Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Vopr Virusol ; 69(4): 363-376, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39361930

ABSTRACT

INTRODUCTION: Rotavirus infection is the major cause of severe dehydrating diarrhea requiring hospitalization in young children worldwide. Due to their segmented genome, rotaviruses are capable of gene reassortment, which makes the emergence and spread of genetically novel strains possible. The purpose of this study was to search for unusual rotaviruses circulating in Nizhny Novgorod in 2021‒2023 and their molecular genetic characterization based on all genome segments. MATERIALS AND METHODS: Rotavirus-positive stool samples of children were examined by PCR genotyping and electrophoresis in PAAG. cDNA fragments of each of the 11 genes (VP1‒VP4, VP6, VP7, NSP1‒NSP5), 570 to 850 nucleotide pairs in length were sequenced for the selected strains. The phylogenetic analysis was performed in the MEGA X program. RESULTS: In the study period 2021‒2023, 11 G[P] combinations with a predominance of G3P[8] (59.5%) were identified. Six atypical Rotavirus А (RVA) strains were identified: 2 strains of the G2P[4] genotype (G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E2-H3, G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E3-H2) and 4 G3P[9] strains (all strains had the genotype G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3). Phylogenetic analysis based on all genes showed an evolutionary relationship between rotaviruses similar to rotaviruses of cats and dogs (BA222-like) and unusual strains of the G2P[4] genotype, for which a mixed combination of genotypes was identified and characterized for the first time. DISCUSSION: The results obtained expand the understanding of the diversity of reassortant RVAs, as well as complement the data on the genotypic structure of the rotavirus population in Nizhny Novgorod. CONCLUSION: The wide genetic diversity of reassortant RVA can help rotaviruses overcome the immunological pressure provided by natural and vaccine-induced immunity. In this regard, to control the emergence of new variants and assess changes in the virulence of rotaviruses after reassortment processes, continuous molecular monitoring for circulating RVA is necessary.


Subject(s)
Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Child, Preschool , Infant , Male , Feces/virology , Female , Diarrhea/virology , Child
2.
BMC Vet Res ; 20(1): 389, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227796

ABSTRACT

BACKGROUND: Calf diarrhea is a major cause of morbidity and mortality in the livestock sector worldwide and it can be caused by multiple infectious agents. In Ethiopia, cattle are the most economically important species within the livestock sector, but at the same time the young animals suffer from high rates of morbidity and mortality due to calf diarrhea. However, studies including both screening and molecular characterization of bovine enteric pathogens are lacking. Therefore, we aimed to both detect and molecularly characterize four of the major enteric pathogens in calf diarrhea, Enterotoxigenic Escherichia coli (E. coli K99 +), Cryptosporidium spp., rotavirus A (RVA), and bovine coronavirus (BCoV) in calves from central Ethiopia. Diarrheic and non-diarrheic calves were included in the study and fecal samples were analyzed with antigen-ELISA and quantitative real-time PCR (qPCR). Positive samples were further characterized by genotyping PCRs. RESULTS: All four pathogens were detected in both diarrheic and non-diarrheic calves using qPCR and further characterization showed the presence of three Cryptosporidium species, C. andersoni, C. bovis and C. ryanae. Furthermore, genotyping of RVA-positive samples found a common bovine genotype G10P[11], as well as a more unusual G-type, G24. To our knowledge this is the first detection of the G24 RVA genotype in Ethiopia as well as in Africa. Lastly, investigation of the spike gene revealed two distinct BCoV strains, one classical BCoV strain and one bovine-like CoV strain. CONCLUSIONS: Our results show that Cryptosporidium spp., E. coli K99 + , RVA and BCoV circulate in calves from central Ethiopia. Furthermore, our findings of the rare RVA G-type G24 and a bovine-like CoV demonstrates the importance of genetic characterization.


Subject(s)
Cattle Diseases , Coronavirus, Bovine , Cryptosporidium , Diarrhea , Feces , Rotavirus , Animals , Cattle , Ethiopia/epidemiology , Diarrhea/veterinary , Diarrhea/virology , Diarrhea/microbiology , Diarrhea/parasitology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Cattle Diseases/parasitology , Feces/virology , Feces/parasitology , Feces/microbiology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Cryptosporidium/classification , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Enterotoxigenic Escherichia coli/isolation & purification , Enterotoxigenic Escherichia coli/genetics , Genotype , Cryptosporidiosis/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology
3.
Virology ; 598: 110195, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089050

ABSTRACT

Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.


Subject(s)
Cattle Diseases , Genome, Viral , Genotype , Phylogeny , Recombination, Genetic , Rotavirus Infections , Rotavirus , Toxins, Biological , Viral Nonstructural Proteins , Animals , Cattle , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Bangladesh/epidemiology , Viral Nonstructural Proteins/genetics , Humans , Rotavirus Infections/virology , Rotavirus Infections/veterinary , Rotavirus Infections/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cross-Sectional Studies , Toxins, Biological/genetics , Glycoproteins/genetics
4.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39163114

ABSTRACT

Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.


Subject(s)
Antigens, Viral , Diarrhea , Genotype , Horse Diseases , Rotavirus Infections , Rotavirus , Animals , Horses , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus Infections/veterinary , Rotavirus Infections/virology , Rotavirus Infections/immunology , Horse Diseases/virology , Horse Diseases/immunology , Diarrhea/virology , Diarrhea/veterinary , Antigens, Viral/genetics , Antigens, Viral/immunology , Genome, Viral/genetics , Phylogeny , Cell Line
5.
Vaccines (Basel) ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39203992

ABSTRACT

Background: Globally, rotavirus (RV) A (RVA) is the most common cause of severe and sometimes fatal diarrhea in young children. It is also the major cause of acute gastroenteritis among children in Ethiopia. Currently, the WHO has prequalified four RVA vaccines for universal childhood immunization. Ethiopia introduced the monovalent Rotarix vaccine into its national immunization program in 2013. Since then, only a few studies on the burden and genotype distribution of RVA infection post-vaccine introduction have been conducted (mostly at sentinel surveillance sites). Therefore, this study aimed to assess RVA prevalence and genotype distribution among children under five years in Ethiopia (February 2021-December 2022). Methods: This multi-center hospital-based cross-sectional study involved 537 diarrheic children under-five years old. Rotavirus A detection was conducted using a one-step reverse-transcriptase polymerase chain reaction (RT-PCR). Genotyping was conducted by Sanger sequencing of the VP7 (complete) and VP4 (partial) genes. Descriptive analysis and Pearson's chi-squared test were carried out using SPSS version 29. Phylogenetic analysis with 1000 bootstrap replicates was performed using MEGA version 11 software. Statistical significance was set at p < 0.05 for all analyses. Results: The prevalence of RVA infection among diarrheic children was 17.5%. The most prevalent G-types identified were G3 (37%), the previously uncommon G12 (28%), and G1 (20%). The predominant P-types were P[8] (51%), P[6] (29%), and P[4] (14%). The three major G/P combinations observed were G3P[8] (32.8%), G12P[6] (28.4%), and G1P[8] (19.4%). Phylogenetic analysis revealed clustering of Ethiopian strains with the globally reported strains. Many strains exhibited amino acid differences in the VP4 (VP8* domain) and VP7 proteins compared to vaccine strains, potentially affecting virus neutralization. Conclusions: Despite the high RVA vaccination rate, the prevalence of RVA infection remains significant among diarrheic children in Ethiopia. There is an observable shift in circulating RVA genotypes from G1 to G3, alongside the emergence of unusual G/P genotype combinations such as G9P[4]. Many of these circulating RVA strains have shown amino acid substitutions that may allow for neutralization escape. Therefore, further studies are warranted to comprehend the emergence of these unusual RVA strains and the diverse factors influencing the vaccine's diminished effectiveness in developing countries.

6.
BMC Vet Res ; 20(1): 305, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982473

ABSTRACT

BACKGROUND: Pigeon Rotavirus A (RVA) infection has been confirmed in pigeons in the last decade as a cause of Young Pigeon Disease (YPD). Although YPD has been known for many years to date, no studies have been conducted to track the spread of RVA infection in pigeons during the racing season. The presented research aims to determine the course of RVA infection during the flights of young racing pigeons in the summer season, in one of the districts in the Mazovian Voivodeship in Poland. RESULTS: Faecal samples of pigeons collected from transport baskets in vehicles transporting pigeons to the starting point were tested. The quantitative RT-PCR (qRT-PCR) was used to detect the genetic material of RVA. Samples taken during 6 flights were analysed. The study showed a percentage increase in infections up to the fourth flight of pigeons, and then their decrease. With Cq values below 20, breeders did not participate in the next flight and/or reported disease in the flock. With positive Cq values of 20 to 30, clinical signs of disease were not reported. Of the 76 breeders participating in the races, at least one positive result was found in 46 (60.5%). Including the occurrence of the disease during the racing season was reported by 11 breeders (14.4%). The main clinical signs in sick pigeons were vomiting, diarrhea and stowed crop. The tested pigeons were not vaccinated against RVA. CONCLUSIONS: During training and racing of pigeons, it is not possible to avoid exposing them to pathogens, including RVA, regardless of whether pigeons from different breeders are placed in the same baskets or are in separate baskets. However, after four flights the number of new cases of the disease decreases which indicates the development of immunity. The qRT-PCR test is useful in the diagnosis and differentiation of clinical (Cq below 20) and subclinical RVA infections in racing pigeons.


Subject(s)
Bird Diseases , Columbidae , Feces , Rotavirus Infections , Rotavirus , Seasons , Animals , Columbidae/virology , Rotavirus Infections/veterinary , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Rotavirus/isolation & purification , Feces/virology , Poland/epidemiology
7.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066302

ABSTRACT

Mozambique introduced the Rotarix® vaccine into the National Immunization Program in September 2015. Following vaccine introduction, rotavirus A (RVA) genotypes, G9P[4] and G9P[6], were detected for the first time since rotavirus surveillance programs were implemented in the country. To understand the emergence of these strains, the whole genomes of 47 ELISA RVA positive strains detected between 2015 and 2018 were characterized using an Illumina MiSeq-based sequencing pipeline. Of the 29 G9 strains characterized, 14 exhibited a typical Wa-like genome constellation and 15 a DS-1-like genome constellation. Mostly, the G9P[4] and G9P[6] strains clustered consistently for most of the genome segments, except the G- and P-genotypes. For the G9 genotype, the strains formed three different conserved clades, separated by the P type (P[4], P[6] and P[8]), suggesting different origins for this genotype. Analysis of the VP6-encoding gene revealed that seven G9P[6] strains clustered close to antelope and bovine strains. A rare E6 NSP4 genotype was detected for strain RVA/Human-wt/MOZ/HCN1595/2017/G9P[4] and a genetically distinct lineage IV or OP354-like P[8] was identified for RVA/Human-wt/MOZ/HGJM0644/2015/G9P[8] strain. These results highlight the need for genomic surveillance of RVA strains detected in Mozambique and the importance of following a One Health approach to identify and characterize potential zoonotic strains causing acute gastroenteritis in Mozambican children.


Subject(s)
Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Attenuated , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Mozambique/epidemiology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Humans , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Whole Genome Sequencing , Animals , Infant , Child, Preschool , Capsid Proteins/genetics , Gastroenteritis/virology , Gastroenteritis/prevention & control , Gastroenteritis/epidemiology , Cattle , Feces/virology
8.
Front Vet Sci ; 11: 1415771, 2024.
Article in English | MEDLINE | ID: mdl-38855413

ABSTRACT

Rotavirus A (RVA) causes gastroenteritis in humans and animals. The zoonotic potential of RVA has been reported and raises major concerns, especially in animal-human interface settings. The study aimed to characterize and investigate the genetic diversity among RVAs in dogs and cats in Thailand. We collected 572 rectal swab samples from dogs and cats in Bangkok animal hospitals from January 2020 to June 2021. The one-step RT-PCR assay detected RVAs in 1.92% (11/572) of the samples, with 2.75% (8/290) in dogs and 1.06% (3/282) in cats. Two canine RVA and one feline RVA were subjected to whole genome sequencing. Our results showed that all three viruses were identified as RVA genotype G3P[3]. The genetic constellation of RVAs is unique for different species. For canine RVAs is G3-P [3]-I3-R3-C3-M3-A9-N2-T3-E3-H6, while Feline RVA is G3-P [3]-I8-R3-C3-M3-A9-N3-T3-E3-H6. Notably, both canine and feline RVAs contained the AU-1 genetic constellation with multiple reassortments. The results of phylogenetic, genetic, and bootscan analyses showed that canine RVAs may have reassorted from dog, human, and cat RVAs. While feline RVA was closely related to RVAs in humans, bats, and simians. This study provided genetic characteristics and diversity of RVAs in dogs and cats and suggested possible multiple reassortments, suggesting the zoonotic potential of the viruses. Thus, public health awareness should be raised regarding the zoonotic potential of RVAs in dogs and cats. Further studies on RVAs on a larger scale in dogs and cats in Thailand are needed.

9.
Virology ; 597: 110129, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908046

ABSTRACT

Group A rotaviruses (RVAs) are major causes of severe gastroenteritis in infants and young animals. To enhance our understanding of the relationship between human and animals RVAs, complete genome data are necessary. We screened 92 intestinal and stool samples from diarrheic piglets by RT‒PCR targeting the VP6 gene, revealing a prevalence of 10.9%. RVA was confirmed in two out of 5 calf samples. We successfully isolated two porcine samples using MA104 cell line. The full-length genetic constellation of the two isolates were determined to be G9-P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1, with close similarity to human Wa-like and porcine strains. Sequence analysis revealed the majority of genes were closely related to porcine and human RVAs. Phylogenetic analysis revealed that these isolates might have their ancestral origin from pigs, although some of their gene segments were related to human strains. This study reveals evidence of reassortment and possible interspecies transmission between pigs and humans in China.


Subject(s)
Genome, Viral , Phylogeny , Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Swine , Rotavirus Infections/virology , Rotavirus Infections/veterinary , Rotavirus Infections/transmission , Rotavirus Infections/epidemiology , Humans , China/epidemiology , Swine Diseases/virology , Swine Diseases/transmission , Swine Diseases/epidemiology , Cattle , Feces/virology , Whole Genome Sequencing , Genotype , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/epidemiology , Cell Line , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification
10.
Viruses ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38932226

ABSTRACT

Rotaviruses (RVs) are known to infect various avian and mammalian hosts, including swine. The most common RVs associated with infection in pigs are A, B, C and H (RVA-C; RVH). In this study we analysed rotavirus strains circulating on a porcine farm in the Western Cape province of South Africa over a two-year period. Whole genomes were determined by sequencing using Illumina MiSeq without prior genome amplification. Fifteen RVA genomes, one RVB genome and a partial RVC genome were identified. Phylogenetic analyses of the RVA data suggested circulation of one dominant strain (G5-P[6]/P[13]/P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1), typical of South African porcine strains, although not closely related to previously detected South African porcine strains. Reassortment with three VP4-encoding P genotypes was detected. The study also reports the first complete RVB genome (G14-P[5]-I13-R4-C4-M4-A10-T4-E4-H7) from Africa. The partial RVC (G6-P[5]-IX-R1-C1-MX-A9-N6-T6-EX-H7) strain also grouped with porcine strains. The study shows the continued circulation of an RVA strain, with a high reassortment rate of the VP4-encoding segment, on the porcine farm. Furthermore, incidents of RVB and RVC on this farm emphasize the complex epidemiology of rotavirus in pigs.


Subject(s)
Farms , Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Swine , South Africa/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/veterinary , Rotavirus Infections/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Whole Genome Sequencing , Feces/virology
11.
Front Microbiol ; 15: 1390328, 2024.
Article in English | MEDLINE | ID: mdl-38800746

ABSTRACT

Porcine viral diarrhea is caused by many pathogens and can result in watery diarrhea, dehydration and death. Various detection methods, such as polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR), have been widely used for molecular diagnosis. We developed a triplex real-time quantitative reverse transcription PCR (qRT-PCR) for the simultaneous detection of three RNA viruses potentially associated with porcine viral diarrhea: porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus A (PoRVA). The triplex qRT-PCR had R2 values of 0.999 for the standard curves of PEDV, TGEV and PoRVA. Importantly, the limits of detection for PEDV, TGEV and PoRVA were 10 copies/µL. The specificity test showed that the triplex qRT-PCR detected these three pathogens specifically, without cross-reaction with other pathogens. In addition, the approach had good repeatability and reproducibility, with intra-and inter-assay coefficients of variation <1%. Finally, this approach was evaluated for its practicality in the field using 256 anal swab samples. The positive rates of PEDV, TGEV and PoRVA were 2.73% (7/256), 3.91% (10/256) and 19.14% (49/256), respectively. The co-infection rate of two or more pathogens was 2.73% (7/256). The new triplex qRT-PCR was compared with the triplex RT-PCR recommended by the Chinese national standard (GB/T 36871-2018) and showed 100% agreement for PEDV and TGEV and 95.70% for PoRVA. Therefore, the triplex qRT-PCR provided an accurate and sensitive method for identifying three potential RNA viruses for porcine viral diarrhea that could be applied to diagnosis, surveillance and epidemiological investigation.

12.
Virology ; 596: 110114, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38781709

ABSTRACT

Avian rotaviruses A (RVAs) are occasionally transmitted to animals other than the original hosts across species barriers. Information on RVAs carried by various bird species is important for identifying the origin of such interspecies transmission. In this study, to facilitate an understanding of the ecology of RVAs from wild birds, we characterized all of the genes of an RVA strain, JC-105, that was detected in a fecal sample of a large-billed crow (Corvus macrorhynchos) in Japan. All of the genes of this strain except for the VP4 and VP7 genes, which were classified as novel genotypes (P[56] and G40, respectively), were closely related to those of the avian-like RVA strain detected from a raccoon, indicating the possibility that crows had been involved in the transmission of avian RVAs to raccoons. Our findings highlight the need for further viral investigations in wild birds and mammals to understand the mechanisms of avian-to-mammal RVA transmission.


Subject(s)
Bird Diseases , Crows , Feces , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Animals , Crows/virology , Japan , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Rotavirus Infections/virology , Rotavirus Infections/veterinary , Rotavirus Infections/transmission , Bird Diseases/virology , Bird Diseases/transmission , Feces/virology
13.
Microb Pathog ; 191: 106646, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631414

ABSTRACT

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Subject(s)
Porcine epidemic diarrhea virus , Real-Time Polymerase Chain Reaction , Rotavirus , Sensitivity and Specificity , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Real-Time Polymerase Chain Reaction/methods , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/classification , Swine Diseases/virology , Swine Diseases/diagnosis , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/diagnosis , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Feces/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology
14.
Heliyon ; 10(7): e28727, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576575

ABSTRACT

Background: While the gut microbiome modulates the pathogenesis of enteric viruses, how infections caused by rotavirus A (RVA), with or without diarrhoea, alter the gut microbiota has been sparsely studied. Methods: From a cohort of 224 vaccine naïve Gabonese children with and without diarrhoea (n = 177 and n = 67, respectively), 48 stool samples were analysed: (i) RVA with diarrhoea (n = 12); (ii) RVA without diarrhoea (n = 12); (iii) diarrhoea without RVA (n = 12); (iv) healthy controls without diarrhoea and RVA (n = 12). The 16S rRNA metabarcoding using Oxford Nanopore sequencing data was analysed for taxonomic composition, abundance, alpha and beta diversity, and metabolic pathways. Findings: Alpha diversity showed that children with acute diarrhoea (with and without RVA infection), and children with acute diarrhoea without RVA had low microbial diversity compared to healthy children (p = 0.001 and p = 0.006, respectively). No significant differences observed when comparing children with RVA with or without diarrhoea. Beta diversity revealed high microbial heterogeneity in children without diarrhoea. Proteobacteria (68%) and Firmicutes (69%) were most common in the diarrhoea and non-diarrhoea groups, respectively. Proteobacteria (53%) were most common in children without RVA, while Firmicutes (55%) were most common with RVA. At the genus level, Escherichia (21%), Klebsiella (10%) and Salmonella (4%) were abundant in children with diarrhoea, while Blautia (11%), Clostridium (8%), Lachnoclostridium (6%) and Ruminococcus (5%) were abundant in children without diarrhoea. Metabolites involved in amino acid, carbohydrate, lipid, nucleotide, and vitamin metabolism were quantitatively altered. Interpretation: Although host physiology dictates the intestinal milieu, diarrhoea per se can alter a balanced gut microbiota, whereas infectious diarrhoea disrupts the gut microbiome and reduces its diversity.

15.
Viruses ; 16(3)2024 03 14.
Article in English | MEDLINE | ID: mdl-38543818

ABSTRACT

Porcine rotavirus A (PoRVA) is an enteric pathogen capable of causing severe diarrhea in suckling piglets. Investigating the prevalence and molecular characteristics of PoRVA in the world, including China, is of significance for disease prevention. In 2022, a total of 25,768 samples were collected from 230 farms across China, undergoing porcine RVA positivity testing. The results showed that 86.52% of the pig farms tested positive for porcine RVA, with an overall positive rate of 51.15%. Through the genetic evolution analysis of VP7, VP4 and VP6 genes, it was revealed that G9 is the predominant genotype within the VP7 segment, constituting 56.55%. VP4 genotypes were identified as P[13] (42.22%), P[23] (25.56%) and P[7] (22.22%). VP6 exhibited only two genotypes, namely I5 (88.81%) and I1 (11.19%). The prevailing genotype combination for RVA was determined as G9P[23]I5. Additionally, some RVA strains demonstrated significant homology between VP7, VP4 and VP6 genes and human RV strains, indicating the potential for human RV infection in pigs. Based on complete genome sequencing analysis, a special PoRVA strain, CHN/SD/LYXH2/2022/G4P[6]I1, had high homology with human RV strains, revealing genetic reassortment between human and porcine RV strains in vivo. Our data indicate the high prevalence, major genotypes, and cross-species transmission of porcine RVA in China. Therefore, the continuous monitoring of porcine RVA prevalence is essential, providing valuable insights for virus prevention and control, and supporting the development of candidate vaccines against porcine RVA.


Subject(s)
Rotavirus Infections , Rotavirus , Humans , Animals , Swine , Rotavirus/genetics , Phylogeny , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/genetics , Genome, Viral , Genotype
16.
Virology ; 594: 110062, 2024 06.
Article in English | MEDLINE | ID: mdl-38522136

ABSTRACT

Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/µL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.


Subject(s)
Coronavirus Infections , Nucleic Acids , Porcine epidemic diarrhea virus , Rotavirus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Recombinases/genetics , Swine Diseases/diagnosis , Sensitivity and Specificity , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary
17.
J Vet Res ; 68(1): 55-61, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38525231

ABSTRACT

Introduction: Although the presence of rotaviruses in pigeon samples has been reported since the 1980s, its importance as an aetiological agent of the "classical" young pigeon disease (YPD) was not proven until 2020, when the Henle-Koch postulates were confirmed for pigeon-type rotavirus A (RVA) genotype G18P(17). Material and Methods: From 2011 to 2020, archived liver samples from 117 pigeons submitted by 74 individual lofts were tested for the presence of pigeon-type RVA using a VP6-specific RT-qPCR test. For four positive racing pigeons, a more detailed necropsy and histopathological analysis was performed. Results: Indicators of an acute RVA infection were found in 24 out of 117 (20.5%) samples tested, the earliest in 2014. Necropsies of the four selected RVA-positive pigeons showed changes mainly in the liver, spleen and kidneys similar to those described by other researchers. The histopathological examination revealed mainly hyperaemia and necrosis in the liver, as well as mononuclear cell infiltrates in these organs. Conclusion: Pigeon-type RVA is also a cause of YPD in Poland and is a serious challenge for racing pigeon breeders and veterinarians, especially during the training and flights of young pigeons.

18.
Viruses ; 16(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38257830

ABSTRACT

Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.


Subject(s)
Enterovirus Infections , One Health , Rotavirus , Child , Infant , Horses , Animals , Humans , Rotavirus/genetics , Public Health , Livestock , Mammals
19.
Braz J Microbiol ; 55(1): 991-996, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280092

ABSTRACT

Porcine rotavirus (RV) is a major viral agent associated with severe diarrhea in newborn piglets. RVA, RVB, RVC, and RVH are RV species that have already been identified in pigs. RVA is considered the most prevalent and relevant virus in pig production worldwide. This study aimed to evaluate the frequency of RV infection associated with diarrhea in suckling piglets from regular RVA-vaccinated Brazilian pig herds between 2015 and 2021. Therefore, 511 diarrheic fecal samples were collected from suckling piglets aged up to 3 weeks from 112 pig farms located in three main Brazilian pork production regions. All piglets were born to RVA-vaccinated sows. The nucleic acids of RVA, RVC, and RVH were investigated by RT-PCR assays and RVB by semi-nested RT-PCR assay. Of the diarrheic fecal samples analyzed, 221/511 (43.3%) were positive for at least one of the RV species. Regarding the distribution of RV species among the positive fecal samples that presented with only one RV species, 99 (44.8%), 63 (28.5%), and 45 (20.4%) were identified as RVB, RVC, and RVA, respectively. RVH was not identified in diarrheic piglets with a single infection. More than one RV species was identified in 14/221 (6.3%) of the diarrheic fecal samples evaluated. Co-detection of RVB + RVH (11/221; 5.0%), RVA + RVB (1/221; 0.4%), RVA + RVC (1/221; 0.4%), and RVB + RVC (1/221; 0.4%) was identified in fecal samples. The results demonstrated a significant increase in the RVC and, mainly, RVB detection rates in single infections. This study allowed us to characterize the importance of other RV species, in addition to RVA, in the etiology of neonatal diarrhea in piglets from pig herds with a regular vaccination program for RVA diarrhea control and prophylaxis.


Subject(s)
Rotavirus Infections , Rotavirus , Swine Diseases , Viruses , Animals , Swine , Female , Swine Diseases/diagnosis , Rotavirus/genetics , Diarrhea/veterinary , Feces , Phylogeny , Vaccination , Genotype
20.
Virus Genes ; 60(1): 25-31, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102511

ABSTRACT

Rotavirus A infects many mammalian species, including humans and causes diarrhea and gastrointestinal diseases. The virus also infects various bird species, including chickens, although information of avian rotavirus A (ARVA) infection in chicken populations in Japan is scarce. In this study, we report for the first time the whole-genome sequences of ARVA strains from Japanese chicken populations. The virus strains were inoculated to MA104 cells and cultured viruses were used to obtain the sequences with the MiSeq system, and genetic analysis demonstrated the genotype constellation of G19-P[30]-I11-R6-C6-M7-A16-N6-T8-E10-H8 of the Japanese chicken ARVA isolates. Phylogenetic analyses demonstrated that the VP1, VP2, VP3, VP4, VP7, NSP2, and NSP4 coding gene sequences of the Japanese strains were closer to those of Korean than the European ARVA strains, although such relationship was not clear for other genes. The data suggest that the Japanese ARVA strains and the ones in Korea have genetically close relationship, although the origin is not clear at this point. Further information including the whole-genome sequences of the Korean strains and sequences of other Japanese chicken ARVA strains will be necessary for elucidation of their origin.


Subject(s)
Rotavirus Infections , Rotavirus , Animals , Humans , Chickens , Phylogeny , Genome, Viral/genetics , Genotype , Sequence Analysis , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL