Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 985
Filter
1.
Int J Phytoremediation ; : 1-12, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992938

ABSTRACT

Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.


The research addresses the contamination of water resources in developing countries by landfill leachate and domestic wastewater discharges. It proposes treatment through Partially Saturated Vertical Constructed Wetlands (PSV-CWs), which, despite the limited information available, have been shown to be effective in removing pollutants in effluents with high concentrations. In addition to evaluating PSV-CWs, the study examines the impact of different types of vegetation on pollutant removal efficiency, concluding that PSV-CWs are a promising and viable option for the treatment of these effluents.

2.
Heliyon ; 10(12): e32681, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994093

ABSTRACT

This study investigated the occurrence of 11 pharmaceutical compounds in the rivers and groundwater systems of Arusha City, Tanzania. Each suspected individual residue of active pharmaceutical compounds in water matrices, was pre-concentrated using solid-phase extraction techniques and, then quantified using a liquid chromatography-mass spectrometer mass spectrometer (LC-MS/MS). The concentrations varied across the assessed rivers and groundwater systems. High concentrations of caffeine 520 ng/L were detected in the station downwards of a wastewater stabilization pond, discharging its partially treated effluent into the river, followed by stations whose rivers flowed through informal areas. Sampled points' located near the river's water sources reported fewer compounds with values below the detection limit, such as amoxicillin, paracetamols, and doxycycline. Except for sulfamethoxazole (94 ng/L) in the borehole, most of the concentrations detected in rivers were ten times higher than in boreholes. In addition, in boreholes, more compounds were identified in the monitoring than in the domestic ones, and concentration varied with depth of deep boreholes (25 m) were less abundant than shallow wells of less than 10 m. In conclusion, pharmaceutical compounds were frequently detected in both rivers and groundwater systems within Arusha City suggesting the need for understanding of their fates and associated risks.

3.
Environ Monit Assess ; 196(8): 709, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970718

ABSTRACT

This article focuses on the study of the distribution of 137Cs in the bottom sediments of Arctic rivers of the Barents Sea basin (using the example of the Nenets Autonomous Okrug, Russian Arctic). This research is relevant due to the poorly studied region and the significant number of radiation-hazardous facilities in the Arctic zone of Russia, both those currently in operation and those that are "nuclear heritage sites". The study of 137Cs specific activity in bottom sediments was carried out in the period from 2020 to 2023 in the rivers Chizha, Nes, Vizhas, Oma, Pechora (river delta), as well as the rivers Kolva and Usa (first and second order tributaries, respectively, of the Pechora River). A total of 199 samples were collected. In addition to 137Cs specific activity, the samples were analysed for sediment particle size distribution, organic matter content, carbonate content and ash content. The 137Cs specific activity mainly ranged from the minimum detectable specific activity to 5.4 ± 0.8 Bq·kg-1. In the Nes River basin (Kaninskaya tundra), the 137Cs content in bottom sediments reached 36.0 ± 3.2 Bq·kg-1 (in the case of lake sediments) and 22.9 ± 3.7 Bq·kg-1 (in the case of river sediments), values that are higher than those of the North-West of Russia. Considering the large area of the study area (Kaninskaya tundra, Pechora river delta, southern part of Bolshezemelskaya tundra) and the similarity of physical and chemical parameters of the studied rivers, it is possible to assume the existence of a zone of increased radionuclide content in the Nes river basin. This may be due to the runoff from the Nes River catchment area, its hydrological features, and the accumulation of 137Cs in the small fractions of bottom sediments. The results confirm the conclusions of previous soil studies in the Nes river basin. The main sources of elevated 137Cs content are global atmospheric deposition and the Chernobyl Nuclear Power Plant accident.


Subject(s)
Cesium Radioisotopes , Geologic Sediments , Radiation Monitoring , Rivers , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Rivers/chemistry , Geologic Sediments/chemistry , Water Pollutants, Radioactive/analysis , Russia , Arctic Regions
4.
Water Res ; 260: 121951, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38896884

ABSTRACT

Land use plays a critical role in managing water quality in a watershed, as it governs the import and distribution of nutrients. In addition to the land use, some rivers in Southwest China are encountering a new environmental stressor of damming, which is being driven by the national strategy of hydropower development. However, the coupling effect of land use and dams on nutrients remains poorly understood, challenging the effective management of riverine water quality. Therefore, this study examined the nutrients in the Nu, Yarlung Tsangpo (YT), and Lancang (LC) Rivers, which have no dam, 1 dam, and 11 dams, respectively, during different regulatory periods (spring and fall) to identify variations in nutrient control patterns influenced by land use and dams. The findings suggested that an increase in hydropower development contributed to a notable shift in nutrient patterns from land use regulation towards dam regulation and coupling effects. Land use dominated the nutrient variations of the Nu (27.4 %-32.8 %) and low hydropower development YT (25.2 %-30.9 %) Rivers during both seasons, but the primary contributors to the nutrient variations of the high hydropower development LC River were dams (17.9 %-41.6 %) and coupling effects (16.5 %-29.0 %). Dams transform nutrient levels and compositions through internal reservoir cycling, decoupling land use and nutrients. Partial least-squares structural equation model analysis further suggested that the coupling effects of the LC River were seasonal-specific, which was primarily attributed to hydrological variations that affected their interactions. During spring, the reservoir underwent a drainage mode characterized by high-level nutrients in the bottom water. Combined with the import of riverine nutrients, it exacerbated the increase of nutrients (synergistic effect). In contrast, the reservoir transitioned into a storage mode where it intercepted nutrients from the upstream and watershed during the fall, leading to a reduction in the previously observed increasing trend and an increase in nutrient variability (antagonism effect).

5.
Huan Jing Ke Xue ; 45(6): 3176-3185, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897741

ABSTRACT

Rivers are important reservoirs of antibiotic resistance genes (ARGs). However, most current studies have focused on the temporal and spatial distribution, and data on the differences in the species and abundance of ARGs between urban and rural rivers is still lacking for certain areas. In view of this, two rural rivers and three urban rivers were selected in Shijiazhuang City. In both December 2020 and April 2021, sediments were collected at 15 sampling sites. Metagenomic sequencing technology was used to compare the differences in temporal-spatial variation for ARGs in sediments. The results showed that:① 162 and 79 ARGs were detected in urban (4 776 ±4 452) and rural rivers (1 043 ±632), respectively. The abundance and species of ARGs in urban rivers were higher than those in rural rivers. ② The relative abundances of sulfonamide (SAs,27 %), aminoglycoside (AGs,26 %), and multidrug (MDs,15 %) ARGs had the highest abundance in urban rivers, whereas the relative abundance of MDs ARGs was highest in rural rivers (65 %). On the whole, the complexity of ARGs in urban rivers was higher than that in rural rivers. ③ There was a significant positive correlation between SAs, AGs, MDs, tetracycline, phenicol, macrolides-lincosamids-streptogramins (MLS), ß-lactams, and diaminopyrimidine ARGs in urban rivers (P < 0.01); however, there was a significant negative correlation between glycopeptide ARGs and all types of ARGs (P < 0.05 and P < 0.01). There was a significant positive correlation between MDs and SAs ARGs in rural rivers (P < 0.05), but there was a significant negative correlation between amino aminocoumarin, peptide, rifamycin, and fosfomycin ARGs (P < 0.05 and P < 0.01). ④ For the temporal variation in urban rivers, 162 ARGs (4 776 ±4 452) and 148 ARGs (5 673 ±5 626) were detected in December and April, respectively. For the temporal variation in rural rivers, 79 species (1 043 ±632) and 46 species (467 ±183) were detected in December and April, respectively. ⑤ RDA analysis results showed that the spatial-temporal distributions of ARGs in urban and rural rivers were different. Correlation analysis showed that the ARGs in urban rivers were significantly correlated with the number of industrial enterprises, whereas the ARGs in rural rivers were significantly correlated with the output value of animal husbandry. In general, this study identified the main influencing factors for ARGs in different rivers and provided data support for ARGs risk management in different rivers.


Subject(s)
Cities , Drug Resistance, Microbial , Geologic Sediments , Rivers , Geologic Sediments/microbiology , China , Drug Resistance, Microbial/genetics , Environmental Monitoring , Genes, Bacterial , Spatio-Temporal Analysis , Anti-Bacterial Agents/analysis
6.
Huan Jing Ke Xue ; 45(6): 3165-3175, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897740

ABSTRACT

To comprehensively assess the pollution characteristics and ecological risks of antibiotics in the rivers in Beijing, the concentrations of 35 common antibiotics belonging to four categories were quantified by using solid phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry. The ecological risks of antibiotics were evaluated using the methods of risk quotient (RQ) and joint probability curves (JPCs). The results showed that a total of 33 antibiotics were detected in the surface water of ten rivers in Beijing, and the total concentrations of antibiotics ranged from N.D. to 1 573.57 ng·L-1. Sulfamethoxazole showed the highest concentration (N.D.-160.04 ng·L-1), followed by sulfadiazine (0.09-147.90 ng·L-1) and ofloxacin (0.28-94.72 ng·L-1). There were 16 antibiotics with a detection frequency greater than 50.0 %. The RQ method showed that there were 12 antibiotics with potential ecological risks. Tetracycline, clarithromycin, and trimethoprim showed the highest risks, with RQs of 3.99, 1.86, and 1.01, respectively. The risks of antibiotics at the outlets of wastewater treatment plants were higher than those in mainstream rivers. The PNEC exceedance rates of tetracycline, clarithromycin, and trimethoprim were above 2.3 %. Based on JPCs, the maximum risk product of clarithromycin was 1.66 %, and it showed low risks to 0.3 %-7.0 % of species. The risks of other antibiotics could be ignored. The detection frequency, distribution of concentrations, most sensitive species, and species sensitivity distribution of antibiotics had important impacts on the ecological risk assessment. Using the multilevel ecological risk assessment strategy can effectively avoid inadequate protection and overprotection and is also conducive to the hierarchical and zoning management of antibiotics throughout the region.


Subject(s)
Anti-Bacterial Agents , Environmental Monitoring , Rivers , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , Risk Assessment , Anti-Bacterial Agents/analysis , Environmental Monitoring/methods , Beijing , China , Cities , Tandem Mass Spectrometry
7.
Heliyon ; 10(11): e31458, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845976

ABSTRACT

The Tigris and Euphrates River Basin is an important water supply, but it suffers from water scarcity. It is necessary to carry out reasonable allocation of water resources in this region. Since water resources issues in this region are of multinational interest, international cooperative distribution efforts are needed. Common water resources allocation modes include equal allocation, demand priority or negotiation allocation. In order to derive the applicable range of various water resources allocation modes, this article constructs three differential game models and compares and analyzes the equilibrium results obtained by the models. Finally, the study shows that when the cost of developing water resources is small and the revenue obtained from developing water resources is large, the water-scarce region can obtain the maximum benefit by adopting the demand priority mode. Otherwise, the water-scarce region can obtain the maximum benefit by adopting the negotiation allocation mode. This study can inform the allocation, strategic interaction and cooperation of dynamic water resources in the two river basins.

8.
Ecol Appl ; 34(5): e2964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842210

ABSTRACT

Scientists increasingly draw on fishers' ecological knowledge (FEK) to gain a better understanding of fish biology and ecology, and inform options for fisheries management. We report on a study of FEK among fishers along the Lower Ucayali River in Peru, a region of exceptional productivity and diversity, which is also a major supplier of fish to the largest city in the Peruvian Amazon. Given a lack of available scientific information on stock status, we sought to identify temporal changes in the composition and size of exploited species by interviewing fishers from 18 communities who vary in years of fishing experience since the mid-1950s. We develop four FEK-based indicators to assess changes in the fish assemblage and compare findings with landings data. We find an intensification of fishing gear deployed over time and spatiotemporal shifts in the fish assemblage and reported declines in species weight, which point to a fishing-down process with declines across multiple species. This finding is reflected in a shifting baseline among our participants, whereby younger generations of fishers have different expectations regarding the distribution and size of species. Our study points to the importance of spillover effects from the nearby Pacaya-Samira National Reserve and community initiatives to support the regional fishery. Reference to fishers' knowledge also suggests that species decline is likely underreported in aggregated landings data. Despite the dynamism and diversity of Amazonian floodplain fisheries, simple FEK-based indicators can provide useful information for understanding fishing-induced changes in the fish assemblage. Fishers hold valuable knowledge for fishery management and conservation initiatives in the region.


Subject(s)
Fisheries , Fishes , Peru , Animals , Fishes/physiology , Humans , Conservation of Natural Resources/methods , Time Factors , Rivers
9.
Sci Total Environ ; 946: 174101, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906296

ABSTRACT

Eukaryotic communities in groundwater may be particularly sensitive to disturbance because they are adapted to stable environmental conditions and often have narrow spatial distributions. Traditional methods for characterising these communities, focussing on groundwater-inhabiting macro- and meiofauna (stygofauna), are challenging because of limited taxonomic knowledge and expertise (particularly in less-explored regions), and the time and expense of morphological identification. The primary objective of this study was to evaluate the vulnerability of eukaryote communities in shallow groundwater to mine water discharge containing elevated concentrations of magnesium (Mg) and sulfate (SO4). The study was undertaken in a shallow sand bed aquifer within a wet-dry tropical setting. The aquifer, featuring a saline mine water gradient primarily composed of elevated Mg and SO4, was sampled from piezometers in the creek channel upstream and downstream of the mine water influence during the dry season when only subsurface water flow was present. Groundwater communities were characterised using both morphological assessments of stygofauna from net samples and environmental DNA (eDNA) targeting the 18S rDNA and COI mtDNA genes. eDNA data revealed significant shifts in community composition in response to mine waters, contrasting with findings from traditional morphological composition data. Changes in communities determined using eDNA data were notably associated with concentrations of SO42-, Mg2+ and Na+, and water levels in the piezometers. This underscores the importance of incorporating molecular approaches in impact assessments, as relying solely on traditional stygofauna sampling methods in similar environments may lead to inaccurate conclusions about the responses of the assemblage to studied impacts.

10.
Environ Res ; 259: 119497, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944102

ABSTRACT

Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and ß-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.

11.
Environ Geochem Health ; 46(7): 247, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869651

ABSTRACT

The gold rush at the end of the nineteenth century in south-eastern Australia resulted in the mobilization and re-deposition of vast quantities of tailings that modified the geomorphology of the associated river valleys. Previous studies of contamination risk in these systems have either been performed directly on mine wastes (e.g., battery sand) or at locations close to historical mine sites but have largely ignored the extensive area of riverine alluvial deposits extending downstream from gold mining locations. Here we studied the distribution of contaminant metal(loids) in the Loddon River catchment, one of the most intensively mined areas of the historical gold-rush period in Australia (1851-1914). Floodplain alluvium along the Loddon River was sampled to capture differences in metal and metalloid concentrations between the anthropogenic floodplain deposits and the underlying original floodplain. Elevated levels of arsenic up to 300 mg-As/kg were identified within the anthropogenic alluvial sediment, well above sediment guidelines (ISQG-high trigger value of 70 ppm) and substantially higher than in the pre-mining alluvium. Maximum arsenic concentrations were found at depth within the anthropogenic alluvium (plume-like), close to the contact with the original floodplain. The results obtained here indicate that arsenic may pose a significantly higher risk within this river catchment than previously assessed through analysis of surface floodplain soils. The risks of this submerged arsenic plume will require further investigation of its chemical form (speciation) to determine its mobility and potential bioavailability. Our work shows the long-lasting impact of historical gold mining on riverine landscapes.


Subject(s)
Environmental Monitoring , Geologic Sediments , Gold , Mining , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Arsenic/analysis , History, 19th Century , Australia , History, 20th Century
12.
Sci Total Environ ; 940: 173677, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823711

ABSTRACT

Eutrophication is a significant environmental problem caused by nutrient loads from both point and non-point sources. Weather variables, particularly precipitation, affect the concentration of nutrients in water bodies, particularly those from non-point sources, in two contrasting ways. Heavy precipitation causes surface runoff which transports pollutants to rivers and increases nutrient concentration. Conversely, increased river flow can dilute the concentration, lowering it. This study investigates the impact of extreme precipitation, prolonged precipitation, and precipitation after a dry period on the total phosphorus concentration in the Moehne and Erft rivers in Germany, given the projected increase in frequency of extreme precipitation events and long drought periods due to climate change. The study comprises two parts: selecting extreme weather days from 2001 to 2021 and comparing observed Total Phosphorus concentrations with estimated concentrations derived from Generalized Additive Models and linear regression based on the discharge-concentration relationship. Changes in river TP concentration in response to continuous precipitation and precipitation after a dry period were also studied. Our results showed that during wet extreme and post-dry period rainfall events, TP concentration consistently surpassed expected values, underscoring the profound influence of intense rainfall on nutrient mobilization. However, we observed the impact of continuous rainfall to be non-unidirectional. Our work is distinguished by three key innovations: 1) addressing limitations in studying the effects of extreme weather on water quality due to limited temporal resolution, 2) incorporating both linear and non-linear modeling approaches for discharge-concentration relationships, and 3) performing a comprehensive analysis of temporal and spatial patterns of Total Phosphorus concentrations in response to varying rainfall patterns.

13.
Sci Rep ; 14(1): 14213, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902351

ABSTRACT

137Cs is a long-lived man-made radionuclide introduced in the environment worldwide at the early beginning of the nuclear Era during atmospheric nuclear testing's followed by the civil use of nuclear energy. Atmospheric fallout deposition of this major artificial radionuclide was reconstructed at the scale of French large river basins since 1945, and trajectories in French nuclearized rivers were established using sediment coring. Our results show that 137Cs contents in sediments of the studied rivers display a large spatial and temporal variability in response to the various anthropogenic pressures exerted on their catchment. The Loire, Rhone, and Rhine rivers were the most affected by atmospheric fallout from the global deposition from nuclear tests. Rhine and Rhone also received significant fallout from the Chernobyl accident in 1986 and recorded significant 137Cs concentrations in their sediments over the 1970-1985 period due to the regulatory releases from the nuclear industries. The Meuse River was notably impacted in the early 1970s by industrial releases. In contrast, the Seine River display the lowest 137Cs concentrations regardless of the period. All the rivers responded similarly over time to atmospheric fallout on their catchment, underlying a rather homogeneous resilience capacity of these river systems to this source of contamination.

14.
Heliyon ; 10(9): e30552, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726190

ABSTRACT

Water is a resource that influences sustainable development in different ways in social, economic, and environmental aspects, being the Andes the major provider of this resource. However, they have been affected mainly by anthropogenic activities due to the proximity of settlements in the watersheds, so they tend to have more significant contamination, and their evaluation is essential to mitigate problems for those who consume them. However, despite being a fundamental resource and one of the main contributors of water, it is not so studied, so the present study aims to determine the studies based on the water quality of the high mountain rivers of the Andes by using a PRISMA methodology with the scoping review extension, based on search techniques, inclusion and exclusion criteria, and monitoring tables, in order to maintain a line of research attached to the objective of the study. After using the methodology, ten articles were obtained, which were analyzed after a bibliometric analysis to determine features of interest, such as countries in which the studies were carried out, years of publication, methodologies used, and authors' consensus. High Andean rivers' importance, the need for more studies within these areas, and the lack of suitable indexes for these unique ecosystems are highlighted.

15.
Environ Geochem Health ; 46(6): 179, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695935

ABSTRACT

The uncertainty in the generation and formation of non-point source pollution makes it challenging to monitor and control this type of pollution. The SWAT model is frequently used to simulate non-point source pollution in watersheds and is mainly applied to natural watersheds that are less affected by human activities. This study focuses on the Duliujian River Basin (Xiqing section), which is characterized by a dense population and rapid urbanization. Based on the calibrated SWAT model, this study analyzed the effects of land use change on non-point source pollution both temporally and spatially. It was found that nitrogen and phosphorus non-point source pollution load losses were closely related to land use type, with agricultural land and high-density urban land (including rural settlements) being the main contributors to riverine nitrogen and phosphorus pollution. This indicates the necessity of analyzing the impact of land use changes on non-point source pollution loads by identifying critical source areas and altering the land use types that contribute heavily to pollution in these areas. The simulation results of land use type changes in these critical source areas showed that the reduction effect on non-point source pollution load is in the order of forest land > grassland > low-density residential area. To effectively curb surface source pollution in the study area, strategies such as modifying urban land use types, increasing vegetation cover and ground infiltration rate, and strictly controlling the discharge of domestic waste and sewage from urban areas can be implemented.


Subject(s)
Environmental Monitoring , Nitrogen , Phosphorus , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Phosphorus/analysis , Nitrogen/analysis , China , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Urbanization , Non-Point Source Pollution/analysis , Non-Point Source Pollution/prevention & control , Models, Theoretical , Agriculture , Computer Simulation
16.
Environ Sci Pollut Res Int ; 31(24): 35609-35618, 2024 May.
Article in English | MEDLINE | ID: mdl-38739337

ABSTRACT

The water crisis may be solved by utilizing reclaimed water. Three reclaimed water sources have restored the lower sections of the Licun River, forming a landscaped river. In this paper, the river's water quality was monitored for a year, and the ecological concerns were analyzed using luminescent bacteria, chlorella, and zebrafish. The results indicated that although basic water quality indicators like COD and ammonia fluctuated along the river, the classification of water quality was primarily affected by factors such as flow rate and water depth. Under experimental conditions, the toxic inhibitory effect of river water on luminescent bacteria, chlorella, and zebrafish was related to the treatment process of reclaimed water. It was found that the reclaimed water produced by the MBR, along with the UV disinfection process, showed no detectable toxicity. In contrast, the MBBR process, when combined with coagulation, sedimentation, filtration, ozonation, and chlorination, seemed to be the source of this toxicity. Along the river, the results of water quality assessments and ecological risk assessments were different, indicating that both should be conducted to evaluate rivers replenished with reclaimed water.


Subject(s)
Rivers , Water Quality , Rivers/chemistry , China , Risk Assessment , Animals , Environmental Monitoring , Zebrafish , Water Pollutants, Chemical/analysis
17.
Sci Total Environ ; 932: 172880, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692310

ABSTRACT

As widely acknowledged, wastewater treatment plants (WWTPs) stand as significant contributors to the presence of microplastics in surface water. Nonetheless, there exists a notable research gap regarding the extent of potential pollution resulting from the concurrent and uninterrupted discharges originating from multiple WWTPs into small-scale receiving water bodies. This study endeavors to address this knowledge deficit by conducting a thorough investigation into the prevalence of microplastics in surface water. The research encompasses seven distinct locations within the Changzhou section of the Beijing-Hangzhou Grand Canal and the effluent of three WWTPs situated along the tributary. The results indicate differences in the distribution of microplastics in surface waters of mainstream and tributaries. While the microplastic abundance and composition showed little variation along the main stream, the tributaries displayed an overall increasing trend in microplastic abundance from upstream to downstream. Notably, the major contributors to this increase were fragments, fiber particles, and microplastics with particle sizes ranging from 100 to 300 µm. Considering that the primary distinction between the tributaries and the mainstream is the presence of the three WWTPs along the tributaries, the study conducted a correlation analysis between river surface water and effluents from these plants. The results indicated a stronger correlation between the tributaries and the effluents, suggesting that WWTPs are one of the primary factors contributing to the elevated levels of microplastics in the tributaries. Finally, a comparative analysis of microplastic abundance in the Beijing-Hangzhou Grand Canal's Changzhou section and other regions was conducted. The findings revealed that the microplastic pollution level in the Beijing-Hangzhou Grand Canal's Changzhou section is higher than that in most other rivers. Therefore, the issue of microplastic pollution in the Beijing-Hangzhou Grand Canal's Changzhou section warrants our attention, particularly with regard to the effectiveness of microplastic removal by the WWTPs along its course.

18.
Microb Ecol ; 87(1): 75, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775958

ABSTRACT

The gut microbiome is a highly intricate ecosystem that exerts a pivotal influence on the host's physiology. Characterizing fish microbiomes is critical to understanding fish physiology and health, but little is known about the ecology and colonization dynamics of microorganisms inhabiting fish species. In this study, we investigated the bacterial communities of two small-bodied fish species, Cyprinella lutrensis (red shiner) and Notropis stramineus (sand shiner), two fish species where gut microbiomes have not been investigated previously and surrounding waters, collected from rivers in Nebraska, USA. Our study focused on evaluating microbial diversity in small-bodied fish and identifying autochthonous microbes present within these species irrespective of location to better understand bacterial community composition and possible roles of such bacterial species. Our results revealed that both red shiner and sand shiner exhibited gut bacterial communities dominated by typical bacterial phyla found in freshwater fish. The phylum Bacteroidota was minimally abundant in both species and significantly lower in relative abundance compared to the surrounding water microbial community. Furthermore, we found that the gut microbiomes of red shiner and sand shiner differed from the microbial community in the surrounding water, suggesting that these fish species contain host-associated bacterial species that may provide benefits to the host such as nutrient digestion and colonization resistance of environmental pathogens. The fish gut bacterial communities were sensitive to environmental conditions such as turbidity, dissolved oxygen, temperature, and total nitrogen. Our findings also show bacterial community differences between fish species; although they shared notable similarities in bacterial taxa at phyla level composition, ASV level analysis of bacterial taxa displayed compositional differences. These findings contribute to a better understanding of the gut bacterial composition of wild, freshwater, small-bodied fish and highlight the influence of intrinsic (host) and environmental factors on shaping the bacterial composition.


Subject(s)
Bacteria , Cyprinidae , Gastrointestinal Microbiome , Rivers , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Cyprinidae/microbiology , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , Nebraska
19.
Sci Rep ; 14(1): 11478, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769409

ABSTRACT

The Eurasian otter Lutra lutra is a territorial semi-aquatic carnivore usually found at low densities in rivers, coastal areas, and wetlands. Its diet is based on prey associated with aquatic environments. Mediterranean rivers are highly seasonal, and suffer reduced flow during the summer, resulting in isolated river sections (pools) that sometimes can be left with a minimal amount of water, leading to concentrations of food for otters. To our knowledge, this process, which was known to field naturalists, has not been accurately described, nor have otter densities been estimated under these conditions. In this study, we describe the population size and movements of an aggregation of otters in an isolated pool in the Guadiana River in the Tablas de Daimiel National Park (central Spain), which progressively dried out during the spring-summer of 2022, in a context of low connectivity due to the absence of circulating water in the Guadiana and Gigüela rivers. Using non-invasive genetic sampling of 120 spraints collected along 79.4 km of sampling transects and spatial capture-recapture methods, we estimated the otter density at 1.71 individuals/km of river channel length (4.21 individuals/km2) in a progressively drying river pool, up to five times higher than previously described in the Iberian Peninsula. The movement patterns obtained with the spatial capture-recapture model are not quite different from those described in low density, which seems to indicate a wide home range overlap, with low signs of territoriality.


Subject(s)
Otters , Rivers , Territoriality , Animals , Otters/physiology , Spain , Population Density , Seasons , Ecosystem , Behavior, Animal
20.
Water Environ Res ; 96(5): e11037, 2024.
Article in English | MEDLINE | ID: mdl-38726833

ABSTRACT

Microbial pollution of recreational waters leads to millions of skin, respiratory, and gastrointestinal illnesses globally. Fecal indicator bacteria (FIB) are monitored to assess recreational waters but may not reflect the presence of Staphylococcus aureus, a global leader in bacterial fatalities. Since many community-acquired S. aureus skin infections are associated with high recreational water usage, this study measured and modeled S. aureus, methicillin-resistant S. aureus (MRSA), and FIB (Enterococcus spp., Clostridium perfringens) concentrations in seawater and sand at six beaches in Hilo, Hawai'i, USA, over 37 sample dates from July 2016 to February 2019 using culturing techniques. Generalized linear models predicted bacterial concentrations with physicochemical and environmental data. Beach visitors were also surveyed on their preferred activities. S. aureus and FIB concentrations were roughly 6-78 times higher at beaches with freshwater discharge than at those without. Seawater concentrations of Enterococcus spp. were positively associated with MRSA but not S. aureus. Elevated S. aureus was associated with lower tidal heights, higher freshwater discharge, onsite sewage disposal system density, and turbidity. Regular monitoring of beaches with freshwater input, utilizing real-time water quality measurements with robust modeling techniques, and raising awareness among recreational water users may mitigate exposure to S. aureus, MRSA, and FIB. PRACTITIONER POINTS: Staphylococcus aureus and fecal bacteria concentrations were higher in seawater and sand at beaches with freshwater discharge. In seawater, Enterococcus spp. positively correlated with MRSA, but not S. aureus. Freshwater discharge, OSDS density, water turbidity, and tides significantly predicted bacterial concentrations in seawater and sand. Predictive bacterial models based upon physicochemical and environmental data developed in this study are readily available for user-friendly application.


Subject(s)
Feces , Seawater , Staphylococcus aureus , Seawater/microbiology , Staphylococcus aureus/isolation & purification , Hawaii , Feces/microbiology , Bathing Beaches , Environmental Monitoring , Sand/microbiology , Water Microbiology , Enterococcus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...