Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Environ Manage ; 361: 121263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820795

ABSTRACT

Roads are one of the most widespread structures that drive habitat loss and fragmentation. But they also restrict animal movement and drive landscape-level impacts on biodiversity. The South Pacific of Costa Rica is known for its high levels of biodiversity, but little has been done to reduce road impacts upon wildlife communities. To understand these impacts and advise on possible mitigation action, we used three key data approaches: 1. Camera traps, to survey wildlife activity along two major road sections that dissect the region's protected areas and biological corridors. Seventy-eight camera traps were deployed in secondary forest patches at different distances (between 200 m and 1 km) from the roads for six months and covariates were collected to explain the patterns found. 2. Citizen science data extracted from iNaturalist to identify roadkill "hotspots" along the roads. And 3. Circuitscape analysis, to assess how landscape structure could influence animal movement. Camera traps recorded 30 terrestrial species. Ocelots and agoutis displayed a negative effect of distance from protected area, while the Apex predators displayed a positive effect toward higher forest cover and vegetation density. Circuitscape analysis showed high connectivity throughout most of the area. Only a few locations showed higher flow (bottle neck locations), which coincided with roadkill "hotspots" identified through citizen science direct observations (70 observations of 21 species). Amalgamating data from the different analyses allow us to identify four key wildlife crossing locations (one of less priority) along the Inter-American Highway. We strongly recommend the placement of under/overpasses in these locations, with the aim to ensure wildlife safe movement and connectivity of wildlife populations in the region. Culvert modifications in the area could also be considered to incorporate wildlife underpasses at a reduced cost.


Subject(s)
Animals, Wild , Biodiversity , Conservation of Natural Resources , Ecosystem , Costa Rica , Conservation of Natural Resources/methods , Animals , Forests
2.
Biol Rev Camb Philos Soc ; 99(3): 1121-1139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38303408

ABSTRACT

Roads have pervasive impacts on wildlife, including habitat loss and fragmentation, road mortality, habitat pollution and increased human use of habitats surrounding them. However, the effects of roads on interspecific interactions are less understood. Here we provide a synthesis of the existing literature on how species interactions may be disrupted by roads, identify knowledge gaps, and suggest avenues for future research and conservation management. We conducted a systematic search using the Web of Science database for each species interaction (predation, competition, mutualism, parasitism, commensalism and amensalism). These searches yielded 2144 articles, of which 195 were relevant to our topic. Most of these studies focused on predation (50%) or competition (24%), and less frequently on mutualism (17%) or, parasitism (9%). We found no studies on commensalism or amensalism. Studies were biased towards mammals from high-income countries, with most conducted in the USA (34%) or Canada (18%). Our literature review identified several patterns. First, roads disrupt predator-prey relationships, usually with negative impacts on prey populations. Second, new disturbed habitats created in road corridors often benefit more competitive species, such as invasive species, although some native or endangered species can also thrive there. Third, roads degrade mutualistic interactions like seed dispersal and pollination. Fourth, roads can increase parasitism rates, although the intensity of the alteration is species specific. To reduce the negative impacts of roads on interspecific interactions, we suggest the following management actions: (i) verges should be as wide and heterogenous as possible, as this increases microhabitat diversity, thus enhancing ecosystem services like pollination and seed dispersal; (ii) combining different mowing regimes can increase the complexity of the habitat corridor, enabling it to act as a habitat for more species; (iii) the use of de-icing salts should be gradually reduced and replaced with less harmful products or maintenance practices; (iv) wildlife passes should be implemented in groups to reduce animal concentrations inside them; (v) periodic removal of carcasses from the road to reduce the use of this resource by wildlife; and (vi) implementation of traffic-calming schemes could enhance interspecific interactions like pollination and avoid disruption of predator-prey relationships.


Subject(s)
Ecosystem , Animals , Transportation , Conservation of Natural Resources
3.
Sci Rep ; 14(1): 4722, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413813

ABSTRACT

In an increasingly human- and road-dominated world, the preservation of functional ecosystems has become highly relevant. While the negative ecological impacts of roads on ecosystems are numerous and well documented, roadless areas have been proposed as proxy for functional ecosystems. However, their potential remains underexplored, partly due to the incomplete mapping of roads. We assessed the accuracy of roadless areas identification using freely available road-data in two regions with contrasting levels of anthropogenic influence: boreal Canada and temperate Central Europe (Poland, Slovakia, Czechia, and Hungary). Within randomly selected circular plots (per region and country), we visually examined the completeness of road mapping using OpenStreetMap 2020 and assessed whether human influences affect mapping quality using four variables. In boreal Canada, roads were completely mapped in 3% of the plots, compared to 40% in Central Europe. Lower Human Footprint Index and road density values were related to greater incompleteness in road mapping. Roadless areas, defined as areas at least 1 km away from any road, covered 85% of the surface in boreal Canada (mean size ± s.d. = 272 ± 12,197 km2), compared to only 0.4% in temperate Central Europe (mean size ± s.d. = 0.6 ± 3.1 km2). By visually interpreting and manually adding unmapped roads in 30 randomly selected roadless areas from each study country, we observed a similar reduction in roadless surface in both Canada and Central Europe (27% vs 28%) when all roads were included. This study highlights the urgent need for improved road mapping techniques to support research on roadless areas as conservation targets and surrogates of functional ecosystems.


Subject(s)
Ecosystem , Humans , Europe , Canada , Poland , Hungary
4.
Conserv Biol ; 38(2): e14159, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37551769

ABSTRACT

Wildlife mortality due to collisions with vehicles (roadkill) is one of the predominant negative effects exerted by roads on many wildlife species. Reducing roadkill is therefore a major component of wildlife conservation. Roadkill is affected by various factors, including road attributes and traffic volume. It is theorized that the effect of traffic volume on roadkill probability should be unimodal. However, empirical evidence for this theory is lacking. Using a large-scale roadkill database of 18 wildlife species in Israel, encompassing 2846 km of roads over 10 years, we explored the effects of traffic volume and road attributes (e.g., road lighting, verge vegetation) on roadkill probability with a multivariate generalized linear mixed model. A unimodal effect of traffic volume was identified for the striped hyena (Hyaena hyaena), whereas 5 species demonstrated a novel quadratic U-shaped effect (e.g., golden jackal [Canis aureus]). Four species showed a negative linear effect (e.g., wild boar [Sus scrofa]). We also identified varying effects of road attributes on roadkill. For instance, road lighting and roadside trees decreased roadkill for several species, whereas bus stops and concrete guardrails led to increased roadkill. The theorized unimodal effect of traffic volume may only apply to large, agile species, and the U-shaped effect could be related to intraspecies variability in traffic avoidance behavior. In general, we found that both high-traffic and low-traffic roads can pose a high mortality risk for wildlife. It is therefore important to monitor roadkill on low-traffic roads and adapt road attributes to mitigate roadkill. Road design for effective roadkill mitigation includes reducing the use of concrete guardrails and median barriers where possible and avoiding dense bushes in verge landscaping. These measures are complemented by employing wildlife detection systems, driver warnings, and seasonal speed reduction measures on low-traffic roads identified as roadkill hotspots.


Riesgo de mortalidad de fauna presentado por las carreteras de mucho y poco tráfico Denneboom et al. 23­229 Resumen La mortalidad de fauna por colisiones con vehículos es uno de los efectos negativos predominantes que tienen las carreteras sobre muchas especies. Por lo tanto, la reducción de esta mortalidad es un componente principal de la conservación de la fauna. Esta mortalidad se ve afectada por varios factores, incluyendo las características de la carretera y el volumen de tráfico. Se piensa que el efecto del volumen de tráfico sobre la probabilidad de las colisiones debería ser unimodal; sin embargo, la evidencia empírica para esta teoría no es suficiente. Usamos una base de datos de colisiones de 18 especies de fauna en Israel que engloba 2,846 km de carreteras durante diez años para explorar con un modelo mixto lineal generalizado multivariado los efectos del volumen de tráfico y las características de la carretera (p. ej., iluminación, vegetación de borde) sobre la probabilidad de colisiones. Identificamos un efecto unimodal del volumen del tráfico para la hiena rayada (Hyaena hyaena), mientras que cinco especies demostraron un efecto cuadrático novedoso en forma de U, como el chacal dorado (Canis aureus). Cuatro especies mostraron un efecto negativo lineal, como el jabalí salvaje (Sus scrofa). También identificamos varios efectos de las características de la carretera sobre las colisiones. Por ejemplo, la iluminación y los árboles en los bordes disminuyeron las colisiones para varias especies, mientras que las paradas de camión y los quitamiedos de concreto resultaron en un incremento de las colisiones. La teoría del efecto unimodal del volumen de tráfico podría aplicar sólo para especies grandes y ágiles, mientras que el efecto en forma de U podría relacionarse con la variabilidad de comportamiento para evitar colisiones que hay entre las especies. En general, descubrimos que tanto las carreteras con poco y mucho tráfico pueden representar un riesgo de mortalidad para la fauna. Por lo tanto, es importante monitorear las colisiones en las carreteras con poco tráfico y adaptar las características de la carretera para mitigar las colisiones. El diseño de las carreteras para una mitigación efectiva incluye reducir el uso de quitamiedos de concreto y barreras centrales en donde sea posible y evitar los arbustos densos en el paisajismo de los bordes. Estas medidas están complementadas con el uso de sistemas de detección de fauna, señalamientos para los conductores y medidas estacionales de reducción de la velocidad en las carreteras de poco tráfico identificadas como puntos calientes de colisiones.


Subject(s)
Animals, Wild , Conservation of Natural Resources , Animals , Probability , Accidents, Traffic/prevention & control
5.
Environ Manage ; 73(2): 365-377, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37294316

ABSTRACT

A critical step to design wildlife mitigating measures is the identification of roadkill hotspots. However, the effectiveness of mitigations based on roadkill hotspots depends on whether spatial aggregations are recurrent over time, spatially restricted, and most importantly, shared by species with diverse ecological and functional characteristics. We used a functional group approach to map roadkill hotspots for mammalian species along the BR-101/North RJ, a major road crossing important remnants of the Brazilian Atlantic Forest. We tested if functional groups present distinct hotspot patterns, and if they converge into the same road sectors, in that case, favoring optimal mitigating actions. Roadkill rates were monitored and recorded between October/2014 and September/2018 and species were classified into six functional groups based on their home range, body size, locomotion mode, diet, and forest-dependency. Hotspots along the roads were mapped for comparison of spatial patterns between functional groups. Results demonstrated that the roadkill index varied idiosyncratically for each functional group throughout the months and that no group presented seasonality. Seven hotspots were shared by two or more functional groups, highlighting the importance of these road stretches to regional mammal fauna. Two of the stretches are associated with aquatic areas extending from one side of the road to the other, and the remaining are connected to patches of native vegetation on both sides. This work brings a promising approach, yet hardly used in ecological studies on roads to analyze roadkill dynamics, assigning more importance to ecological instead of taxonomical characteristics, normally used to identify spatiotemporal patterns.


Subject(s)
Animals, Wild , Mammals , Animals , Brazil , Forests
6.
Environ Monit Assess ; 195(12): 1410, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922036

ABSTRACT

One of the main things wildlife does for survival is movement. Wild animals need movement to meet their needs, such as reproduction, breeding, foraging, and dispersal. Although wildlife species use roads for various purposes, they also use them when moving from one habitat to another. In recent years, especially when it comes to habitat fragmentation brought about by urbanization, wild animals frequently use highways. Highways have a wide range of effects on factors such as biodiversity, wildlife, and ecology. Roads can cause habitat loss, habitat fragmentation, and habitat degradation; alter the composition of vegetation; act as barriers to the flow of genes and movement; increase human access to pristine areas; and even increase the risk of extinction for many threatened species. Species belonging to the family Cervidae also include the species most affected by road networks. Roe deer (Capreolus capreolus Linnaeus, 1758) is the smallest of the 3 Cervid species living in Turkey. Roe deer are often injured or die in road accidents, and they are one of the most important species affected by the adverse effects of roads in Turkey. For this reason, it was investigated whether the road tunnel construction affected the distribution of roe deer in the region. In the study, the general distribution of roe deer in the Ilgaz Mountain, and the factors affecting their possible distribution were determined by ecological niche modeling. Data were taken between before (2012-2015) and after the highway tunnel built (2020-2022) in Ilgaz Mountain, which connects the Western Black Sea and Central Anatolia and is located in the middle of Kastamonu and Çankiri provinces. As a result of the modeling, it was found that before the construction of the tunnel, the most influential factor in the distribution of the deer was road density. After the tunnel construction, roads ceased to be the main factor affecting the distribution of the species. This study showed that roe deer are disturbed by the density of vehicles on the road passing through the middle of their habitat. With the decrease in the number of vehicles, they are more willing to cross the road and tend to use the areas close to the road as they are less disturbed.


Subject(s)
Deer , Humans , Animals , Environmental Monitoring , Ecosystem , Animals, Wild , Ecology
7.
PeerJ ; 11: e16251, 2023.
Article in English | MEDLINE | ID: mdl-37842032

ABSTRACT

An assessment of animal roadkill can help develop road mitigation measures. This article is the first to report data on animal-vehicle collisions (AVCs) in Nanjing, a supercity in eastern China. The research was conducted on a 224.27 km stretch of nine roads in Nanjing. In the period, between November 2020 and October 2021, 26 fortnightly monitoring missions were conducted to gather roadkill carcasses so that we could analyze their temporal and spatial distribution patterns. A total of 259 carcasses were collected, comprising 22 different species, of which 46.42% were mammals and 48.81% were birds. Cats and dogs are the most roadkill mammals, and blackbirds and sparrows are the most roadkill birds. The temporal analysis demonstrated that the peak of vertebrate roadkill occurred from May to July. Spatial analysis showed that the distribution patterns of vertebrate roadkill on different roads varied with a generally non-random distribution and aggregation. By mapping accidents using kernel density analysis, we were able to pinpoint locations that were at high risk for roadkill. Due to the fortnightly survey, our results would underestimate the casualties, even if, our study suggests that the problem of car accidents due to animals should be a cause for concern, and the results of the analysis of temporal and spatial patterns contribute to the establishment of mitigation measures.


Subject(s)
Songbirds , Vertebrates , Animals , Cats , Dogs , Mammals , Spatial Analysis , Surveys and Questionnaires
8.
J Environ Manage ; 342: 118346, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37315465

ABSTRACT

We test a forecasting strategy to identify potential hotspots of amphibian roadkill, combining the spatial distribution of amphibians, their relative risk of collision with vehicles and data on road density in Spain. We extracted a large dataset from studies reporting road casualties of 39 European amphibian species and then estimated the 'relative roadkill risk' of species as the frequency of occurrence of casualties for each amphibian and standardized by the range of distribution of the species in Europe. Using a map with the spatial distribution of Spanish amphibians at a spatial resolution of 10 × 10 Km squares, we estimated the 'cumulative relative risk of roadkill' for each amphibian assemblage as the sum of risk estimates previously calculated for each species. We also calculated the total length of roads in each square (road density). Finally, combining all layers of information, we elaborated a forecasting map highlighting the potential amphibian roadkill risk across Spain. Our findings are relevant to suggest areas that should be focused on at more detailed spatial scales. Additionally, we found that the frequency of roadkill was unrelated to the evolutionary distinctiveness score and conservation status of amphibian species, while was positively correlated with their distribution range.


Subject(s)
Amphibians , Animals , Europe , Probability , Spain , Demography
9.
Biology (Basel) ; 12(6)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37372135

ABSTRACT

Monitoring the presence and distribution of alien species is pivotal to assessing the risk of biological invasion. In our study, we carried out a worldwide review of roadkill data to investigate geographical patterns of biological invasions. We hypothesise that roadkill data from published literature can turn out to be a valuable resource for researchers and wildlife managers, especially when more focused surveys cannot be performed. We retrieved a total of 2314 works published until January 2022. Among those, only 41 (including our original data) fitted our requirements (i.e., including a total list of roadkilled terrestrial vertebrates, with a number of affected individuals for each species) and were included in our analysis. All roadkilled species from retrieved studies were classified as native or introduced (domestic, paleo-introduced, or recently released). We found that a higher number of introduced species would be recorded among roadkill in Mediterranean and Temperate areas with respect to Tropical and Desert biomes. This is definitely in line with the current knowledge on alien species distribution at the global scale, thus confirming that roadkill datasets can be used beyond the study of road impacts, such as for an assessment of different levels of biological invasions among different countries.

10.
Animals (Basel) ; 13(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37238122

ABSTRACT

As road infrastructure networks rapidly expand globally, especially in the tropics, previously continuous habitats are being fragmented, resulting in more frequent wildlife-vehicle collisions (WVC). Primates are widespread throughout many sub-/tropical countries, and as their habitats are fragmented, they are increasingly at risk of WVC. We created the Global Primate Roadkill Database (GPRD), the largest available standardized database of primate roadkill incidents. We obtained data from published papers, un-published and citizen science databases, anecdotal reports, news reports, and social media posts. Here, we describe the collection methods for the GPRD and present the most up-to-date version of the database in full. For each primate roadkill incident, we recorded the species killed, the exact location, and the year and month the roadkill was observed. At the time of publication, the GPRD includes 2862 individual primate roadkill records from 41 countries. As primates range in more than twice as many countries, the absence of data from these countries is not necessarily indicative of a lack of primate vehicular collisions. Given the value of these data for addressing both local and global research questions, we encourage conservationists and citizen scientists to contribute to the GPRD so that, together, we can better understand the impact road infrastructure has on primates and evaluate measures which may help mitigate risk-prone areas or species.

11.
J Environ Manage ; 339: 117917, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37062092

ABSTRACT

The rapidly growing global road networks put serious pressures on terrestrial ecosystems and increase the number and severity of human-wildlife conflicts, which in most cases manifest in animal-vehicle collisions (AVCs). AVCs pose serious problems both for biodiversity conservation and traffic safety: each year, millions of vertebrates are roadkilled globally and the related economic damage is also substantial. For a comprehensive understanding of factors influencing AVC it is essential to explore the human factor, that is, the habits and attitude of drivers; however, to date, comprehensive surveys are lacking on this topic. Here we addressed this knowledge gap and surveyed the habits of drivers and their experience and attitude towards AVCs by a comprehensive questionnaire covering a large geographical area and involving a large number of respondents (1942 completed questionnaires). We aimed to reveal how driving habits affect the chance of AVC, and explored the attitude of the drivers regarding AVC. We found that the number of lifetime AVC cases was higher for male drivers, for those who drove longer distances per year, had more driven years, used country roads or drove large vehicles. Our results showed that almost half of the drivers surveyed had experienced at least one AVC in their lifetime. Drivers' attitudes towards the importance of nature conservation or traffic safety in the aspect of AVC, and fear of collision showed a significant correlation with experienced AVC cases. Drivers' opinions indicated that the most trusted and desired AVC prevention measures were physical objects such as fences and wildlife crossings. Our research provides guidelines for developing targeted initiatives in the future to increase awareness about the significance of AVC and target those drivers who are most vulnerable to AVC.


Subject(s)
Accidents, Traffic , Deer , Animals , Male , Humans , Accidents, Traffic/prevention & control , Ecosystem , Animals, Wild , Attitude
12.
Ecol Evol ; 13(3): e9916, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36993143

ABSTRACT

Ecuador has both high richness and high endemism, which are increasingly threatened by anthropic pressures, including roads. Research evaluating the effects of roads remains scarce, making it difficult to develop mitigation plans. Here, we present the first national assessment of wildlife mortality on roads that allow us to (1) estimate roadkill rates per species, (2) identify affected species and areas, and (3) reveal knowledge gaps. We bring together data from systematic surveys and citizen science efforts to present a dataset with 5010 wildlife roadkill records from 392 species, and we also provide 333 standardized corrected roadkill rates calculated on 242 species. Systematic surveys were reported by ten studies from five Ecuadorian provinces, revealing 242 species with corrected roadkill rates ranging from 0.03 to 171.72 ind./km/year. The highest rates were for the yellow warbler Setophaga petechia in Galapagos (171.72 ind./km/year), the cane toad Rhinella marina in Manabi (110.70 ind./km/year), and the Galapagos lava lizard Microlophus albemarlensis (47.17 ind./km/year). Citizen science and other nonsystematic monitoring provided 1705 roadkill records representing all 24 provinces in Ecuador and 262 identified species. The common opossum Didelphis marsupialis, the Andean white-eared opossum Didelphis pernigra, and the yellow warbler Setophaga petechia were more commonly reported (250, 104, and 81 individuals, respectively). Across all sources, we found 15 species listed as "Threatened" and six as "Data Deficient" by the IUCN. We recommend stronger research efforts in areas where the mortality of endemic or threatened species could be critical for populations, such as in Galapagos. This first country-wide assessment of wildlife mortality on Ecuadorian roads represents contributions from academia, members of the public, and government, underlining the value of wider engagement and collaboration. We hope these findings and the compiled dataset will guide sensible driving and sustainable planning of infrastructure in Ecuador and, ultimately, contribute to reduce wildlife mortality on roads.


Ecuador tiene gran riqueza y alto endemismo de especies, mismas que están amenazadas por presiones antrópicas como las carreteras. Sin embargo, la investigación en este campo es escasa, dificultando el desarrollo de planes de mitigación. Presentamos la primera evaluación nacional de mortalidad de fauna silvestre en carreteras que nos permite 1) estimar tasas de atropellamiento por especies, 2) identificar especies y áreas afectadas, y 3) revelar vacíos de información. Compilamos datos de estudios sistemáticos y esfuerzos de ciencia ciudadana en Ecuador para presentar una base de datos que comprende 5010 registros de atropellamientos correspondientes a 392 especies, también proveemos 333 tasas de atropellamiento estandarizadas para 242 especies. Monitoreos sistemáticos fueron reportados por diez estudios de cinco provincias del Ecuador, revelando 242 especies con una tasa de mortalidad que varía entre 0.03 y 171.72 ind./km/año. Las tasas de atropellamiento más altas correspondieron a la reinita amarilla Setophaga petechia en Galápagos (171.72 ind./km/año), el sapo de la caña Rhinella marina in Manabí (110.70 ind./km/año), y la lagartija de lava de Galápagos Microlophus albemarlensis (47.17 ind./km/año). La ciencia ciudadana y monitoreos no sistemáticos proporcionaron 1705 registros representando a las 24 provincias de Ecuador y a 262 especies identificadas. La zarigüeya común Didelphis marsupialis, la zarigüeya orejiblanca andina Didelphis pernigra y la reinita amarilla Setophaga petechia fueron las más reportadas (250, 104 y 81 individuos respectivamente). Considerando todas las fuentes de datos encontramos 15 especies clasificadas como amenazadas y seis como datos insuficientes por la UICN. Recomendamos mayores esfuerzos de investigación en áreas donde la mortalidad de especies endémicas o amenazadas puede ser crítica para las poblaciones, como en Galápagos. Esta primera evaluación de mortalidad silvestre en carreteras ecuatorianas representa contribuciones de varios sectores, incluidos la academia, ciudadanía y el gobierno, resaltando el valor de una mayor participación y colaboración. Esperamos que estos hallazgos y la base de datos guíen la planificación sostenible de infraestructuras viales en Ecuador y contribuyan a reducir la mortalidad animal en las carreteras por medio de una conducción vehicular más cautelosa.

13.
Glob Ecol Conserv ; 42: e02388, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36714043

ABSTRACT

Roads pose a major, and growing, challenge for the conservation of endangered species. However, very little is known about how endangered species behaviorally respond to roads and what that means for road mitigation strategies. We used the nation-wide lockdown in Nepal during the COVID-19 pandemic as a natural experiment to investigate how dramatic reductions in traffic volume along the national highway affected movements of two GPS-collared tigers (Panthera tigris)-a globally endangered species. This work is the first systematic research on tigers in Nepal using radiotelemetry or GPS tracking data since the 1980s. We found that the highway more strongly constrained the space use and habitat selection of the male in Parsa National Park than the female in Bardia National Park. Over the entire study period, the female on average crossed 10 times more often per week than the male, and when he was near the highway, he was over 11 times more probable to not cross it than to cross during the day. However, we also found that the cessation of traffic during the pandemic lockdown relaxed tiger avoidance of roads and made the highway more permeable for both animals. They were 2-3 times more probable to cross the highway during the lockdown than before the lockdown. In the month following the lockdown, the space use area of the male tiger tripled in size (160-550 km2), whereas the female's shrunk to half its previous size (33-15 km2). These divergent patterns likely reflect differences between the two parks in their highway traffic volumes and regulations as well as ecological conditions. Our results provide clear evidence that vehicle traffic on major roads impede tiger movements, but also that tigers can respond quickly to reductions in human pressures. We conclude by identifying various actions to mitigate road impacts on tigers and other endangered species.

14.
Ecol Appl ; 33(3): e2789, 2023 04.
Article in English | MEDLINE | ID: mdl-36482023

ABSTRACT

Adult mortality is often the most sensitive vital rate affecting at-risk wildlife populations. Therefore, road ecology studies often focus on adult mortality despite the possibility for roads to be hazardous to juvenile individuals during natal dispersal. Failure to quantify concurrent variation in mortality risk and population sensitivity across demographic states can mislead the efforts to understand and mitigate the effects of population threats. To compare relative population impacts from road mortality among demographic classes, we weighted mortality observations by applying reproductive value analysis to quantify expected stage-specific contributions to population growth. We demonstrate this approach for snapping turtles (Chelydra serpentina) observed on roads at two focal sites in Ontario, Canada, where we collected data for both live and dead individuals observed on roads. We estimated reproductive values using stage-classified matrix models to compare relative population-level impacts of adult and juvenile mortality. Reproductive value analysis is a tractable approach to assessing demographically variable effects for applications covering large spatial scales, nondiscrete populations, or where abundance data are lacking. For one site with long-term life-history data, we compared demographic frequency on roads to expected general population frequencies predicted by the matrix model. Our application of reproductive value is sex specific but, as juvenile snapping turtles lack external secondary sex characters, we estimated the sex ratio of road-crossing juveniles after dissecting and sexing carcasses collected on roads at five sites across central Ontario, Canada. Juveniles were more abundant on roads than expected, suggesting a substantial dispersal contribution, and the road-killed juvenile sex ratio approached 1:1. A higher proportion of juveniles were also found dead compared with adults, and cumulative juvenile mortality had similar population-level importance as adult mortality. This suggests that the impact of roads needs to be considered across all life stages, even in wildlife species with slow life histories, such as snapping turtles, that are particularly sensitive to adult mortality.


Subject(s)
Turtles , Humans , Animals , Male , Female , Reptiles , Ontario , Animals, Wild
15.
Environ Sci Pollut Res Int ; 30(5): 12114-12124, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36104646

ABSTRACT

Stormwater ponds (SWPs) are built to collect and retain polluted runoff water from roads. Consequently, they are not perceived as suitable habitat for wetland species, such as many amphibians. However, given the drastic decline of wetland areas, SWPs may serve as a habitat for protected amphibian species, such as the European green toad (Bufotes viridis). The latter species is frequently found inside these artificial ponds, but their reproductive success is unknown. We assessed the suitability of SWPs as breeding habitat for European green toads by monitoring 8 SWPs and 8 semi-natural ponds (SNPs), which served as control sites. At each site, two groups of 30 tadpoles, originating at that site, were held inside two floating enclosures that contained sediment from the respective pond. During bi-weekly monitoring, tadpoles were counted and measured, allowing to estimate growth and mortality rates. A variety of biotic and abiotic factors were studied to determine the causes of potential differences in growth and mortality rates between the two pond types. While growth rate did not differ between pond types, mortality rates were significantly greater in SWPs than in SNPs. The extremely low survival rate observed in SWPs might be explained by the considerably greater pollutant concentration in their sediment and/or by the presence of leeches, which were found exclusively inside SWPs. Implementation of management measures, such as regular draining/dredging during winter, might help to lower the pollutant concentration in the sediment and reduce the density of leeches inside SWPs, improving their suitability as habitat for amphibians.


Subject(s)
Environmental Pollutants , Ponds , Animals , Larva , Ecosystem , Bufonidae , Bufo bufo
16.
Biota Neotrop. (Online, Ed. ingl.) ; 23(2): e20221454, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447506

ABSTRACT

Abstract The construction of highways is responsible for access to previously protected areas, resulting in changes in landscape and dynamics of the animal populations that live in these areas. These enterprises are the major responsible for the mortality of wild animals, surpassing hunting and even the trafficking of animals. The objective of this study was to make a list that reflects the diversity of amphibians and reptile's road-killed along the BR-040, a highway that crosses the threaten lowland Atlantic Forest in Southeastern region of Brazil, including the use of microhabitats, lifestyle, activity pattern, reproductive cycles, and possible rare or endangered species. The study area consists of 180,4 km of highways. Monitoring began in 2006 and continues to the present day. A total of 1,410 individuals from 60 species were recorded in this study. The reptiles were more frequent in number of individuals and species. The commonest species recorded were Crotalus durissus and Dipsas mikanii. We have registered a single endangered species: Ranacephala hogei. The highest rates of road-kill were recorded during the wet season. Road-kills of fauna is a major threat to species, studies are of great importance to define plans that seek to mitigate the effects generated by these enterprises.


Resumo A construção de rodovias é responsável pelo acesso a áreas anteriormente protegidas, resultando em alterações na paisagem e na dinâmica das populações animais que vivem nessas áreas. Esses empreendimentos são os maiores responsáveis pela mortalidade de animais silvestres, superando a caça e até mesmo o tráfico de animais. O objetivo deste estudo foi realizar uma lista que reflita a diversidade de anfíbios e répteis atropelados ao longo da BR-040, uma rodovia que atravessa a ameaçada Mata Atlântica na região Sudeste do Brasil, incluindo o uso de microhabitats, estilo de vida, padrão de atividade, ciclos reprodutivos, e possíveis espécies raras ou ameaçadas. A área de estudo é constituída por 180,4 km de rodovias. O monitoramento começou em 2006 e segue até os dias atuais. Ao todo 1.410 indivíduos de 60 espécies foram registrados nesse estudo. Os répteis foram mais frequentes, em número de indivíduos e espécies. As espécies mais comumente registradas foram Crotalus durissus e Dipsas mikanii. Registramos uma espécie ameaçada de extinção: Ranacephala hogei. A maior taxa de atropelamento foi registrada durante a estação chuvosa. O atropelamento de fauna é uma grande ameaça as espécies, sendo de grande importância estudos para definição de planos que busquem mitigar os efeitos gerados por esses empreendimentos.

17.
PeerJ ; 10: e14291, 2022.
Article in English | MEDLINE | ID: mdl-36518279

ABSTRACT

Roads have considerable ecological effects that threaten the survival of some species, including many terrestrial carnivores. The western polecat is a small-medium sized mustelid native to Asia and Europe, including Britain where its historical stronghold is in Wales. Polecats are frequently killed on roads and road casualties represent the most common source of data on the species in the UK. However, little is known about the factors that increase the risk of collision. We used Generalized Additive Models to explore seasonal patterns in collisions as well as using Principal Component Analysis and regression modelling to identify landscape characteristics associated with polecat road casualties in Wales. Polecat road casualties had a bimodal distribution, occurring most frequently in March and October. Casualties were more frequently associated with road density, traffic volume, presence of rabbits, habitat patchiness and the abundance of proximal improved grassland habitat. Casualties were negatively associated with elevation and the abundance of semi-natural grassland habitat. The results of this study provide a framework for understanding and mitigating the impacts of roads on polecats in their historic stronghold, hence has considerable value to polecat conservation as well as broader applicability to ecologically similar species.


Subject(s)
Lagomorpha , Mustelidae , Animals , Rabbits , Wales/epidemiology , Europe , Ecosystem
18.
Curr Biol ; 32(22): 4982-4988.e4, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36327981

ABSTRACT

Overlap between wildlife and human activity is key to causing wildlife-vehicle collisions, a globally pervasive and growing source of wildlife mortality.1,2 Policies regarding clock time often involve abrupt seasonal shifts in human activity, potentially influencing rates of human-wildlife conflict. Here, we harness the biannual shift between standard and daylight saving time as a natural experiment to reveal how the timing of human activity influences deer-vehicle collisions. Based on 1,012,465 deer-vehicle collisions and 96 million hourly traffic observations across the United States, we show that collisions are 14 times more frequent 2 hours after sunset than before sunset, highlighting the importance of traffic during dark hours as a key determinant of deer-vehicle collision risk. The switch from daylight saving to standard time in autumn causes peak traffic volumes to shift from before sunset to after sunset, leading to a 16% spike in deer-vehicle collisions. By reducing traffic after dark, our model predicts that year-round daylight saving time would prevent 36,550 deer (Odocoileus sp.) deaths, 33 human deaths, 2,054 human injuries, and US$1.19 billion in collision costs annually. In contrast, permanent standard time is predicted to increase collisions by an even larger magnitude, incurring an additional US$2.39 billion in costs. By targeting the temporal dimension of wildlife-vehicle collisions, strategies such as year-round daylight saving time that reduce traffic during dark hours, especially during the breeding season of abundant ungulates, would yield substantial benefits for wildlife conservation and reduce the social and economic costs of deer-vehicle collisions.


Subject(s)
Accidents, Traffic , Deer , Animals , Humans , Accidents, Traffic/prevention & control , Animals, Wild , Seasons
19.
Glob Chang Biol ; 28(24): 7217-7233, 2022 12.
Article in English | MEDLINE | ID: mdl-36166319

ABSTRACT

While linear infrastructures, such as roads and power lines, are vital to human development, they may also have negative impacts on wildlife populations up to several kilometres into the surrounding environment (infrastructure-effect zones, IEZs). However, species-specific IEZs are not available for the vast majority of species, hampering global assessments of infrastructure impacts on wildlife. Here, we synthesized 253 studies worldwide to quantify the magnitude and spatial extent of infrastructure impacts on the abundance of 792 vertebrate species. We also identified the extent to which species traits, infrastructure type and habitat modulate IEZs for vertebrate species. Our results reveal contrasting responses across taxa based on the local context and species traits. Carnivorous mammals were generally more abundant in the proximity of infrastructure. In turn, medium- to large-sized non-carnivorous mammals (>1 kg) were less abundant near infrastructure across habitats, while their smaller counterparts were more abundant close to infrastructure in open habitats. Bird abundance was reduced near infrastructure with larger IEZs for non-carnivorous than for carnivorous species. Furthermore, birds experienced larger IEZs in closed (carnivores: ≈130 m, non-carnivores: >1 km) compared to open habitats (carnivores: ≈70 m, non-carnivores: ≈470 m). Reptiles were more abundant near infrastructure in closed habitats but not in open habitats where abundances were reduced within an IEZ of ≈90 m. Finally, IEZs were relatively small in amphibians (<30 m). These results indicate that infrastructure impact assessments should differentiate IEZs across species and local contexts in order to capture the variety of responses to infrastructure. Our trait-based synthetic approach can be applied in large-scale assessments of the impacts of current and future infrastructure developments across multiple species, including those for which infrastructure responses are not known from empirical data.


Subject(s)
Amphibians , Reptiles , Animals , Humans , Vertebrates , Mammals/physiology , Birds/physiology , Ecosystem , Animals, Wild
20.
Insects ; 13(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35886748

ABSTRACT

Exhibiting manifold ecological impacts on terrestrial biota, roads have become a major driver of environmental change nowadays. However, many insect groups with high indication potential, such as grasshoppers and crickets (Orthoptera), have been largely neglected in road ecology research from a functional perspective. Using two complementary sampling methods, we have investigated the spatial dynamics of functional diversity and six functional traits in orthopteran assemblages, with respect to motorway proximity and the associated environmental factors, in a grassland habitat in the Lika region, Croatia. This research shows, for the first time, that road proximity can facilitate an increase in the functional diversity of orthopteran assemblages, with shifts in functional traits related to mobility, feeding habits and lifestyle being primarily driven by changes in vegetation height. Our findings also suggest that our ability to detect road-related patterns depends on the choice of a diversity measure and sampling method, since different components of orthopteran assemblages (plant-dwelling vs. ground-dwelling) exhibit different functional responses to road proximity.

SELECTION OF CITATIONS
SEARCH DETAIL
...