Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.007
Filter
1.
J Environ Sci (China) ; 147: 153-164, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003036

ABSTRACT

Heavy metal(loid) (HM) pollution in agricultural soils has become an environmental concern in antimony (Sb) mining areas. However, priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist. Herein, an integrated approach was conducted to distinguish pollution sources and assess human health risk (HHR) and ecological risk (ER) in a typical Sb mining watershed in Southern China. This approach combines absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models with ER and HHR assessments. Four pollution sources were distinguished for both models, and APCS-MLR model was more accurate and plausible. Predominant HM concentration source was natural source (39.1%), followed by industrial and agricultural activities (23.0%), unknown sources (21.5%) and Sb mining and smelting activities (16.4%). Although natural source contributed the most to HM concentrations, it did not pose a significant ER. Industrial and agricultural activities predominantly contributed to ER, and attention should be paid to Cd and Sb. Sb mining and smelting activities were primary anthropogenic sources of HHR, particularly Sb and As contaminations. Considering ER and HHR assessments, Sb mining and smelting, and industrial and agricultural activities are critical sources, causing serious ecological and health threats. This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments. HM pollution management, such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils, is strongly recommended for protecting ecosystems and humans.


Subject(s)
Agriculture , Antimony , Environmental Monitoring , Metals, Heavy , Mining , Soil Pollutants , Antimony/analysis , Risk Assessment , Metals, Heavy/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , China , Soil/chemistry
2.
J Environ Sci (China) ; 147: 282-293, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003047

ABSTRACT

There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , Soil Pollutants/analysis , China , Risk Assessment , Polycyclic Aromatic Hydrocarbons/analysis , Humans , Soil/chemistry , Hydrophobic and Hydrophilic Interactions , Flame Retardants/analysis , Hydrocarbons, Chlorinated/analysis
3.
J Dent (Shiraz) ; 25(2): 138-146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962073

ABSTRACT

Statement of the Problem: It is essential to address caries risk at an early stage for the prevention of dental caries. Mobile application CaRisk is designed in a particular way to self-assess the dental caries risk by the individual's themselves. Purpose: The current study aimed to assess the dental caries risk among age groups 5-6 and 35-44 using self-assessment caries risk mobile application CaRisk and compare it with the deft and DMFT values. Materials and Method: This cross-sectional study was conducted in Chennai, India; to evaluate the risk of dental caries in children aged 5 to 6 and adults aged 35 to 44. The scores of the mobile application CaRisk and the decayed- extracted- filled teeth (deft)/ decayed-missing-filled-teeth (DMFT) caries risk assessment were evaluated. Descriptive statistics were performed. The risk category was determined by frequency. Chi-square analysis was done to determine whether the DMFT scores and the CaRisk mobile app were associated. The correlation was performed between the CaRisk mobile application and DMFT scores. Results: Association was found between the caries risk assessment score of the mobile application CaRisk and the DMFT and deft scores of the adults and children for both the age groups 5-6 and 35-44 years respectively and it indicates that it was found to be statistically significant. Pearson's correlation was performed to assess the strength of association and R-values obtained for the age group 5-6 and 35-44 years respectively, which was statistically significant (0.892 and 0.840). Conclusion: This CaRisk mobile application scores correlate with the deft and DMFT scores and it is an effective self-diagnosis tool for assessing dental caries risk assessment. Further, it is suggested that the mobile application CaRisk should be tested among a huge population.

4.
Toxicol Res (Camb) ; 13(4): tfae101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38962114

ABSTRACT

Background: Sachet water is the most common form of portable water commercially available in Nigeria. Methodology: Using the murine sperm count and sperm abnormality assay, the germ cell toxicity of five common commercially available sachet waters in Nigeria was assessed in this study. The levels of hormones such as Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH) and Total Testosterone (TT); and activities of catalase (CAT), alanine aminotransferase (ALT), superoxide dismutase (SOD), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated. The heavy metal and physicochemical parameters of the sachet waters were also analyzed. Healthy male mice were allowed to freely drink the sachet waters for 35 days after which they were sacrificed. Results: The findings indicated that the concentrations of some heavy metals (As, Cr, and Cd) in the sachet waters exceeded the limit by regulatory organizations. The data of the total carcinogenic risk (TCR) and total non-carcinogenic risk (THQ) of some heavy metals associated with the ingestion of sachet water for adults and children showed that the values exceeded the acceptable threshold, and thus, is indicative of a high non-carcinogenic and carcinogenic risks. The data of the sperm abnormality assay showed that in the exposed mice, the five sachet waters induced a statistically significant (P < 0.05) increase in abnormal sperm cells and a significantly lower mean sperm count. Additionally noted were changes in the serum activities of TT, FSH, ALP, AST, ALT, and LH. Conclusion: Thus, the sachet waters studied contained agents that can induce reproductive toxicity in exposed humans. This is of public health importance and calls for immediate action by regulatory bodies.

5.
EFSA J ; 22(7): e8836, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962757

ABSTRACT

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as 'High risk plants, plant products and other objects'. This Scientific Opinion covers plant health risks posed by plants of Prunus avium possibly grafted on rootstocks of either P. avium, P. canescens, P. cerasus, P. pseudocerasus or their hybrids imported from the UK, taking into account the available scientific information, including the technical information provided by the UK. All pests associated with the commodities were evaluated against specific criteria for their relevance for this opinion. Three quarantine pests Scirtothrips dorsalis, tobacco ringspot virus and tomato ringspot virus), one protected zone EU quarantine pest (Bemisia tabaci (European population), and three non- regulated pests (Colletotrichum aenigma, Eulecanium excrescens and Takahashia japonica) that fulfilled all relevant criteria were selected for further evaluation. The risk mitigation measures proposed in the technical Dossier from the UK were evaluated, taking into account the possible limiting factors. For these pests, expert judgement is given on the likelihood of pest freedom, taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. The degree of pest freedom varies among the pests evaluated, with Colletotrichum aenigma being the pest most frequently expected on the imported potted plants. The Expert Knowledge Elicitation indicated with 95% certainty that between 9971 and 10,000 plants per 10,000 would be free from the above-mentioned fungus.

6.
J Hazard Mater ; 476: 135087, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964042

ABSTRACT

Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.

7.
Environ Pollut ; : 124502, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964644

ABSTRACT

Fluorinated liquid-crystal monomers (FLCMs), a new class of potential persistent, bioaccumulative and toxic (PBT) emerging pollutants, are extensively utilized in the display panel of various electronic devices. These compounds have been found in various environmental matrixes and dietary. Our previous studies have documented their ubiquitous occurrence in high fat foodstuffs. Infants, a vulnerable group, are more susceptible to the impacts of these pollutants compared to adults. Herein, we provided an assessment of the health risks posed by FLCMs to infants, focusing on their exposure through infant formula. The presence of FLCMs was detected in all infant formulas, with median concentration of 16.5 ng/g dry weight (dw) and the 95th percentile concentration of 65.7 ng/g dw. The most prevalent pollutant in these formulas was 2-fluoro-4-[4'-propyl-1,1'-bi(cyclohexyl)-4-yl] phenyl trifluoromethyl ether (FPrBP), with median and a 95th percentile concentration of 12.2ng/g dw and 23.8 ng/g dw, accounting for 55.2% to the total FLCMs. Infants aged 0-6 months had the highest estimated daily intakes (EDIs) of FLCMs, with the EDImedian of 267 ng/kg bw/day. FPrBP and 4-[trans-4-(trans-4-Propylcyclohexyl) cyclohexyl]-1-trifluoromethoxybenzene (PCTB) together made up 83.3% of the total EDIs in median exposure scenario of 0-6 months infant. The highest EDI value was 1.30×103 ng/kg bw/day, 77.1% of which was attributed to a combination of FPrBP, 4''-ethyl-2'-fluoro-4-propyl-1,1':4',1''-terphenyl (EFPT), 2-[4'-[difluoro(3,4,5-trifluoro-2-methyl-phenoxy)methyl]-3',5'-difluoro-[1,1'-biphenyl]-4-yl]-5-ethyl-tetrahydro-pyran (DTMPMDP), 4-[Difluoro-(3,4,5-trifluoro-2-methyl-phenoxy)-methyl]-3,5-difluoro-4'-propyl-1,1-biphenyl (DTMPMDB), 2,3-difluoro-1-methyl-4-[(trans,trans)-4'-pentyl[1,1'-bicyclohexyl]-4-yl]benzene (DMPBB) and PCTB. It's worth noting that FLCMs have higher exposure risk. Based on the threshold of toxicological concern (TTC) method, the EDImedian of FPrBP (183 ng/kg bw/day) and FPCB (3.27 ng/kg bw/day) were beyond their TTC values (2.5 ng/kg bw/day) in 0-6 months infant, implying their prospective health risk.

8.
Article in English | MEDLINE | ID: mdl-38965110

ABSTRACT

Phthalate esters (PAEs), widely recognized as synthetic organic compounds with extensive production and utilization, are known to disrupt physiological processes in both animals and humans, even at low environmental concentrations. This study investigated the occurrence, distribution, and potential ecological risk of five representative PAEs (DMP, Dimethyl phthalate; DEP, Diethyl phthalate; DBP, Dibutyl phthalate; DiBP, Diisobutyl phthalate; DEHP, Bis(2-ethylhexyl) phthalate) in a typical lake (Chaohu Lake, China). It was found that PAEs were detected in both the aqueous (1.09-6.402 µg/L) and solid phases (0.827-6.602 µg/g) of Chaohu Lake. Notably, DiBP and DBP were the predominant PAEs in the water, and DiBP and DEHP were the most prevalent in the sediments. The concentrations of PAEs exhibited significant seasonal variations in the aqueous phases, with total PAEs in summer being nearly twice those in winter. Toxicity assessments revealed that DEHP, DBP, and DiBP posed high risks to the survival of three indicator organisms (algae, Daphnia, and fish) in the aqueous phase. In the solid phase, the exceeding rate of DiBP was as high as 92.9%. On the other hand, DBP and DEHP generally presenting moderate risk, although some sites were identified as high-risk. This study's analysis of PAEs concentrations in Chaohu Lake reveals a discernible increasing trend when compared with historical data. These findings underscore the urgent need for interventions to mitigate the ecological threats posed by PAEs in Chaohu Lake.

9.
Glob Chang Biol ; 30(7): e17373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967106

ABSTRACT

Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.


El cambio climático es una emergencia medioambiental que amenaza a especies y ecosistemas en todo el mundo. Los océanos han absorbido alrededor del 90% del calor antropogénico y entre el 20% y el 30% de las emisiones de carbono, lo que ha provocado su calentamiento, acidificación, desoxigenación, cambios en la estratificación de los océanos y en la disponibilidad de nutrientes, así como fenómenos extremos más pronunciados. Dadas las predicciones de cambios, hay una importante necesidad de entender cómo las especies marinas se verán afectadas. En este estudio utilizamos una Evaluación Integrada de Riesgos para evaluar la vulnerabilidad de 132 condrictios del Pacífico Tropical Oriental (PTO) a los impactos del cambio climático. Adoptando un enfoque preventivo, estimamos que la vulnerabilidad general al cambio climático es Alta para casi una cuarta parte (23%) de las especies de condrictios del PTO evaluadas y Moderada para gran parte del resto (76%). La mayoría de las especies altamente vulnerables son batoideos (77%), y una gran proporción de éstas (90%) son especies costeras o especies pelágicas que utilizan los hábitats costeros como áreas de crianza. Seis especies de batoideos tuvieron una vulnerabilidad Alta en los tres componentes de la evaluación. Esta evaluación indica que las especies costeras, en particular las que dependen de áreas de crianza costeras, son las más vulnerables al cambio climático. Es probable que el calentamiento de los océanos, junto con la acidificación y la posible desoxigenación, tenga efectos generalizados sobre las especies de condrictios del PTO, pero las especies costeras se verán también afectadas por los cambios en los aportes de agua dulce, la salinidad y el aumento del nivel del mar. Esta vulnerabilidad relacionada con el clima se ve agravada por otros factores antropogénicos que ya se están produciendo en la región, como la sobrepesca y la degradación del hábitat. La mitigación de los impactos del cambio climático sobre los condrictios del PTO implica medidas que incluyan abordar la degradación del hábitat y la sostenibilidad de la explotación pesquera, y acciones para las especies de mayor riesgo son necesarias. Esta evaluación también destaca la necesidad de comprender mejor los impactos del cambio climático en los hábitats y procesos clave del PTO y las lagunas de conocimiento identificadas en relación con las especies de condrictios del PTO.


Subject(s)
Climate Change , Animals , Pacific Ocean , Risk Assessment , Ecosystem , Fishes/physiology
10.
Environ Toxicol Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967272

ABSTRACT

Data from prior research indicate the prepupal stage of the monarch butterfly life cycle is more sensitive to clothianidin exposure than the larval stage. A set of experiments was conducted to determine if the dietary clothianidin exposures that cause prepupal mortality are environmentally relevant. Monarch larvae were raised from egg to pupae on clothianidin-contaminated swamp milkweed plants (Asclepias incarnata). Larval growth as well as larval and prepupal survival were monitored throughout the experiments, in which the exposures ranged from 1.4 to 2793.1 ng/g leaf. Exposures of 5.4 to 46.9 ng/g leaf resulted primarily in prepupal mortality, whereas higher exposures of 1042.4 to 2793.1 ng/g leaf resulted exclusively in larval mortality, indicating the prepupal stage is more sensitive to clothianidin exposure than the larval stage. A median lethal concentration and a 10% lethal concentration of 37 and 6 ng/g leaf, respectively, were estimated for prepupal mortality. Both effect concentrations are within the range of clothianidin concentrations reported in leaves collected from wild milkweed plants, indicating prepupal mortality is an environmentally relevant effect. Environ Toxicol Chem 2024;00:1-6. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

11.
Article in English | MEDLINE | ID: mdl-38967536

ABSTRACT

Background: This present work focused on predicting prognostic outcome of inpatients developing acute exacerbation of chronic obstructive pulmonary disease (AECOPD), and enhancing patient monitoring and treatment by using objective clinical indicators. Methods: The present retrospective study enrolled 322 AECOPD patients. Registry data downloaded based on COPD Pay-for-Performance Program database from January 2012 to December 2018 were used to check whether the enrolled patients were eligible. Our primary and secondary outcomes were ICU admission and in-hospital mortality, respectively. The best feature subset was chosen by recursive feature elimination. Moreover, seven machine learning (ML) models were trained for forecasting ICU admission among AECOPD patients, and the model with the most excellent performance was used. Results: According to our findings, random forest (RF) model showed superb discrimination performance, and the values of area under curve (AUC) were 0.973 and 0.828 in training and test cohorts, separately. Additionally, according to decision curve analysis, the net benefit of RF model was higher when differentiating patients with a high risk of ICU admission at a <0.55 threshold probability. Moreover, the ML-based prediction model was also constructed to predict in-hospital mortality, and it showed excellent calibration and discrimination capacities. Conclusion: The ML model was highly accurate in assessing the ICU admission and in-hospital mortality risk for AECOPD cases. Maintenance of model interpretability helped effectively provide accurate and lucid risk prediction of different individuals.

12.
Arh Hig Rada Toksikol ; 75(2): 110-115, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38963140

ABSTRACT

The aim of this study was to explore occupational safety in pregnant Croatian healthcare workers (HCWs) during the coronavirus disease 2019 (COVID-19) pandemic. To this end we composed an anonymous questionnaire that included pregnancy data, risk assessment and mitigation, and workplace intervention and distributed it to HCWs through social media of their groups and associations. The study includes a total of 173 respondents (71.1 % physicians, 19.7 % nurses, 9.2 % other HCWs) diagnosed with pregnancy in 2020 and 2021. Employers were notified about HCWs' pregnancy at the eighth (IQR 7.0-11.0) week of pregnancy, which delayed workplace risk assessment and mitigation beyond the first trimester. Only 19.6 % of the participants had the risk assessed and mitigated, mostly on their own initiative (76.5 %). After notifying employers about pregnancy, 37.0 % of participants opted for temporary work incapacity (TWI) due to "pregnancy complications" despite healthy pregnancy, 16.8 % were granted a pregnant worker's paid leave at the expense of the employer, while 5.8 % continued to work at the same workplace. Nurses used the TWI benefit more frequently than physicians (58.8 % vs 30.1 %, P=0.004). Our findings suggest that occupational safety of pregnant HCWs in Croatia lacks clear-cut and transparent strategies to protect pregnant HCWs, forcing them to misuse the healthcare system.


Subject(s)
COVID-19 , Health Personnel , Occupational Health , Sick Leave , Humans , Female , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/transmission , Croatia/epidemiology , Pregnancy , Health Personnel/statistics & numerical data , Adult , Occupational Health/statistics & numerical data , Sick Leave/statistics & numerical data , Pandemics/prevention & control , Surveys and Questionnaires , SARS-CoV-2
13.
Regul Toxicol Pharmacol ; : 105672, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968965

ABSTRACT

Nitrosamine drug substance related impurities or NDSRIs can be formed if an active pharmaceutical ingredient (API) has an intrinsic secondary amine that can undergo nitrosation. This is a concern as 1) nitrosamines are potentially highly potent carcinogens, 2) secondary amines in API are common, and 3) NDSRIs that might form from such secondary amines will be of unknown carcinogenic potency. Approaches for evaluating NDSRIs include read across, quantum mechanical modeling of reactivity, in vitro mutation data, and transgenic in vivo mutation data. These approaches were used here to assess NDSRIs that could potentially form from the drugs fluoxetine, duloxetine and atomoxetine. Based on a read across informed by modeling of physicochemical properties and mechanistic activation from quantum mechanical modeling, NDSRIs of fluoxetine, duloxetine, and atomoxetine were 10-100-fold less potent compared with highly potent nitrosamines such as NDMA or NDEA. While the NDSRIs were all confirmed to be mutagenic in vitro (Ames assay) and in vivo (TGR) studies, the latter data indicated that the potency of the mutation response was > 4400 ng/day for all compounds- an order of magnitude higher than published regulatory limits for these NDSRIs. The approaches described herein can be used qualitatively to better categorize NDSRIs with respect to potency and inform whether they are in the ICH M7R2-designated Cohort of Concern.

14.
Sci Total Environ ; : 174425, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969127

ABSTRACT

Pharmaceuticals are emerging contaminants given their increasing use worldwide due to intensive food production and population growth. These compounds reach the environment through different pathways with potential negative consequences for wildlife. One dramatic example occurred in Asia, where three native vulture populations collapsed almost to extinction due to acute intoxication with diclofenac, a veterinary use non-steroidal anti-inflammatory drug (NSAID). As seen with diclofenac, avian scavengers are useful sentinels to monitor for the presence of pharmaceuticals in the environment given their position at the top of the trophic chain, and in the case of obligate avian scavengers (vultures), their intimate link to domestic animal carcasses. Unfortunately, little is known about the wider exposure and potential health and population risks of pharmaceuticals to birds of prey. Here we compile literature data regarding relevant toxicological aspects of the most important pharmaceutical groups for birds of prey in terms of toxicity: NSAIDs, antibiotics, external antiparasitics and barbiturates. This work also includes critical information for future risk assessments, including concentrations of drug residues that can remain in animal tissues after treatment, or specific pharmaceutical features that might influence their toxicity in avian scavengers and other birds of prey. We also consider future research needs in this field and provide management recommendations to prevent potential intoxication events with pharmaceuticals in these species. This review highlights the need to consider specific risk assessments regarding exposure to pharmaceuticals, especially those used in veterinary medicine, for birds of prey.

15.
Sci Total Environ ; : 174290, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969130

ABSTRACT

Urban waterlogging poses a severe threat to lives and property globally, making it crucial to identify the distribution of urban value and waterlogging risk. Previous research has overlooked the heterogeneity of value and risk in spatial distribution. To identify the overlay effect of urban land value and risk, this study employs the Entropy Weighting Method (EM) to assess urban value, Principal Component Analysis (PCA) to determine waterlogging risk and key areas (RK), local Moran's I (SC) to identify key areas (HK), and finally Bivariate local Moran's I (DC) to comprehensively evaluate urban value and waterlogging risk to delineate key areas (BH). The results indicate that waterlogging risk is primarily influenced by proximity to water systems (PCA coefficient: 0.567), population density (0.550), and rainfall (0.445). There is a positive correlation between urban value and waterlogging risk, with a global Moran's I of 0.536, indicating that areas with higher urban value also face greater waterlogging risk. The DC method improved identification precision, reducing the BH area by 6.42 and 3.51 km2 compared to RK and HK, accounting for 25.50 % and 15.76 % of the RK and HK identified areas, respectively. At present, rescue resources can access less than one-third of the area within 5 min, but with the DC method, during the centennial rainfall scenario, the accessibility rate within 5 min for the BH area reaches 63 %, and all BH key areas can be covered within 15 min. This study provides a new methodology for identifying key areas of waterlogging disasters and can be used to enhance urban rescue efficiency and the precision management of flood disasters.

16.
J Environ Sci (China) ; 146: 186-197, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969447

ABSTRACT

As an important means to solve water shortage, reclaimed water has been widely used for landscape water supply. However, with the emergence of large-scale epidemic diseases such as SARS, avian influenza and COVID-19 in recent years, people are increasingly concerned about the public health safety of reclaimed water discharged into landscape water, especially the pathogenic microorganisms in it. In this study, the water quality and microorganisms of the Old Summer Palace, a landscape water body with reclaimed water as the only replenishment water source, were tracked through long-term dynamic monitoring. And the health risks of indicator microorganisms were analyzed using Quantitative Microbial Risk Assessment (QMRA). It was found that the concentration of indicator microorganisms Enterococcus (ENT), Escherichia coli (EC) and Fecal coliform (FC) generally showed an upward trend along the direction of water flow and increased by more than 0.6 log at the end of the flow. The concentrations of indicator microorganisms were higher in summer and autumn than those in spring. And there was a positive correlation between the concentration of indicator microorganisms and COD. Further research suggested that increased concentration of indicator microorganisms also led to increased health risks, which were more than 30% higher in other areas of the park than the water inlet area and required special attention. In addition, (water) surface operation exposure pathway had much higher health risks than other pathways and people in related occupations were advised to take precautions to reduce the risks.


Subject(s)
Water Microbiology , Risk Assessment , Water Quality , Escherichia coli/isolation & purification , Water Supply , Environmental Monitoring , Enterococcus/isolation & purification , Humans
17.
Res Pract Thromb Haemost ; 8(4): 102441, 2024 May.
Article in English | MEDLINE | ID: mdl-38953050

ABSTRACT

Background: Multiple guidelines recommend assessment of bleeding and venous thromboembolism (VTE) risk in adult medical inpatients to inform prevention strategies. There is no agreed-upon method for VTE and bleeding risk assessment. Objectives: To validate the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) VTE and bleeding risk scores in an independent population. Methods: In this retrospective study, we calculated the IMPROVE VTE and bleeding risk scores in medical inpatients admitted between 2010 and 2019 at the University of Vermont Medical Center (UVMMC). Patients were followed for in-hospital bleeding events while hospitalized and VTE events while hospitalized and for 3 months after discharge. We assessed calibration of the risk models by comparing the observed incidence of events in the UVMMC and IMPROVE populations across the published risk categories. We also assessed performance of the IMPROVE risk factors after refitting the models in the UVMMC population. Discrimination was assessed using the area under the receiver operating characteristic curve (AUC). Results: VTE occurred in 270 (1.1%) of 23,873 admissions, with 92 (34%) occurring during admission, and bleeding occurred in 712 (4.7%) of 15,240 admissions. When the IMPROVE-VTE risk factors were refitted to the UVMMC data, the AUC was 0.64. When the IMPROVE bleeding risk factors were refitted to the UVMMC data, the AUC was 0.67. The IMPROVE-VTE score tended to overestimate risk at higher scores, and the IMPROVE bleeding score underestimated risk at lower scores and overestimated risk at higher scores. Conclusion: While the refitted IMPROVE VTE and bleeding risk scores had reasonable model fit, the scores were poorly calibrated and did not reliably identify or differentiate patients at risk for VTE and bleeding. Different methods are needed for risk assessment of medical inpatients for VTE and bleeding risk.

18.
Ergonomics ; : 1-21, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953513

ABSTRACT

This study proposes a systematic approach to address ergonomic factors, including physical, environmental and psychosocial aspects, in solving assembly line balancing problems. A three-stage framework is developed, starting with determining weights for ergonomic risk assessment methods using the interval-valued spherical fuzzy analytical hierarchy process. In the second stage, a fuzzy logic model for integrated ergonomic risk assessment is constructed based on these weights, and the integrated ergonomic risk score is determined. In the third stage, a mathematical model is formulated to minimise the cycle time while balancing the ergonomic risk level. A case study conducted in a wire harness factory validated the effectiveness of the proposed approach, showing a 10-11% improvement in line efficiency and a 12-25% enhancement in ergonomic risk balancing performance. These findings underscore the potential benefits of implementing this approach, which can significantly improve occupational safety and overall performance.


This article presents a practical and systematic approach for enhancing ergonomic conditions in assembly lines. The proposed approach aims to balance the ergonomic risk level while minimising the cycle time by considering physical, environmental and psychosocial risk factors. A case study conducted in a wire harness factory demonstrated significant improvements in balancing ergonomic risks, highlighting the real-world applicability of this research.

19.
Environ Monit Assess ; 196(8): 684, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954087

ABSTRACT

Heavy metal contamination in leafy vegetables poses significant health risks, highlighting the urgent need for stringent monitoring and intervention measures to ensure food safety and mitigate potential adverse effects on public health. This study investigates the levels of heavy metals, including cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and copper (Cu), in locally grown and commercially available leafy vegetables, comparing them to the safety limits established by WHO/FAO. The results revealed that levels of Cd, Cr, Ni, and Pb in the vegetables exceeded WHO/FAO limits, while Zn and Cu remained within permissible bounds. Marketed vegetables exhibited higher metal concentrations than those from nearby farms. For Cu (0.114-0.289 mg/kg) and Zn (0.005-0.574 mg/kg), the daily intake of metals (DIM) was below the dietary intake (DI) and upper limit (UL). Cd's DIM (0.031-0.062 mg/kg) remained below the UL but exceeded the DI. Marketed kale and mint surpassed both DI and UL limits for Ni, while local produce only exceeded the DI. All vegetables had DIM below the DI, except for mint and kale. For Pb, every vegetable exceeded DI limits, with market samples contributing significantly. Cr's DIM ranged from 0.028 to 1.335 mg/kg, for which no set maximum daily intake exists. The health risk index (HRI) values for Zn, Cd, Cu, Ni, and Pb suggested potential health risks associated with leafy greens, while Cr's HRI was below 1. The study underscores the need for stringent monitoring and intervention measures to mitigate the health risks posed by heavy metal contamination in leafy vegetables. These findings suggest that consuming these leafy greens may put consumers at considerable risk for health problems related to Cd, Cu, Ni, Pb, and Zn exposure.


Subject(s)
Environmental Monitoring , Food Contamination , Metals, Heavy , Public Health , Soil Pollutants , Vegetables , Metals, Heavy/analysis , Vegetables/chemistry , Food Contamination/analysis , Soil Pollutants/analysis , Humans , Risk Assessment
20.
Environ Geochem Health ; 46(8): 268, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954115

ABSTRACT

This study employed the groundwater pollution index to assess the appropriateness of groundwater for human consumption. Additionally, the hazard index was utilized to evaluate the potential non-carcinogenic risks associated with fluoride and nitrate exposure among children, women, and men in the study region. A total of 103 samples were collected from the Aurangabad district of Bihar. The analyzed samples were assessed using several physicochemical parameters. Major cations in the groundwater are Ca2+ > Mg2+ and major anions are HCO3- > Cl- > SO42- > NO3- > F- > PO43-. Around 17% of the collected groundwater samples surpassed the allowable BIS concentration limits for Nitrate, while approximately 11% surpassed the allowed limits for fluoride concentration. Principal component analysis was utilized for its efficacy and efficiency in the analytical procedure. Four principal components were recovered that explained 69.06% of the total variance. The Hazard Quotient (HQ) of nitrate varies between 0.03-1.74, 0.02-1.47, and 0.03-1.99 for females, males, and children, respectively. The HQ of fluoride varies between 0.04-1.59, 0.04-1.34, and 0.05-1.82 for females, males, and children, respectively. The central part of the district was at high risk according to the spatial distribution maps of the total hazard index (THI). Noncarcinogenic risks due to THI are 47%, 37%, and 28% for children, females, and males, respectively. According to the human health risk assessment, children are more prone to getting affected by polluted water than adults. The groundwater pollution index (GPI) value ranges from 0.46 to 2.27 in the study area. Seventy-five percent of the samples fell under minor pollution and only one fell under high pollution. The spatial distribution of GPI in the research area shows that the central region is highly affected, which means that this water is unsuitable for drinking purposes.


Subject(s)
Fluorides , Groundwater , Nitrates , Water Pollutants, Chemical , Groundwater/chemistry , Fluorides/analysis , Humans , Nitrates/analysis , Water Pollutants, Chemical/analysis , Female , Risk Assessment , Male , Child , India , Geographic Information Systems , Principal Component Analysis , Environmental Monitoring/methods , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...