry , Copper/chemistry , Geologic Sediments/chemistry , Iron/chemistry , Mining , Rivers/chemistry , Spectrum Analysis, Raman , Sulfides/chemistry , Differential Thermal Analysis , Electrodes , Luminescence , Microscopy, Electron, Scanning , Spain , Spectrometry, X-Ray Emission , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL