Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Microorganisms ; 12(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543613

ABSTRACT

Bacterial antimicrobial resistance (AMR) poses a significant global public health challenge. The escalation of AMR is primarily attributed to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), often facilitated by plasmids. This underscores the critical need for a comprehensive understanding of the resistance mechanisms and transmission dynamics of these plasmids. In this study, we utilized in vitro drug sensitivity testing, conjugation transfer assays, and whole-genome sequencing to investigate the resistance mechanism of an extensively drug-resistant (XDR) Pseudomonas aeruginosa clinical isolate, MAS152. We specifically focused on analyzing the drug-resistant plasmid pMAS152 it harbors and its potential for widespread dissemination. Bioinformatics analysis revealed that MAS152 carries a distinct IncpP-2A plasmid, pMAS152, characterized by a 44.8 kb multidrug resistance (MDR) region. This region houses a 16S rRNA methyltransferase (16S-RMTase) gene, rmtB, conferring high-level resistance to aminoglycoside antibiotics. Notably, this region also contains an extended-spectrum ß-Lactamase (ESBL) gene, blaPER-1, and an efflux pump operon, tmexCD-oprJ, which mediate resistance to ß-Lactams and quinolone antibiotics, respectively. Such a combination of ARGs, unprecedented in reported plasmids, could significantly undermine the effectiveness of first-line antibiotics in treating P. aeruginosa infections. Investigation into the genetic environment of the MDR region suggests that Tn2 and IS91 elements may be instrumental in the horizontal transfer of rmtB. Additionally, a complex Class I integron with an ISCR1 structure, along with TnAs1, seems to facilitate the horizontal transfer of blaPER-1. The conjugation transfer assay, coupled with the annotation of conjugation-related genes and phylogenetic analysis, indicates that the plasmid pMAS152 functions as a conjugative plasmid, with other genus Pseudomonas species as potential hosts. Our findings provide vital insights into the resistance mechanisms and transmission potential of the XDR P. aeruginosa isolate MAS152, underlining the urgent need for novel strategies to combat the spread of AMR. This study highlights the complex interplay of genetic elements contributing to antibiotic resistance and underscores the importance of continuous surveillance of emerging ARGs in clinical isolates.

2.
Pathogens ; 12(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37764972

ABSTRACT

Aminoglycoside antimicrobials remain valuable therapeutic options, but their effectiveness has been threatened by the production of bacterial 16S ribosomal RNA methyltransferases (16S-RMTases). In this study, we evaluated the genomic epidemiology of 16S-RMTase genes among Gram-negative bacteria circulating in the American continent. A total of 4877 16S-RMTase sequences were identified mainly in Enterobacterales and nonfermenting Gram-negative bacilli isolated from humans, animals, foods, and the environment during 1931-2023. Most of the sequences identified were found in the United States, Brazil, Canada, and Mexico, and the prevalence of 16S-RMTase genes have increased in the last five years (2018-2022). The three species most frequently carrying 16S-RMTase genes were Acinetobacter baummannii, Klebsiella pneumoniae, and Escherichia coli. The armA gene was the most prevalent, but other 16S-RMTase genes (e.g., rmtB, rmtE, and rmtF) could be emerging backstage. More than 90% of 16S-RMTase sequences in the Americas were found in North American countries, and although the 16S-RMTase genes were less prevalent in Central and South American countries, these findings may be underestimations due to limited genomic data. Therefore, whole-genome sequence-based studies focusing on aminoglycoside resistance using a One Health approach in low- and middle-income countries should be encouraged.

3.
Poult Sci ; 102(5): 102579, 2023 May.
Article in English | MEDLINE | ID: mdl-36913759

ABSTRACT

This study aimed to investigate the transmission and molecular epidemiological characteristics of the rmtB gene in Escherichia coli (E. coli) strains isolated from duck farms in Guangdong Province of China from 2018 to 2021. A total of 164 (19.4%, 164/844) rmtB-positive E. coli strains were recovered from feces, viscera, and environment. We performed antibiotic susceptibility tests, pulsed-field gel electrophoresis (PFGE), and conjugation experiments. We obtained the genetic context of 46 rmtB-carrying E. coli isolates and constructed a phylogenetic tree via whole genome sequencing (WGS) and bioinformatic analysis. The isolation rate of rmtB-carrying E. coli isolates in duck farms increased yearly from 2018 to 2020 but decreased in 2021. All rmtB-harboring E. coli strains were multidrug resistant (MDR), and 99.4% of the strains were resistant to more than 10 drugs. Surprisingly, duck- and environment-associated strains similarly showed high MDR. Conjugation experiments revealed that the rmtB gene horizontally cocarried blaCTX-M and blaTEM gene dissemination via IncFII plasmids. Insertion sequences IS26, ISCR1, and ISCR3 were closely associated with the spread of rmtB-harboring E. coli isolates. WGS analysis indicated that ST48 was the most prevalent sequence type. The results of single nucleotide polymorphism (SNP) differences revealed potential clonal transmission between ducks and the environment. Based on One Health principles, we need to strictly use veterinary antibiotics, monitor the distribution of MDR strains, and evaluate the impact of plasmid-mediated rmtB gene on human, animal, and environmental health.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , Humans , Ducks/genetics , Escherichia coli Proteins/genetics , Molecular Epidemiology , Phylogeny , Chickens/genetics , Anti-Bacterial Agents/pharmacology , China , Microbial Sensitivity Tests/veterinary , Methyltransferases/genetics
4.
J Glob Antimicrob Resist ; 33: 21-25, 2023 06.
Article in English | MEDLINE | ID: mdl-36822368

ABSTRACT

OBJECTIVES: Apramycin is an aminoglycoside (AG) with a unique structure that is little affected by plasmid-mediated mechanisms of AG resistance, including most AG-modifying enzymes and 16S rRNA methyltransferases (16S-RMTases). We evaluate the activity of apramycin against a collection of 16S-RMTase-producing isolates, including Enterobacterales, non-fermenting bacteria, and carbapenemase producers. METHODS: In total, 164 non-duplicate 16S-RMTase-producing isolates, including 84 Enterobacterales, 53 Acinetobacter baumannii and 27 Pseudomonas aeruginosa isolates, were included in the study. Whole-genome sequencing (WGS) was performed on all isolates with Illumina technology. The minimum inhibitory concentration (MIC) of apramycin was determined by broth microdilution with customized Sensititre plates (Thermo Fisher Scientific, Dardilly, France). RESULTS: We found that 95% (156/164) of the 16S-RMTase-producing isolates were susceptible to apramycin, with a MIC50 of 4 mg/L and a MIC90 of 16 mg/L, respectively. Resistance rates were higher in P. aeruginosa (11%) than in A. baumannii (4%) or Enterobacterales (4%) (P < 0.0001 for each comparison). Eight isolates were resistant to apramycin, including one isolate with an MIC >64 mg/L due to the acquisition of the aac(3)-IV gene. The genetic environment of the aac(3)-IV gene was similar to that in the pAH01-4 plasmid of an Escherichia coli isolate from chicken in China. CONCLUSION: Resistance to apramycin remains rare in 16S-RMTase-producing isolates. Apramycin may, therefore, be an interesting alternative treatment for infections caused by 16S-RMTase and carbapenemase producers.


Subject(s)
Anti-Bacterial Agents , Nebramycin , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Aminoglycosides/pharmacology , Nebramycin/pharmacology , Escherichia coli
5.
Microorganisms ; 10(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36144421

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa poses a great challenge to clinical treatment. In this study, we characterized a ST768 MDR P. aeruginosa strain, Pa150, that was isolated from a diabetic foot patient. The minimum inhibitory concentration (MIC) assay showed that Pa150 was resistant to almost all kinds of antibiotics, especially aminoglycosides. Whole genome sequencing revealed multiple antibiotic resistant genes on the chromosome and a 437-Kb plasmid (named pTJPa150) that harbors conjugation-related genes. A conjugation assay verified its self-transmissibility. On the pTJPa150 plasmid, we identified a 16S rRNA methylase gene, rmtB, that is flanked by mobile genetic elements (MGEs). The transfer of the pTJPa150 plasmid or the cloning of the rmtB gene into the reference strain, PAO1, significantly increased the bacterial resistance to aminoglycoside antibiotics. To the best of our knowledge, this is the first report of an rmtB-carrying conjugative plasmid isolated from P. aeruginosa, revealing a novel possible transmission mechanism of the rmtB gene.

6.
J Med Microbiol ; 71(8)2022 Aug.
Article in English | MEDLINE | ID: mdl-35925786

ABSTRACT

Introduction. The New Delhi metallo-ß-lactamase (NDM) variant NDM-5 was first described in 2011 in an isolate of Escherichia coli. We noted that a high proportion of isolates of E. coli positive for bla NDM carbapenemase genes submitted to the UK Health Security Agency (formerly Public Health England) between 2019 and mid-2021 carried the bla NDM-5 allele, with many co-harbouring rmtB, rendering them highly resistant to aminoglycosides as well as to most ß-lactams.Hypothesis/Gap Statement. This observation suggested that a common plasmid may be circulating.Aim. To compare these isolates and describe the plasmids carrying these resistance elements.Methodology. All isolates were sequenced on an Illumina platform, with five also subjected to long-read nanopore sequencing to provide complete assemblies. The locations of bla NDM-5, rmtB and other associated genetic elements were identified. Susceptibility testing to a wide range of antibiotics was carried out on representative isolates.Results. The 34 isolates co-harbouring bla NDM-5 and rmtB were from 14 hospital groups and six different regions across England and consisted of 11 distinct sequence types. All carried IncF plasmids. Assembly of the NDM plasmids in five isolates revealed that they carried rmtB and bla NDM-5 in an IncF conjugative plasmid ranging in size from 85.5 to 161 kb. All carried a highly conserved region, previously described in E. coli plasmid pHC105-NDM, that included bla TEM-1B and rmtB followed by sequence bounded by two IS26 elements containing ΔISAba125, bla NDM-5, ble, trpF and tat followed by ISCR1 and an integron with sul1, aadA2 and dfrA12 cassettes. This arrangement has been described in isolates from other countries and continents, suggesting that such plasmids are widely distributed, at least in E. coli, with similar plasmids also found in Klebsiella pneumoniae. Tested isolates were resistant to most antibiotics except colistin, fosfomycin and tigecycline.Conclusion. These observations suggest that conjugative plasmids carrying a highly conserved resistance gene segment have become widespread in England and elsewhere. This study highlights the value of routine whole-genome sequencing in identifying genetic elements responsible for resistance dissemination.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Humans , Methyltransferases/genetics , Microbial Sensitivity Tests , Plasmids/genetics , beta-Lactamases/genetics
7.
Microbiol Spectr ; 10(2): e0237121, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35323034

ABSTRACT

The rapid emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and the comparatively limited development of new antibiotics pose a major threat to public health. Aminoglycosides are important options that can lower the mortality rate effectively in combination therapy with ß-lactam agents. However, in this study, we observed two multidrug-resistant (MDR) K. pneumoniae named 1632 and 1864 that exhibited high-level resistance to both carbapenems and aminoglycosides. Through whole-genome sequencing (WGS), the unusual co-occurrence of rmtB, armA, and blaKPC-2 genes, associating with two key resistance plasmids, was observed in two isolates. Notably, we also found that the armA resistance gene and virulence factor iuc operon co-occurred on the same plasmid in K. pneumoniae 1864. Detailed comparative genetic analysis showed that all these plasmids were recognized as mobilizable plasmids, as they all carry the essential oriT site. Results of conjugation assay indicated that armA-positive plasmids in two isolates could self-transfer to Escherichia coli J53 effectively, especially, the p1864-1 plasmid, which could cotransfer hypervirulent and multidrug-resistant phenotypes to other isolates. Moreover, multiple insertion sequences (ISs) and transposons (Tns) were also found surrounding the vital resistant genes, which could even form a large antibiotic resistance island (ARI) and could stimulate mobilization of resistant determinants. Overall, we report the uncommon coexistence of armA plasmid, rmtB-blaKPC-2 plasmid, and even iuc virulence operon-encoding plasmid in K. pneumoniae isolates, which greatly increased the spread of these high-risk phenotypes and which are of great concern. IMPORTANCE Carbapenemase-producing Klebsiella pneumoniae have become a great challenge for antimicrobial chemotherapy, while aminoglycosides can lower the mortality rate effectively in combination therapy with them. Unfortunately, we isolated two K. pneumoniae from blood sample of patients that not only exhibited high-level resistance to carbapenems and aminoglycosides but also showed the unusual co-occurrence of the rmtB, armA, and blaKPC-2 genes. These elements were all located on mobile plasmids and flanked by polymorphic mobile genetic elements (MGEs). What's worse most, we also identified a conjugative virulent MDR plasmid, coharboring multiple resistant determinants, and iuc operon, which was confirmed could transfer such high-risk phenotype to other isolates. The emergence of such conjugative virulence plasmids may promote the rapid dissemination of virulence-encoding elements among Gram-negative pathogens. This uncommon coexistence of rmtB, armA, blaKPC-2, and iuc virulence operon-encoding plasmids in K. pneumoniae, presents a huge threat to clinical treatment. Future studies are necessary to evaluate the prevalence of such isolates.


Subject(s)
Escherichia coli Proteins , Klebsiella Infections , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/genetics , Klebsiella pneumoniae/genetics , Methyltransferases/genetics , Microbial Sensitivity Tests , Operon , Plasmids/genetics , beta-Lactamases/genetics
8.
Infect Drug Resist ; 14: 4849-4858, 2021.
Article in English | MEDLINE | ID: mdl-34848977

ABSTRACT

BACKGROUND: Multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Pseudomonas aeruginosa are the leading cause of healthcare-associated infections worldwide. OBJECTIVE: The aim was to identify the resistant phenotypes among P. aeruginosa and to characterize different aminoglycosides and carbapenem resistance genes as major mechanisms of resistance in these isolates, in Theodor Bilharz Research Institute (TBRI), a tertiary care hospital in Cairo, Egypt. METHODS: During a period of 11 months, 42 P. aeruginosa clinical isolates were collected from the microbiology laboratory by routine culture. Antimicrobial sensitivity testing to the aminoglycosides gentamicin and amikacin, and other classes of antibiotics, was performed by a disk diffusion method. Isolates were tested for aminoglycoside resistance genes, aac(6')-lb, aac-(3)-lla, rmtB, rmtC, armA, rmtD, and rmtF, and carbapenemase resistance genes bla NDM, bla VIM, and bla IMP, using conventional PCR. RESULTS: Thirty-three (78.5%) of the clinical P. aeruginosa isolates showed MDR and XDR phenotypes at 42.4% and 57.65%, respectively, and these were included in the study. Aminoglycoside resistance was found in 97%, whereas carbapenem resistance was found in 81% of the isolates phenotypically. Only 59.4% (19/26) of the aminoglycoside-resistant isolates harbored resistance genes; none of the amikacin-susceptible isolates harbored any of the tested aminoglycoside resistance genes. Aminoglycoside resistance genes rmtB, armA, aac(6')-lb, and rmtF were found at rates of 17/33 (51.5%), 3/33 (9%), 2/33 (6%), and 2/33 (6%), respectively, whereas rmtD, acc(3)-II, and rmtC were not detected. Only 40.7% (11/27) of the carbapenem-resistant isolates harbored resistance genes. Carbapenem resistance genes, bla NDM andbla VIM, were found at rates of 7/33 (21.2%) and 6/33 (18.1%), respectively, and bla IMP was not detected. CONCLUSION: Rates of MDR and XDR P. aeruginosa and resistance to aminoglycosides and carbapenems in our setting are high. Methyltransferases and metallo-beta-lactamases are the main mechanisms of resistance to aminoglycosides and carbapenems, respectively. The presence of bla NDM and rmtF in the strains confirms their rapid dissemination in the Egyptian environment.

9.
Front Cell Infect Microbiol ; 11: 654852, 2021.
Article in English | MEDLINE | ID: mdl-33996632

ABSTRACT

New Delhi metallo-ß-lactamase (NDM)-producing isolates are usually resistant to most ß-lactams and other antibiotics as a result of the coexistence of several resistance markers, and they cause a variety of infections associated to high mortality rates. Although NDM-1 is the most prevalent one, other variants are increasing their frequency worldwide. In this study we describe the first clinical isolate of NDM-5- and RmtB-producing Escherichia coli in Latin America. E. coli (Ec265) was recovered from a urine sample of a female outpatient. Phenotypical and genotypical characterization of resistance markers and conjugation assays were performed. Genetic analysis of Ec265 was achieved by whole genome sequencing. Ec265 belonging to ST9693 (CC354), displayed resistance to most ß-lactams (including carbapenems), aminoglycosides (gentamicin and amikacin), and quinolones. Several resistance genes were found, including blaNDM-5 and rmtB, located on a conjugative plasmid. blaNDM-5 genetic context is similar to others found around the world. Co-transfer of multiple antimicrobial resistance genes represents a particular challenge for treatment in clinical settings, whereas the spread of pathogens resistant to last resort antibiotics should raise an alarm in the healthcare system worldwide.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Female , Humans , Latin America , Methyltransferases/genetics , Microbial Sensitivity Tests , Plasmids , beta-Lactamases/genetics
10.
Microb Drug Resist ; 27(8): 1063-1070, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33332204

ABSTRACT

Carbapenemase-producing Pseudomonas aeruginosa (CPPA) is a threat to public health. This study aimed to describe the first emergence and molecular characterization of NDM-1-producing P. aeruginosa in South Korea. A total of 183 carbapenem-resistant P. aeruginosa (CRPA) isolates were recovered from patients at a university hospital in Seoul, South Korea. The antimicrobial resistance genes and their genetic environments were determined through molecular sequencing. Antimicrobial susceptibility testing was performed using the VITEK 2 system and broth microdilution method. Genetic relatedness was assessed using multilocus sequence typing and pulsed-field gel electrophoresis. Whole genome sequencing (WGS) was carried out to analyze the entire genome of a CPPA isolated from the index patient; the first identified infected patient. All 16 CPPA isolates from the 183 CRPA carried the blaNDM-1 gene and exhibited a high level of resistance to ß-lactams, aminoglycosides, and ciprofloxacin. Fifteen of the 16 isolates were recovered from urine samples. They were attributed to ST773 and showed high clonal similarity (>86%). Post-WGS analysis revealed that the blaNDM-1 gene and the 16S rRNA methyltransferase gene rmtB4 were located in the integrative and conjugative element (ICE) on the chromosome. This ICE6660-like region was very similar to the ICE6660 region carrying the blaNDM-1 gene and the 16S rRNA methyltransferase gene rmtD3 in a previously described P. aeruginosa strain. This study described the first emergence and clonal spread of the NDM-1-producing P. aeruginosa ST773 isolates possessing rmtB4, at a university hospital in South Korea, suggesting that continuous surveillance is necessary to prevent infection and transmission of these CRPAs, which can endanger public health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , beta-Lactamases/genetics , Adult , Aged , Aged, 80 and over , Electrophoresis, Gel, Pulsed-Field , Female , Hospitals, University , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Multilocus Sequence Typing , Republic of Korea/epidemiology
11.
J Glob Antimicrob Resist ; 24: 183-189, 2021 03.
Article in English | MEDLINE | ID: mdl-33373732

ABSTRACT

OBJECTIVES: Carbapenem resistance in Klebsiella pneumoniae is a major clinical challenge. Aminoglycosides remain an important asset in the current therapeutic arsenal to treat these infections. We examined aminoglycoside resistance phenotypes and genomics in a collection of 100 invasive KPC-producing K. pneumoniae isolates sequentially collected in a Brazilian tertiary hospital between 2014 and 2016. METHODS: Aminoglycoside susceptibility testing was performed. We used a combined long-read (MinION) and short-read (Illumina) whole-genome sequencing strategy to provide a genomic picture of aminoglycoside resistance genes, with particular emphasis on 16S rRNA methyltransferases and related plasmids. RESULTS: 68% of the strains were resistant to gentamicin and 42% to amikacin, with 35% resistant to both of these commonly used aminoglycosides. We identified the 16S rRNA methyltransferase gene rmtB in 30% of these isolates: 97% (29/30) belonged to sequence type 258 (ST258) and a single isolate to the emergent ST16 clone. In ST258 and ST16 the rmtB gene was located on large IncC plasmids of 177 kb and 174 kb, respectively, highly similar to a plasmid previously identified in Proteus mirabilis in the same hospital. Moreover, 99% of the isolates remained susceptible to the veterinary-approved drug apramycin, currently under clinical development for human medicine. CONCLUSION: Such findings in geographically and temporally related isolates suggest a combination of vertical clonal spread as well as horizontal interspecies and intraspecies plasmid transfer. This broad rmtB dissemination in an endemic setting for KPC-producing clones is worrisome since it provides resistance to most clinically available aminoglycosides, including the novel aminoglycoside-modifying enzyme-resistant plazomicin.


Subject(s)
Klebsiella pneumoniae , beta-Lactamases , Bacterial Proteins/genetics , Brazil , Humans , Interleukins , Klebsiella pneumoniae/genetics , Methyltransferases , Microbial Sensitivity Tests , Plasmids/genetics , RNA, Ribosomal, 16S/genetics , Sisomicin/analogs & derivatives , beta-Lactamases/genetics
12.
Eur J Clin Microbiol Infect Dis ; 40(1): 111-121, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32794063

ABSTRACT

The aim of this study was to characterize the 16S rRNA methylase (RMT) genes in aminoglycoside-resistant Enterobacterales and Pseudomonas aeruginosa isolates in 2015-2016 in hospitals in Athens, Greece. Single-patient, Gram-negative clinical isolates resistant to both amikacin and gentamicin (n = 292) were consecutively collected during a two-year period (2015-2016) in five tertiary care hospitals in Athens. RMT genes were detected by PCR. In all RMT-producing isolates, ESBL and carbapenemase production was confirmed by PCR, and the clonal relatedness and the plasmid contents were also characterized. None of the 138 P. aeruginosa isolates harbored any of the RMT genes surveyed although some were highly resistant to aminoglycosides (MICs > = 512 mg/L). Among 154 Enterobacterales, 31 Providencia stuartii (93.9%), 42 Klebsiella pneumoniae (37.8%), six Proteus mirabilis (75%), and two Escherichia coli (100%) isolates were confirmed as highly resistant to amikacin, gentamicin, and tobramycin with MICs ≥ 512 mg/L, harboring mainly the rmtB (98.8%). All were carbapenemase producers. P. stuartii, P. mirabilis, and E. coli produced VIM-type carbapenemases. K. pneumoniae produced KPC- (n = 34, 81.0%), OXA-48 (n = 4, 9.5%), KPC- and VIM- (n = 3, 7.1%), or only VIM-type (n = 1, 2.4%) enzymes. Two groups of similar IncC plasmids were detected one harboring rmtB1, blaVEB-1, blaOXA-10, and blaTEM-1, and the other additionally blaVIM-1 and blaSHV-5. Among RMT-producing Enterobacterales, rmtB1 predominated and was associated with carbapenemase-encoding gene(s). Similar IncC plasmids carrying a multiresistant region, including ESBL genes, and in the case of VIM-producing isolates, the blaVIM-1, were responsible for this dissemination. The co-dissemination of these genes poses a public health threat.


Subject(s)
Enterobacter/genetics , Enterobacteriaceae Infections/epidemiology , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Enterobacter/drug effects , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Greece/epidemiology , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , RNA, Ribosomal, 16S
13.
Diagn Microbiol Infect Dis ; 97(4): 115092, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32569921

ABSTRACT

Comparative in vitro activity of plazomicin and 4 older aminoglycosides was evaluated with broth microdilution in 714 blood isolates from 14 hospitals in Turkey. Isolates included Escherichia coli (n=320), Klebsiella spp. (n=294), Enterobacter spp. (n=69), Serratia marcescens (n=20), and Citrobacter spp. (n=11). Isolates resistant to older aminoglycosides (n=240) were screened for aminoglycoside modifying enzyme genes: aac(6')-Ib, aac(3)-Ia, aac(3)-IIa, ant(2″)-Ia. Isolates with high MICs for plazomicin (n=41) were screened for 16S rRNA methyltransferase genes (armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF, rmtG, rmtH, npmA) and 2 carbapenemase genes (blaOXA-48, blaNDM-1). Overall, resistance to plazomicin, amikacin, netilmicin, gentamicin, and tobramycin was 7.7%, 7.4%, 31.5%, 32.9%, and 34.7%, respectively. aac(6')-Ib and aac(3)-IIa were the most common AME genes. Co-occurrence of blaNDM-1 with armA and rmtC and blaOXA-48 with armA was striking. Enterobacter cloacae carrying rmtC+blaNDM-1, S. marcescens with armA+blaOXA-48, and rmtF+ blaOXA-48 in K. pneumoniae were reported for the first time.


Subject(s)
Aminoglycosides/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Acetyltransferases/genetics , Aminoglycosides/metabolism , Bacterial Proteins/genetics , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/epidemiology , Humans , Methyltransferases/genetics , Microbial Sensitivity Tests , Prevalence , RNA, Ribosomal, 16S/metabolism , Sisomicin/analogs & derivatives , Sisomicin/metabolism , Sisomicin/pharmacology , Turkey/epidemiology , beta-Lactamases/genetics
14.
Front Microbiol ; 11: 604278, 2020.
Article in English | MEDLINE | ID: mdl-33519749

ABSTRACT

This study aimed to characterize 16S rRNA methylase genes among Salmonella and to elucidate the structure and evolution of rmtB-carrying plasmids. One hundred fifty-eight Salmonella isolates from one pig slaughterhouse were detected as containing 16S rRNA methylase genes; two (1.27%) Salmonella London isolates from slaughtered pigs were identified to carry rmtB. They were resistant to gentamicin, amikacin, streptomycin, ampicillin, tetracycline, florfenicol, ciprofloxacin, and sulfamethoxazole/trimethoprim. The complete sequences of RmtB-producing isolates were obtained by PacBio single-molecule real-time sequencing. The isolate HA1-SP5 harbored plasmids pYUHAP5-1 and pYUHAP5-2. pYUHAP5-1 belonged to the IncFIBK plasmid and showed high similarity to multiple IncFIBK plasmids from Salmonella London in China. The rmtB-carrying plasmid pYUHAP5-2 contained a typical IncN-type backbone; the variable region comprising several resistance genes and an IncX1 plasmid segment was inserted in the resolvase gene resP and bounded by IS26. The sole plasmid in HA3-IN1 designated as pYUHAP1 was a cointegrate of plasmids from pYUHAP5-1-like and pYUHAP5-2-like, possibly mediated by IS26 via homologous recombination or conservative transposition. The structure differences between pYUHAP1 and its corresponding part of pYUHAP5-1 and pYUHAP5-2 may result from insertion, deletion, or recombination events mediated by mobile elements (IS26, ISCR1, and ISKpn43). This is the first report of rmtB in Salmonella London. IncN plasmids are efficient vectors for rmtB distribution and are capable of evolving by reorganization and cointegration. Our results further highlight the important role of mobile elements, particularly IS26, in the dissemination of resistance genes and plasmid evolution.

15.
J Infect Chemother ; 25(10): 811-815, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30987949

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae and Escherichia coli, multidrug-resistant Pseudomonas aeruginosa and vancomycin-resistant Enterococcus faecium were isolated from a single patient. The patient came to Japan for advanced medical treatment after having undergone laparoscopic cholecystectomy and hospitalization in Vietnam. Whole-genome sequence analysis revealed that K. pneumoniae harbored blaOXA-48 that was found on a Col156 -type small plasmid, E. coli harbored blaNDM-5 and P. aeruginosa harbored both blaNDM-1 and 16S rRNA methyltransferase (rmtB). To the best of our knowledge, this is the first report of detection of K. pneumoniae harboring blaOXA-48 on a Col156-type small plasmid in the world and P. aeruginosa coharboring genes encoding NDM-1 and RmtB in Japan.


Subject(s)
Bacterial Proteins/genetics , Gram-Negative Bacterial Infections/microbiology , beta-Lactamases/genetics , Bacterial Proteins/metabolism , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/drug therapy , Humans , Japan , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Medical Tourism , Middle Aged , Plasmids/genetics , Plasmids/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vietnam , beta-Lactam Resistance/genetics , beta-Lactamases/metabolism
16.
Diagn Microbiol Infect Dis ; 94(2): 199-201, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30638654

ABSTRACT

Pan-aminoglycoside (amikacin, gentamicin, tobramycin, plazomicin)-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates from patients in Canadian Hospitals (2013-2017) were evaluated by whole genome sequencing for 16S ribosomal RNA methyltransferase genes. The rmtB gene was detected in 2 isolates (1 of 3094 E. coli [0.03%], 1 of 1039 K. pneumoniae [0.1%]).


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/enzymology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/enzymology , Methyltransferases/genetics , RNA, Ribosomal, 16S/metabolism , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Canada/epidemiology , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Hospitals , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Methyltransferases/metabolism , Sequence Analysis, DNA , Whole Genome Sequencing
17.
J Glob Antimicrob Resist ; 17: 157-159, 2019 06.
Article in English | MEDLINE | ID: mdl-30553930

ABSTRACT

OBJECTIVES: Here we describe a clinical isolate of Klebsiella pneumoniae ST11 harbouring both blaKPC-2 and rmtB genes in Japan. METHODS: A carbapenem- and aminoglycoside-resistant K. pneumoniae was isolated from an inpatient in Japan. Whole-genome sequencing (WGS) was performed using an Illumina next-generation sequencer. RESULTS: Minimum inhibitory concentrations (MICs) of meropenem and amikacin were ≥512µg/mL. WGS analysis revealed that the isolate harboured both blaKPC-2 and rmtB. The genetic environments of blaKPC-2 and rmtB consisted of IS6-orfA-orfB-IS481-blaKPC-2-ISKpn6-korC-orfC-orfD-rep-tnp-Tn3-IS6 and IS6-IS91-orfE-orfF-blaTEM-1-rmtB-orfG-IS6, respectively. These genetic environments are similar (>99% identity) to those of K. pneumoniae WCHKP040035 (accession no. CP028796) isolated in a Chinese hospital. The blaKPC-2 and rmtB genes were located on a 130-kb IncFII plasmid. CONCLUSIONS: This is the first report of a K. pneumoniae clinical isolate from Japan co-harbouring blaKPC-2 and rmtB on a 130-kb plasmid.


Subject(s)
Bacterial Proteins/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Child, Preschool , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Humans , Japan , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Male , Microbial Sensitivity Tests
18.
J Korean Med Sci ; 33(42): e262, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30310364

ABSTRACT

Pathogenic gram-negatives that produce 16S ribosomal RNA methyltransferases (16S RMTases) have already been distributed all over the world. To investigate the predominance of aminoglycoside resistance associated with 16S RMTases in Korea, we collected a total of 222 amikacin resistant Gram-negative clinical isolates from patient specimens between 1999 and 2015 from three hospital banks across Korea. ArmA and rmtB were the predominant 16S RMTase genes responsible for aminoglycoside-resistant isolates circulating in Korean community settings although only one rmtA-producing isolate was detected in 2006.


Subject(s)
Amikacin/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Gram-Negative Bacteria/genetics , Methyltransferases/genetics , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Humans , Republic of Korea
19.
Acta Microbiol Immunol Hung ; 65(1): 107-118, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-28870092

ABSTRACT

In the recent years, it has been noted that microorganisms with acquired resistance to almost all available potent antibiotics are increasing worldwide. Hence, the use of antibiotics in every clinical setup has to be organized to avoid irrational use of antibiotics. This study was aimed to establish the pattern of antibiotic sensitivity and relevance of antimicrobial resistance in aerobic Gram-negative bacilli. A total of 103 aerobic Gram-negative bacteria namely Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Citrobacter koserii, Proteus spp., and Pseudomonas aeruginosa were collected from tertiary care centers around Chennai. Kirby-Bauer Disk Diffusion test and study for genes of cephalosporin, carbapenem, and aminoglycoside resistance were done. A descriptive analysis of the data on altogether 103 clinical urine isolates was performed. All strains showed susceptibility to colistin. The frequency of genes encoding 16S rRNA methylases armA and rmtB were 7.8% and 6.8%, respectively. Among metallo-ß-lactamases, blaVIM, blaIMP, and blaNDM-1 were detected in 6.8%, 3.8%, and 3.8%, respectively. One E. coli strain harbored blaSIM-1 gene. Cumulative analysis of data suggested that 30% of the strains carried more than one resistance gene. The current research evidenced the increasing frequency of resistance mechanisms in India. Combined approach of antibiotic restriction, effective surveillance, and good infection control practices are essential to overcome antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/microbiology , Methyltransferases/genetics , beta-Lactamases/metabolism , Adolescent , Adult , Aged , Bacterial Proteins/metabolism , Child , Child, Preschool , Female , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Humans , Infant , Male , Methyltransferases/metabolism , Microbial Sensitivity Tests , Middle Aged , Young Adult , beta-Lactamases/genetics
20.
Article in English | MEDLINE | ID: mdl-29158274

ABSTRACT

This study aimed to characterize multidrug-resistant Proteus mirabilis clones carrying a novel class 1 integron-borne blaIMP-1 In1359 was inserted into a large conjugative plasmid that also carried blaCTX-M-2 The production of carbapenemases in Enterobacteriaceae that are intrinsically resistant to polymyxins and tigecycline is very worrisome, representing a serious challenge to clinicians and infection control teams.


Subject(s)
Gene Expression Regulation, Bacterial , Integrons , Plasmids/chemistry , Proteus mirabilis/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Brazil/epidemiology , Carbapenems/pharmacology , Clone Cells , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Plasmids/metabolism , Polymyxins/pharmacology , Proteus Infections/drug therapy , Proteus Infections/epidemiology , Proteus Infections/microbiology , Proteus Infections/transmission , Proteus mirabilis/drug effects , Proteus mirabilis/enzymology , Proteus mirabilis/isolation & purification , Tertiary Care Centers , Tigecycline/pharmacology , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...