Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Immunol ; 15: 1375508, 2024.
Article in English | MEDLINE | ID: mdl-38895117

ABSTRACT

Introduction: Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods: In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results: Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion: Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.


Subject(s)
Animals, Newborn , Gene Expression Profiling , Thymus Gland , Transcriptome , Viral Tropism , Thymus Gland/virology , Thymus Gland/immunology , Animals , Mice , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Mice, Inbred C57BL , Humans
2.
Xenotransplantation ; 31(3): e12851, 2024.
Article in English | MEDLINE | ID: mdl-38747130

ABSTRACT

BACKGROUND: The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS: A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS: Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION: Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.


Subject(s)
Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Swine , Humans , Viruses/isolation & purification , Laboratories , Germany , Virus Diseases/diagnosis , Heart Transplantation , Heterografts/virology
3.
Microorganisms ; 12(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38399719

ABSTRACT

The successful advancement of xenotransplantation has led to the development of highly sensitive detection systems for the screening of potentially zoonotic viruses in donor pigs and preventing their transmission to the recipient. To validate these methods, genetically modified pigs generated for xenotransplantation, numerous minipigs and other pig breeds have been tested, thereby increasing our knowledge concerning the pig virome and the distribution of pig viruses. Of particular importance are the porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV) and the hepatitis E virus genotype 3 (HEV3). PCMV/PRV has been shown to reduce the survival time of pig transplants in non-human primates and was also transmitted in the first pig heart transplantation to a human patient. The main aim of this study was to determine the sensitivities of our methods to detect PCMV/PRV, HEV3, porcine lymphotropic herpesvirus-1 (PLHV-1), PLHV-2, PLHV-3, porcine circovirus 2 (PCV2), PCV3, PCV4 and porcine parvovirus 1 (PPV1) and to apply the methods to screen indigenous Greek black pigs. The high number of viruses found in these animals allowed for the evaluation of numerous detection methods. Since porcine endogenous retroviruses (PERVs) type A and B are integrated in the genome of all pigs, but PERV-C is not, the animals were screened for PERV-C and PERV-A/C. Our detection methods were sensitive and detected PCMV/PRV, PLHV-1, PLHV-1, PLHV-3, PVC3 and PERV-C in most animals. PPV1, HEV3, PCV4 and PERV-A/C were not detected. These data are of great interest since the animals are healthy and resistant to diseases.

4.
Xenotransplantation ; : e12835, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088083

ABSTRACT

BACKGROUND: The porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV), is widely distributed in pig populations. It has been shown that PCMV/PRV was transmitted by pig xenotransplants to non-human primates, and significantly reduced the survival time of the recipient. PCMV/PRV was also transmitted during the first transplantation of a pig heart into a human patient. PCMV/PRV establishes a lifelong persistent infection (latency) in the host, is difficult to detect in this stage, and consequential poses a threat to future clinical xenotransplantations. Therefore, sensitive and specific methods and goal-oriented strategies how, when, and where to test should be used for screening donor pigs. METHODS: In this study we compared experimentally the PCMV/PRV detection methods including PCR-based (real-time PCR, nested PCR) and immunological methods (Western blot assay, ELISA) recently published by Halecker et al. (Sci. Rep. 2022;12(1):21545) and Fischer et al. (Xenotransplantation 2023:e12803). We also compared the antigens used for antibody detection (a recombinant protein and synthetic peptides corresponding to a conserved region of the glycoprotein B, gB). RESULTS: The published methods can be used for screening donor pigs, with the results being similar. The antigens used for the detection of PCMV/PRV-specific antibodies are almost identical and give comparable results. Overall, the optimal diagnostic tests, the samples used for testing and the time of sampling play a crucial role in preventing the transmission of PCMV/PRV during xenotransplantation. CONCLUSION: Sensitive methods are available to screen donor pigs for PCMV/PRV, but a rational application of a combination of PCR-based and immunological methods as well as rational detection strategies are important for the detection of the virus during latency.

6.
Virol J ; 20(1): 15, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707837

ABSTRACT

BACKGROUND: Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS: DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS: PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION: PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.


Subject(s)
Cytomegalovirus , Roseolovirus , Female , Animals , Swine , Humans , Transplantation, Heterologous , Follicular Fluid , Roseolovirus/genetics , Ovary , Primates , Cloning, Molecular
7.
Viruses ; 14(11)2022 10 28.
Article in English | MEDLINE | ID: mdl-36366483

ABSTRACT

A number of studies have suggested that human herpesvirus 6A (HHV-6A) may play a role in multiple sclerosis (MS). Three possible hypotheses have been investigated: (1) U24 from HHV-6A (U24-6A) mimics myelin basic protein (MBP) through analogous phosphorylation and interaction with Fyn-SH3; (2) U24-6A affects endocytic recycling by binding human neural precursor cell (NPC) expressed developmentally down-regulated protein 4-like WW3* domain (hNedd4L-WW3*); and (3) MS patients who express Killer Cell Immunoglobulin Like Receptor 2DL2 (KIR2DL2) on natural killer (NK) cells are more susceptible to HHV-6 infection. In this contribution, we examined the validity of these propositions by investigating the interactions of U24 from HHV-6B (U24-6B), a variant less commonly linked to MS, with Fyn-SH3 and hNedd4L-WW3* using heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) titrations and isothermal titration calorimetry (ITC). In addition, the importance of phosphorylation and the specific role of U24 in NK cell activation in MS patients were examined. Overall, the findings allowed us to shed light into the models linking HHV-6 to MS and the involvement of U24.


Subject(s)
Herpesvirus 6, Human , Multiple Sclerosis , Roseolovirus Infections , Humans , Herpesvirus 6, Human/physiology , Phosphorylation , Nuclear Magnetic Resonance, Biomolecular
8.
Xenotransplantation ; 29(5): e12775, 2022 09.
Article in English | MEDLINE | ID: mdl-36082418

ABSTRACT

The potential for a donor-derived transmission of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) to the recipient has been recognized since pigs were considered candidate donors for xenotransplantation. This review gives a short description of the viral properties and summarizes the current evidence of the effects of PCMV/PRV transmission in preclinical xenotransplantation. Despite evidence that PCMV/PRV does not infect human and non-human primate cells, activation in the transplanted organ and detrimental systemic complications have been described. As PCMV/PRV is a herpesvirus able to establish latency, the importance of adequate screening of donor pigs is emphasized, as no efficient treatment is available. Furthermore, easy and successful ways of elimination of PCMV/PRV from pig herds are indicated.


Subject(s)
Cytomegalovirus Infections , Roseolovirus , Animals , Cytomegalovirus/physiology , Cytomegalovirus Infections/veterinary , Humans , Primates , Swine , Tissue Donors , Transplantation, Heterologous
9.
Front Immunol ; 13: 847106, 2022.
Article in English | MEDLINE | ID: mdl-35911725

ABSTRACT

Within the family Herpesviridae, sub-family ß-herpesvirinae, and genus Roseolovirus, there are only three human herpesviruses that have been described: HHV-6A, HHV-6B, and HHV-7. Initially, HHV-6A and HHV-6B were considered as two variants of the same virus (i.e., HHV6). Despite high overall genetic sequence identity (~90%), HHV-6A and HHV-6B are now recognized as two distinct viruses. Sequence divergence (e.g., >30%) in key coding regions and significant differences in physiological and biochemical profiles (e.g., use of different receptors for viral entry) underscore the conclusion that HHV-6A and HHV-6B are distinct viruses of the ß-herpesvirinae. Despite these viruses being implicated as causative agents in several nervous system disorders (e.g., multiple sclerosis, epilepsy, and chronic fatigue syndrome), the mechanisms of action and relative contributions of each virus to neurological dysfunction are unclear. Unresolved questions regarding differences in cell tropism, receptor use and binding affinity (i.e., CD46 versus CD134), host neuro-immunological responses, and relative virulence between HHV-6A versus HHV-6B prevent a complete characterization. Although it has been shown that both HHV-6A and HHV-6B can infect glia (and, recently, cerebellar Purkinje cells), cell tropism of HHV-6A versus HHV-6B for different nerve cell types remains vague. In this study, we show that both viruses can infect different nerve cell types (i.e., glia versus neurons) and different neurotransmitter phenotypes derived from differentiated human neural stem cells. As demonstrated by immunofluorescence, HHV-6A and HHV-6B productively infect VGluT1-containing cells (i.e., glutamatergic neurons) and dopamine-containing cells (i.e., dopaminergic neurons). However, neither virus appears to infect GAD67-containing cells (i.e., GABAergic neurons). As determined by qPCR, expression of immunological factors (e.g., cytokines) in cells infected with HHV-6A versus HHV6-B also differs. These data along with morphometric and image analyses of infected differentiated neural stem cell cultures indicate that while HHV-6B may have greater opportunity for transmission, HHV-6A induces more severe cytopathic effects (e.g., syncytia) at the same post-infection end points. Cumulatively, results suggest that HHV-6A is more virulent than HHV-6B in susceptible cells, while neither virus productively infects GABAergic cells. Consistency between these in vitro data and in vivo experiments would provide new insights into potential mechanisms for HHV6-induced epileptogenesis.


Subject(s)
Herpesviridae , Herpesvirus 6, Human , Neural Stem Cells , Cytopathogenic Effect, Viral , Herpesvirus 6, Human/physiology , Humans , Virus Internalization
11.
Mol Neurodegener ; 17(1): 10, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35033173

ABSTRACT

BACKGROUND: The role of viral infection in Alzheimer Disease (AD) pathogenesis is an area of great interest in recent years. Several studies have suggested an association between the human roseoloviruses, HHV-6 and HHV-7, and AD. Amyloid-ß (Aß) plaques are a hallmark neuropathological finding of AD and were recently proposed to have an antimicrobial function in response to infection. Identifying a causative and mechanistic role of human roseoloviruses in AD has been confounded by limitations in performing in vivo studies. Recent -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Murine roseolovirus (MRV) is a natural murine pathogen that is highly-related to the human roseoloviruses, providing an opportunity to perform well-controlled studies of the impact of roseolovirus on Aß deposition. METHODS: We utilized the 5XFAD mouse model to test whether MRV induces Aß deposition in vivo. We also evaluated viral load and neuropathogenesis of MRV infection. To evaluate Aß interaction with MRV, we performed electron microscopy. RNA-sequencing of a cohort of AD brains compared to control was used to investigate the association between human roseolovirus and AD. RESULTS: We found that 5XFAD mice were susceptible to MRV infection and developed neuroinflammation. Moreover, we demonstrated that Aß interacts with viral particles in vitro and, subsequent to this interaction, can disrupt infection. Despite this, neither peripheral nor brain infection with MRV increased or accelerated Aß plaque formation. Moreover, -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Our RNA-sequencing analysis of a cohort of AD brains compared to controls did not show an association between roseolovirus infection and AD. CONCLUSION: Although MRV does infect the brain and cause transient neuroinflammation, our data do not support a role for murine or human roseoloviruses in the development of Aß plaque formation and AD.


Subject(s)
Alzheimer Disease , Roseolovirus , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Roseolovirus/metabolism
12.
J Oral Microbiol ; 12(1): 1785801, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32944150

ABSTRACT

BACKGROUNG: Roseolovirus latency and persistence in salivary glands that are frequently reactivated after renal transplantation to cause infection have been reported. However, limited information is available on the persistence and excretion of HHV-6 and HHV-7 during and after transplant. METHODS: 32 renal transplant recipients were followed up before (T1) and after transplant (T2 and T3) and viral replication (via assessment of mRNA) in oral fluid samples investigated. Roseolovirus DNA was detected and quantified via multiplex qPCR. For evaluation of mRNA replication, positive samples were subjected to nested RT-PCR. RESULTS: Viral replication of HHV-7 was significantly increased during T3 (72.9%), compared to the pre-transplant period T1 (25%; McNemar Test, p= 0.001). Analysis of the viral replicative to quantitative ratio disclosed ahigher number of DNA copies (>106) in positive cases of replication (p < 0.001). Astrong positive correlation (Spearman correlation coefficient = 0.781; p< 0.001) was evident between viral quantities of Roseoloviruses. CONCLUSION: Our findings consistently suggest that the salivary gland is an important site of active and persistent infection by roseoloviruses. In view of the increasing problem of Roseoloviruses, pre- and post-transplantation, viral surveillance and monitoring of active replication are pivotal steps for effective screening and treatment of renal transplant patients.

13.
Virus Evol ; 6(1): veaa035, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32551136

ABSTRACT

Human betaherpesviruses 6A and 6B (HHV-6A and HHV-6B) are highly prevalent in human populations. The genomes of these viruses can be stably integrated at the telomeres of human chromosomes and be vertically transmitted (inherited chromosomally integrated HHV-6A/HHV-6B, iciHHV-6A/iciHHV-6B). We reconstructed the population structures of HHV-6A and HHV-6B, showing that HHV-6A diverged less than HHV-6B genomes from the projected common ancestral population. Thus, HHV-6B genomes experienced stronger drift, as also supported by calculation of nucleotide diversity and Tajima's D. Analysis of ancestry proportions indicated that HHV-6A exogenous viruses and iciHHV-6A derived most of their genomes from distinct ancestral sources. Conversely, ancestry proportions were similar in exogenous HHV-6B viruses and iciHHV-6B. In line with previous indications, this suggests the distinct exogenous viral populations that originated iciHHV-6B in subjects with European and Asian ancestry are still causing infections in the corresponding geographic areas. Notably, for both iciHHV-6A and iciHHV-6B, we found that European and American sequences tend to have high proportions of ancestry from viral populations that experienced considerable drift, suggesting that they underwent one or more bottlenecks followed by population expansion. Finally, analysis of HHV-6B exogenous viruses sampled in Japan indicated that proportions of ancestry components of most of these viruses are different from the majority of those sampled in the USA. More generally, we show that, in both viral species, both integrated and exogenous viral genomes have different ancestry components, partially depending on geographic location. It would be extremely important to determine whether such differences account for the diversity of HHV-6A/HHV-6B-associated clinical symptoms and epidemiology. Also, the sequencing of additional exogenous and integrated viral genomes will be instrumental to confirm and expand our conclusions, which are based on a relatively small number of genomes, sequenced with variable quality, and with unequal sampling in terms of geographic origin.

14.
Adv Virus Res ; 108: 337-392, 2020.
Article in English | MEDLINE | ID: mdl-33837722

ABSTRACT

The human betaherpesviruses, human cytomegalovirus (HCMV; species Human betaherpesvirus 5) and human herpesviruses 6A, 6B, and 7 (HHV-6A, -6B, and -7; species Human betaherpesviruses 6A, 6B, and 7) are highly prevalent and can cause severe disease in immune-compromised and immune-naive populations in well- and under-developed communities. Herpesvirus virion assembly is an intricate process that requires viral orchestration of host systems. In this review, we describe recent advances in some of the many cellular events relevant to assembly and egress of betaherpesvirus virions. These include modifications of host metabolic, immune, and autophagic/recycling systems. In addition, we discuss unique aspects of betaherpesvirus virion structure, virion assembly, and the cellular pathways employed during virion egress.


Subject(s)
Herpesvirus 6, Human/physiology , Virion/genetics , Virion/physiology , Virus Assembly , Virus Release , Animals , Books , DNA, Viral/metabolism , Genome, Viral , Herpesvirus 6, Human/classification , Herpesvirus 6, Human/genetics , Humans , Virion/chemistry
15.
Viruses ; 11(12)2019 11 30.
Article in English | MEDLINE | ID: mdl-31801268

ABSTRACT

Viruses of the genus Roseolovirus belong to the subfamily Betaherpesvirinae, family Herpesviridae. Roseoloviruses have been studied in humans, mice and pigs, but they are likely also present in other species. This is the first comparative analysis of roseoloviruses in humans and animals. The human roseoloviruses human herpesvirus 6A (HHV-6A), 6B (HHV-6B), and 7 (HHV-7) are relatively well characterized. In contrast, little is known about the murine roseolovirus (MRV), also known as murine thymic virus (MTV) or murine thymic lymphotrophic virus (MTLV), and the porcine roseolovirus (PRV), initially incorrectly named porcine cytomegalovirus (PCMV). Human roseoloviruses have gained attention because they can cause severe diseases including encephalitis in immunocompromised transplant and AIDS patients and febrile seizures in infants. They have been linked to a number of neurological diseases in the immunocompetent including multiple sclerosis (MS) and Alzheimer's. However, to prove the causality in the latter disease associations is challenging due to the high prevalence of these viruses in the human population. PCMV/PRV has attracted attention because it may be transmitted and pose a risk in xenotransplantation, e.g., the transplantation of pig organs into humans. Most importantly, all roseoloviruses are immunosuppressive, the humoral and cellular immune responses against these viruses are not well studied and vaccines as well as effective antivirals are not available.


Subject(s)
Genome, Viral/genetics , Roseolovirus Infections/virology , Roseolovirus/physiology , Animals , Antiviral Agents/therapeutic use , Humans , Mice , Roseolovirus/genetics , Roseolovirus/immunology , Roseolovirus/pathogenicity , Roseolovirus Infections/drug therapy , Roseolovirus Infections/epidemiology , Roseolovirus Infections/transmission , Swine , Virus Integration , Virus Latency
16.
Am J Respir Crit Care Med ; 200(1): 63-74, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30742492

ABSTRACT

Rationale: "Noninfectious" pulmonary complications are significant causes of morbidity and mortality after allogeneic hematopoietic cell transplant. Early-onset viral reactivations or infections are common after transplant. Whether the first-onset viral infection causes noninfectious pulmonary complications is unknown. Objectives: To determine whether the first-onset viral infection within 100 days after transplant predisposes to development of noninfectious pulmonary complications. Methods: We performed a retrospective review of 738 allogeneic hematopoietic cell transplant patients enrolled from 2005 to 2011. We also established a novel bone marrow transplantation mouse model to test whether herpesviral reactivation after transplant causes organ injury. Measurements and Main Results: First-onset viral infections with human herpesvirus 6 or Epstein-Barr virus within 100 days after transplant increase the risk of developing idiopathic pneumonia syndrome (adjusted hazard ratio [aHR], 5.52; 95% confidence interval [CI], 1.61-18.96; P = 0.007; and aHR, 9.21; 95% CI, 2.63-32.18; P = 0.001, respectively). First infection with human cytomegalovirus increases risk of bronchiolitis obliterans syndrome (aHR, 2.88; 95% CI, 1.50-5.55; P = 0.002) and grade II-IV acute graft-versus-host disease (aHR, 1.59; 95% CI, 1.06-2.39; P = 0.02). Murine roseolovirus, a homolog of human herpesvirus 6, can also be reactivated in the lung and other organs after bone marrow transplantation. Reactivation of murine roseolovirus induced an idiopathic pneumonia syndrome-like phenotype and aggravated acute graft-versus-host disease. Conclusions: First-onset herpesviral infection within 100 days after allogeneic hematopoietic cell transplant increases risk of pulmonary complications. Experimentally reactivating murine roseolovirus causes organ injury similar to phenotypes seen in human transplant recipients.


Subject(s)
Bronchiolitis Obliterans/epidemiology , Graft vs Host Disease/epidemiology , Hematopoietic Stem Cell Transplantation , Herpesviridae Infections/epidemiology , Lung Injury/epidemiology , Pneumonia/epidemiology , Postoperative Complications/epidemiology , Transplantation, Homologous , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , Cytomegalovirus Infections/epidemiology , Disease Models, Animal , Epstein-Barr Virus Infections/epidemiology , Female , Herpes Simplex/epidemiology , Humans , Infant , Male , Mice , Middle Aged , Proportional Hazards Models , Roseolovirus Infections/epidemiology , Virus Activation , Young Adult
17.
Adv Exp Med Biol ; 1045: 167-207, 2018.
Article in English | MEDLINE | ID: mdl-29896668

ABSTRACT

Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.


Subject(s)
Betaherpesvirinae/physiology , Herpesviridae Infections/virology , Virion/physiology , Virus Assembly , Virus Release , Animals , Betaherpesvirinae/genetics , Humans , Virion/genetics
18.
Neuron ; 99(1): 64-82.e7, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29937276

ABSTRACT

Investigators have long suspected that pathogenic microbes might contribute to the onset and progression of Alzheimer's disease (AD) although definitive evidence has not been presented. Whether such findings represent a causal contribution, or reflect opportunistic passengers of neurodegeneration, is also difficult to resolve. We constructed multiscale networks of the late-onset AD-associated virome, integrating genomic, transcriptomic, proteomic, and histopathological data across four brain regions from human post-mortem tissue. We observed increased human herpesvirus 6A (HHV-6A) and human herpesvirus 7 (HHV-7) from subjects with AD compared with controls. These results were replicated in two additional, independent and geographically dispersed cohorts. We observed regulatory relationships linking viral abundance and modulators of APP metabolism, including induction of APBB2, APPBP2, BIN1, BACE1, CLU, PICALM, and PSEN1 by HHV-6A. This study elucidates networks linking molecular, clinical, and neuropathological features with viral activity and is consistent with viral activity constituting a general feature of AD.


Subject(s)
Alzheimer Disease/virology , Amyloid beta-Protein Precursor/metabolism , Brain/virology , Encephalitis, Viral/virology , Herpesvirus 6, Human , Herpesvirus 7, Human , Roseolovirus Infections/virology , Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/genetics , Brain/metabolism , Brain/pathology , Case-Control Studies , Clusterin/genetics , Cohort Studies , Encephalitis, Viral/genetics , Encephalitis, Viral/metabolism , Encephalitis, Viral/pathology , Gene Expression Profiling , Gene Regulatory Networks , Genomics , Humans , Mice , Mice, Knockout , Mice, Transgenic , MicroRNAs/genetics , Microbiota , Monomeric Clathrin Assembly Proteins/genetics , Nuclear Proteins/genetics , Presenilin-1/genetics , Proteomics , Roseolovirus Infections/genetics , Roseolovirus Infections/metabolism , Roseolovirus Infections/pathology , Tumor Suppressor Proteins/genetics , Viral Load
19.
J Virol ; 91(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28179532

ABSTRACT

The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.


Subject(s)
Disease Models, Animal , Herpesviridae/classification , Herpesvirus 6, Human/genetics , Herpesvirus 7, Human/genetics , Lymphocyte Depletion , Roseolovirus Infections/virology , Animals , Base Sequence , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , DNA, Viral/genetics , Genome, Viral/genetics , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Lymphocyte Count , Mice , Mice, Inbred BALB C , Open Reading Frames/genetics , Phylogeny , Sequence Analysis, DNA , Thymus Gland/virology
20.
Viruses ; 10(1)2017 12 31.
Article in English | MEDLINE | ID: mdl-29301233

ABSTRACT

Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally "cloned" by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis.


Subject(s)
Adaptation, Physiological/genetics , Herpesvirus 6, Human/genetics , High-Throughput Nucleotide Sequencing , Roseolovirus Infections/virology , Viral Envelope Proteins/genetics , Virus Internalization , Whole Genome Sequencing , Cell Line , Genome, Viral/genetics , Herpesvirus 6, Human/physiology , Humans , Models, Molecular , Polymorphism, Single Nucleotide , Roseolovirus Infections/genetics , Selection, Genetic , Sequence Deletion , Viral Envelope Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL