Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Bull Environ Contam Toxicol ; 113(2): 17, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068350

ABSTRACT

Roundup Transorb® (RDT) is the most popular glyphosate-based herbicide (GHB) used in agriculture, and its impact extends to non-target organisms. The annual killifish Austrolebias charrua is an endangered species endemic to southern South America and inhabits temporary ponds. This study evaluates the effects of RDT concentrations (0.065 and 5 mg/L GAE) on A. charrua exposed for 96 h. Gene expression of cat, sod2, gstα, gclc, and ucp1 was evaluated on the liver and gills. Highlighting that even at low concentrations permitted by Brazilian legislation, the RDT can have adverse effects on A. charrua.


Subject(s)
Antioxidants , Glycine , Glyphosate , Herbicides , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Herbicides/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Pilot Projects , Fundulidae/genetics , Gene Expression/drug effects , Superoxide Dismutase/metabolism , Liver/metabolism , Liver/drug effects , Brazil , Gills/metabolism , Killifishes
2.
Toxicol Res (Camb) ; 12(5): 970-978, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37915486

ABSTRACT

Glyphosate is a systemic, non-selective, pre and post-emergence wide range herbicide. In 2015, IARC classified Glyphosate as "a probable carcinogenic agent for humans". The aim of this study was to evaluate the cytotoxicity and genotoxicity of the commercial formulation of glyphosate (Roundup® Control Max) at environmentally relevant concentrations and measure the potential effect of this herbicide over the cell capacity to repair DNA damage. HEK293 cells were exposed to 5 concentrations of Roundup® Control Max equivalent to 0.7; 7; 70; 700 and 3,500 µg/L glyphosate acid, for 1, 4 and 24 h. Cytotoxicity was quantified by the Trypan Blue staining method and by the MTT assay, while genotoxicity and evaluation of DNA damage repair kinetics were analyzed through the alkaline comet assay. In all treatments, cell viability was higher than 80%. The three highest glyphosate concentrations-70 µg/L, 700 µg/L, and 3,500 µg/L-increased levels of DNA damage compared to the control at the three exposure times tested. Finally, concerning the kinetics of DNA damage repair, cells initially exposed to 3,500 µg/L of glyphosate for 24 h were unable to repair the breaks in DNA strands even after 4 h of incubation in culture medium. The present study demonstrated for the first time that Roundup® Control Max may induce genetic damage and cause alterations in the DNA repair system in human embryonic kidney cells even at concentrations found in blood and breast milk of people exposed through residues of the herbicide in food, which values have been poorly assessed or not studied yet according to the existent literature.

3.
Ecotoxicology ; 32(1): 93-101, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36653510

ABSTRACT

In amphibians, stressful environments can lead to accelerated metamorphosis at the expense of total length, resulting in the occurrence of morphological abnormalities. Many studies have linked the occurrence of these phenomena to the pollution of habitats by pesticides and thermal stress. Here, we assessed how exposure to Roundup Original DI® and higher constant temperatures affect the survival of Boana faber tadpoles and estimate the CL5096hs for the population. In addition, we evaluated how exposure to Roundup affects larval growth, morphology and thermal tolerance. Our findings suggest that even at sublethal doses, Roundup Original DI® may affect the survival of Boana faber larvae. There also appears to be an additive effect between Roundup and temperature increase on larval survival, however, we need to further explore this point to determine a pattern, proving to be a promising issue to be investigated in the future. We observed effects of chronic exposure to the herbicide formulation on the morphology and growth of the tadpoles, resulting in a reduction in total length and differences in the shape of the larvae. Although we did not recover any direct effects of herbicide exposure on CTMax, we did observe an upward trend in CTMax for tadpoles exposed to Roundup. Understanding how anthropogenic changes affect anuran persistence is fundamental for the management and conservation of the species and can be considered an initial step toward the formulation of legislations that regulate the use of herbicides.


Subject(s)
Herbicides , Pesticides , Animals , Anura , Environmental Pollution , Larva , Stress, Physiological , Temperature
4.
Sci Total Environ ; 840: 156656, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35709990

ABSTRACT

Glyphosate is a herbicide that acts as a broad-spectrum, non-selective, post-emergence systemic pest controller. Its continuing, increasing, and excessive use in many countries in recent years poses a significant threat to the environment and human health due to the prevalence of this herbicide in water bodies and its impact on non-target organisms. In this context, it is essential to develop processes aimed at the non-selective degradation of glyphosate and its by-products. In this study, various advanced oxidative processes were applied: Fenton, electro-Fenton, photoelectro-oxidation, and photoelectro-Fenton, with the objective of oxidizing glyphosate in the commercial product Roundup®. The resultant oxidation products and the phytotoxicological effect on maize seed germination were also analyzed. Following each treatment, chemical oxygen demand (COD), total organic carbon (TOC), glyphosate degradation, and oxidation by-product formation were analyzed. The treated solutions were used to germinate maize seeds for 7 days in a germination chamber applying a photoperiod of 12 h at 24 °C. The % of germination, protein and hydrogen peroxide (H2O2) content, lipid peroxidation extent (MDA), and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were determined. The photoelectro-Fenton treatment was the most effective in degrading glyphosate, operating synergistically to break glyphosate bonds, thereby generating non-toxic short-chain molecules. Maize seed germination was satisfactory (> 50 %), but the persistent formation of reactive oxygen species (ROS) led to increased antioxidant activities of SOD, CAT, and POD enzymes acting in a compensatory manner against ROS, thus sustaining the photosynthetic apparatus. Hormesis, a stimulatory effect of glyphosate, was also observed in the presence of low concentrations of glyphosate.


Subject(s)
Herbicides , Antioxidants/metabolism , Glycine/analogs & derivatives , Herbicides/toxicity , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Seeds , Superoxide Dismutase/metabolism , Water , Zea mays/metabolism , Glyphosate
5.
Environ Toxicol ; 37(9): 2244-2258, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35661388

ABSTRACT

Citrate functionalized iron oxide nanoparticles (IONPs) are employed for various purposes-including environmental remediation but the interaction of IONPs with aquatic contaminants is poorly understood. Among those, glyphosate-based herbicides are toxic and affect target organs such as the liver. Evaluations of livers of female Poecilia reticulata by exposures to IONPs at a concentration of 0.3 mg/L were performed with association to: (1) 0.65 mg of glyphosate per litter and (2) 1.3 mg of glyphosate per litter of Roundup Original, and (3) glyphosate P.A at 0.65 mg/L. These associations were carried out progressively, after 7, 14, and 21 days. We detected circulatory disturbances, inflammatory responses, activation of the immune system, regressive changes, and progressive responses with changes in the connective tissue and decreased glycogen reserve from days 14 to 21. Ultrastructural changes in the Disse space and microvilli of hepatocytes indicated decreased contact surface area. In general, the damage was time and concentration dependent, increasing from 7 to 14 days and tending to stabilize from 14 to 21 days. Therefore, herbicide-associated IONPs functioned as xenobiotics inducing intense cellular detoxification processes and activation of hepatic immune responses.


Subject(s)
Herbicides , Poecilia , Animals , Female , Glycine/analogs & derivatives , Herbicides/toxicity , Liver , Magnetic Iron Oxide Nanoparticles , Poecilia/physiology , Glyphosate
6.
Chemosphere ; 282: 130993, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34118627

ABSTRACT

Citrate-coated iron oxide nanoparticles (IONPs) have potential use in environmental remediation, with possibilities in decontaminating aquatic environments exposed to toxic substances. This study analyzed IONPs associated to Roundup Original, a glyphosate-based herbicide (GBH), and pure glyphosate (GLY), through ultrastructural and histopathological biomarkers in liver tissue, from females of Poecilia reticulata exposed to: iron ions (0.3 mg/L) (IFe) and IONPs (0.3 mgFe/L) associated with GLY (0.65 mg/L) and GBH (0.65 mgGLY/L (IONP + GBH1) and 1.30 mgGLY/L (IONP + GBH2)) for a period of 7, 14 and 21 days, followed by an equal post-exposure period only in reconstituted water. For the assays, the synthetized IONPs had crystalline and rounded shape with an average diameter of 2,90 nm, hydrodynamic diameter 66,6 mV, zeta potential -55,4 and diffraction profile of maghemite (γ-Fe2O3). The data obtained by biomarkers indicated a high inflammatory response in all treatments. These same parameters, considered during the post-exposure period indicated recovery in reaction patterns of circulatory disturbances and regressive changes, resulting in average reductions of 37,53 points in IFe, 21 points in IONP + GBH1, 15 points in IONP + GBH2 and 11 points in IONP + GLY in total histopathological index of liver after 21 days post-exposure. However, although the cellular and tissue responses were significant, there was no change in the condition factor and hepatosomatic index, denoting resilience of the experimental model.


Subject(s)
Nanoparticles , Poecilia , Animals , Female , Ferric Compounds/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Liver , Magnetic Iron Oxide Nanoparticles , Glyphosate
7.
Front Endocrinol (Lausanne) ; 12: 643168, 2021.
Article in English | MEDLINE | ID: mdl-33841335

ABSTRACT

This review summarizes the bulk of evidence about the effect of glyphosate, both technical and formulated, on the ovarian maturation of Neohelice granulata female crabs, as well as the effects of glyphosate on sperm production in males of the same species. After long-term in vivo assays, made during the 3-month pre-reproductive period of this species, both formulated and technical glyphosate were able to produce a significant incidence of oocyte reabsorption in the ovary, together with a concomitant decreased of vitellogenin content, at concentrations ranging from 0.2 to 1 mg/L. Despite this, after 32-day in vivo assays, glyphosate stimulated oocyte growth, in terms of a higher percentage of vitellogenic oocytes, suggesting that glyphosate could be acting as an endocrine disruptor. In vitro assays made with isolated ovarian pieces showed a decrease of vitellogenin content, in correlation with lower protein synthesis, although some advance in maturation was observed in the histological analysis. In male crabs exposed in vivo to both technical and formulated glyphosate at 1 mg/L, several reproductive imbalances were noted, such as a significant decrease of the sperm count, abnormal spermatophores, and possible disrupting effects of glyphosate on the androgenic gland.


Subject(s)
Brachyura/drug effects , Glycine/analogs & derivatives , Models, Animal , Ovary/drug effects , Androgens/metabolism , Animals , Dose-Response Relationship, Drug , Endocrine Disruptors/pharmacology , Female , Glycine/pharmacology , Herbicides/pharmacology , Male , Oocytes/drug effects , Reproduction , Spermatozoa/drug effects , Vitellogenins/metabolism , Water Pollutants, Chemical/metabolism , Glyphosate
8.
Front Endocrinol (Lausanne) ; 12: 615678, 2021.
Article in English | MEDLINE | ID: mdl-33776912

ABSTRACT

It has been postulated that glyphosate (G) or its commercial formulation Roundup (R) might lead to male fertility impairment. In this study, we investigated the possible effects of G or R treatment of juvenile male rats on blood-testis barrier function and on adult male sperm production. Pups were randomly assigned to the following groups: control group (C), receiving water; G2 and G50 groups, receiving 2 and 50 mg/kg/day G respectively; and R2 and R50 groups receiving 2 and 50 mg/kg/day R respectively. Treatments were performed orally from postnatal day (PND) 14 to 30, period of life that is essential to complete a functional blood-testis barrier. Evaluation was done on PND 31. No differences in body and testis weight were observed between groups. Testis histological analysis showed disorganized seminiferous epithelium, with apparent low cellular adhesion in treated animals. Blood-testis barrier permeability to a biotin tracer was examined. A significant increase in permeable tubules was observed in treated groups. To evaluate possible mechanisms that could explain the effects on blood-testis barrier permeability, intratesticular testosterone levels, androgen receptor expression, thiobarbituric acid reactive substances (TBARS) and the expression of intercellular junction proteins (claudin11, occludin, ZO-1, connexin43, 46, and 50 which are components of the blood-testis barrier) were examined. No modifications in the above-mentioned parameters were detected. To evaluate whether juvenile exposure to G and R could have consequences during adulthood, a set of animals of the R50 group was allowed to grow up until PND 90. Histological analysis showed that control and R50 groups had normal cellular associations and complete spermatogenesis. Also, blood-testis barrier function was recovered and testicular weight, daily sperm production, and epididymal sperm motility and morphology did not seem to be modified by juvenile treatment. In conclusion, the results presented herein show that continuous exposure to low doses of G or R alters blood-testis barrier permeability in juvenile rats. However, considering that adult animals treated during the juvenile stage showed no differences in daily sperm production compared with control animals, it is feasible to think that blood-testis barrier impairment is a reversible phenomenon. More studies are needed to determine possible damage in the reproductive function of human juvenile populations exposed to low doses of G or R.


Subject(s)
Blood-Testis Barrier/drug effects , Glycine/analogs & derivatives , Herbicides/administration & dosage , Spermatogenesis/drug effects , Testis/drug effects , Animals , Blood-Testis Barrier/metabolism , Claudins/metabolism , Connexins/metabolism , Glycine/administration & dosage , Male , Occludin/metabolism , Rats , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , Testis/metabolism , Testosterone/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Glyphosate
9.
Environ Sci Pollut Res Int ; 28(23): 29958-29970, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33576960

ABSTRACT

Roundup® is one of the most widely marketed glyphosate-based herbicides in the world. There are many different formulations of this brand that differ from each other in glyphosate concentration, salts and adjuvants, including surfactants, which are labelled as "inert" compounds. Several studies have shown that these formulations are highly toxic to fish, even compared with pure glyphosate. However, mechanisms underlying this toxicity are not fully understood. In this context, this study evaluated the effects of exposure to Roundup Original® (RO), Roundup Transorb® (RT), and Roundup WG® (RWG) on the behavioural patterns of the livebearer Jenynsia multidentata. This fish naturally inhabits agricultural areas in southern Brazil and Argentina where glyphosate is used extensively. In the experiment, animals were exposed to the herbicides for 96 h, at the environmentally relevant concentration of 0.5 mg/L of glyphosate. Swimming performance, anxiety, aggressiveness, long-term memory and male sexual activity were recorded. The formulation RWG negatively affected swimming performance, thigmotaxia and long-term memory consolidation. Conversely, RT reduced the sexual performance of males. These results confirm that Roundup® formulations are extremely harmful and also that they have different targets of toxicity, affecting behaviours that are essential for fish survival.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Argentina , Brazil , Glycine/analogs & derivatives , Herbicides/toxicity , Male , Water Pollutants, Chemical/toxicity , Glyphosate
10.
Ecotoxicol Environ Saf ; 201: 110794, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32526590

ABSTRACT

The intensive use of glyphosate in industrial agriculture may lead to freshwater contamination, encouraging studies of its toxic effect on non-target aquatic organisms. Glyphosate-based commercial formulations contain adjuvants, making them even more toxic than the active ingredient (a.i.) itself. The golden mussel Limnoperna fortunei is a freshwater invasive species which has been found to increase glyphosate dissipation in water and to accelerate eutrophication. The aim of this study is to evaluate the capability of L. fortunei to reduce the concentration of glyphosate in two commercial formulations, Roundup Max® and Glifosato Atanor®. Results were compared with the decay of the a.i. alone and in presence of mussels. Evasive response and toxicity tests were performed in a first set of trials to analyze the response of L. fortunei exposed to Roundup Max® and Glifosato Atanor®. Subsequently, we conducted a 21-day degradation experiment in 2.6-L microcosms applying the following treatments: 6 mg L-1 of technical-grade glyphosate (G), Glifosato Atanor® (A), Roundup Max® (R), 20 mussels in dechlorinated tap water (M), and the combination of mussels and herbicide either in the technical-grade (MG) or formulated form (MA and MR) (all by triplicate). Samples were collected at days 0, 1, 7, 14 and 21. No significant differences in glyphosate decay were found between treatments with mussels (MG: 2.03 ± 0.40 mg L-1; MA: 1.60 ± 0.32 mg L-1; MR: 1.81 ± 0.21 mg L-1), between glyphosate as a.i. and the commercial formulations, and between the commercial formulations, suggesting that the adjuvants did not affect the degrading potential of L. fortunei. In addition to the acceleration of glyphosate dissipation in water, there was an increase in the concentration of dissolved nutrients in water (N-NH4+ and P-PO43-) even higher than that caused by the filtering activity of the mussels, probably resulting from stress or from the degradation of glyphosate and adjuvants. We believe that a larger bioavailability of these nutrients due to glyphosate metabolization mediated by mussels would accelerate eutrophication processes in natural water bodies. The approach used here, where L. fortunei was exposed to two commercial formulations actually used in agricultural practices, sheds light on the potential impact of glyphosate decay on water bodies invaded by this species.


Subject(s)
Fresh Water/chemistry , Glycine/analogs & derivatives , Herbicides/toxicity , Introduced Species/trends , Mytilidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Argininosuccinate Synthase , Biodegradation, Environmental , Escherichia coli Proteins , Glycine/toxicity , Mytilidae/metabolism , Toxicity Tests , Glyphosate
11.
Toxicol In Vitro ; 62: 104682, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31626902

ABSTRACT

Roundup (R), a formulation that contains glyphosate (G) as the active ingredient, is a commonly used nonselective herbicide that has been proposed to affect male fertility. It is well known that an adequate Sertoli cell function is essential to maintain germ cell development. The aim of the present study was to analyze whether G and R are able to affect Sertoli cell functions, such as energy metabolism and blood-testis barrier (BTB) integrity. Sertoli cell cultures from 20-day-old rats were exposed to 10 and 100 ppm of G or R, doses which do not decrease cell viability. Neither G nor R caused impairment in lactate production or fatty acid oxidation. G and R decreased Transepithelial Electrical Resistance, which indicates the establishment of a Sertoli cell junction barrier. However, neither G nor R modified the expression of claudin11, ZO1 and occludin, proteins that constitute the BTB. Analysis of cellular distribution of claudin11 by immunofluorescence showed that G and R induced a delocalization of the signal from membrane to the cytoplasm. The results suggest that G and R could alter an important function of Sertoli cell such as BTB integrity and thus they could compromise the normal development of spermatogenesis.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Sertoli Cells/drug effects , Animals , Blood-Testis Barrier/drug effects , Cell Survival/drug effects , Claudins/biosynthesis , Energy Metabolism/drug effects , Fatty Acids/metabolism , Glycine/toxicity , Intercellular Junctions/drug effects , Lactic Acid/metabolism , Male , Rats , Rats, Sprague-Dawley , Spermatogenesis/drug effects , Glyphosate
12.
Environ Sci Pollut Res Int ; 26(21): 21535-21545, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31127518

ABSTRACT

Glyphosate-based herbicides (GBH) are the most used herbicides worldwide and are considered as endocrine-disrupting compounds (EDC) for non-target organisms. However, effects of GBH on their endocrine systems remain poorly understood. Thus, the aim of this study was to assess the effects of low concentrations of Roundup WG® on growth and reproduction process molecules in both males and females of the decapod crustacean Macrobrachium potiuna, by the relative transcript expression levels of the ecdysteroid receptor (EcR), the molt-inhibiting hormone (MIH), and the vitellogenin (Vg) genes. Prawns were exposed to three concentrations of GBH (0.0065, 0.065, and 0.28 mg L-1) for 7 and 14 days. The results revealed that only in males the three genes transcript levels were influenced by the GBH concentration, time of exposure, and the interaction between the concentrations and time of exposure, suggesting that males were more sensitive to GBH than females. For males, after 7 days of exposure at 0.065 mg L-1, EcR and MIH were over-expressed, while the Vg expression was only over-expressed after 14 days. The present study highlighted that GBH impacted endocrine systems of M. potiuna. Moreover, EcR and MIH gene expressions could be promising EDC biomarkers of exposure in crustaceans. These results also indicate that GBH concentrations, considered secure by regulatory agencies, should be reviewed to minimize the effects on non-target organisms. Potential effects of glyphosate-based herbicides on the endocrine system of decapods Macrobrachium sp.


Subject(s)
Endocrine Disruptors/toxicity , Glycine/analogs & derivatives , Herbicides/toxicity , Palaemonidae/physiology , Animals , Endocrine System , Female , Glycine/toxicity , Invertebrate Hormones , Male , Palaemonidae/genetics , Receptors, Steroid/genetics , Glyphosate
13.
Article in English | MEDLINE | ID: mdl-30981909

ABSTRACT

Roundup® is currently the most widely used and sold agricultural pesticide in the world. The objective of this work was to investigate the effects of Roundup® on energy metabolism during zebrafish (Danio rerio) embryogenesis. The embryo toxicity test was performed for 96 h post-fertilisation and the sublethal concentration of Roundup® was defined as 58.3 mg/L, which resulted in failure to inflate the swim bladder. Biochemical assays were performed with viable embryos following glyphosate exposure, and no significant effects on protein, glucose, glycogen, triglyceride levels or the enzymatic activities of alanine aminotransferase and aspartate aminotransferase were observed. However, the activity of hexokinase was significantly altered following exposure to 11.7 mg/L Roundup®. Through molecular docking we have shown for the first time that the interactions of glucokinase and hexokinases 1 and 2 with glyphosate showed significant interactions in the active sites, corroborating the biochemical results of hexokinase activity in zebrafish exposed to the chemical. From the results of molecular docking interactions carried out on the Zfishglucok, ZfishHK1 and ZfishHK2 models with the glyphosate linker, it can be concluded that there are significant interactions between glyphosate and active sites of glucokinase and hexokinase 1 and 2 proteins. The present work suggests that Roundup® can induce problems in fish embryogenesis relating to the incapacity of swim bladder to inflate. This represents the first study demonstrating the interaction of glyphosate with hexokinase and its isoforms.


Subject(s)
Embryo, Nonmammalian/drug effects , Energy Metabolism/drug effects , Glycine/analogs & derivatives , Zebrafish/embryology , Animals , Binding Sites , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Glucokinase/metabolism , Glycine/administration & dosage , Glycine/toxicity , Hexokinase/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Conformation , Glyphosate
14.
Chemosphere ; 209: 748-757, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29960942

ABSTRACT

The joint impact of the glyphosate-based commercial formulation Roundup Max® and the invasive mussel Limnoperna fortunei on phytoplankton and water quality was assessed in Salto Grande reservoir, a scenario were both stressors coexist. We performed an in situ mesocosm approach, through a 7-day experiment using 400-L enclosures. The following treatments were applied by triplicate: addition of 250 mussels (M); addition of 5 mg L-1 of active ingredient (a.i.) in Roundup Max® (R); addition of 250 mussels and 5 mg L-1 of a.i. in Roundup Max® (MR), and controls, without any addition (C). R showed higher total phosphorus (TP) and ammonium nitrogen (NNH4+) concentrations due to the herbicide input, and a significant increase in algal abundance, biovolume and chlorophyll a levels (Chl-a). In M mussels grazed on phytoplankton, which resulted in subsequent phosphates (SRP) release. A decrease in species diversity was observed in R and M with respect to C. In MR, there were higher TP and NNH4+ concentrations, a decrease in biovolume, an antagonistic effect on Chl-a and a synergistic effect on phytoplankton abundance. Species diversity and evenness showed a significant decrease due to the explosive growth of a small and opportunistic Chlorophyta, Spermatozopsis exsultans. The dominance of this species may be due to negative selectivity for S. exsultans and/or release of potential competitors by L. fortunei, and to the input of nutrients by Roundup Max® and/or removal of competitors by its toxicity.


Subject(s)
Bivalvia/chemistry , Fresh Water/microbiology , Pesticides/adverse effects , Phytoplankton/microbiology , Animals , Argentina , Water Pollutants, Chemical/analysis
15.
Ecotoxicol Environ Saf ; 157: 121-127, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29614449

ABSTRACT

Different concentrations of a glyphosate formulation, Roundup® Full II (66.2% glyphosate) were tested in culture peripheral blood of armadillo Chaetophractus villosus with cytogenetic biomarkers like mitotic index (MI), chromosomal aberrations (CA), sister chromatid exchange (SCE) and cell proliferation kinetics (CPK) by means of replication index. Adults animals of both sexes were exposed to RU at four concentrations ranging from 0.026 mL RU solution to 0.379 mL RU daily in oral treatment with the same volume (0.2 mL) during 7 days. We analyzed the induced damage at different times considering T0 as control value, one (T1), seven (T7) and 30 days (T30). One day after, only the higher concentration shows MI significant differences (p < 0.05), at T7 the frequency increases and at T30 it decreases reaching T0 values. The analysis of CA frequencies shows that only 0.106 mL RU/day exhibit significant differences vs T0 values. A great variability is expressed in the values of standard deviation (SD) and in the wide confidence intervals of the media. One day after treatments (T1) all four concentrations shows significant differences in SCE vs T0 values. Replication Index (RI) does not show significant differences. The dose-response behavior was not observed in either CA or SCE. The consistency of the findings obtained with the same biomarkers in vitro support the idea of expanding studies in order to characterize the risk doses for these mammals.


Subject(s)
Armadillos , Glycine/analogs & derivatives , Mutagens/toxicity , Animals , Armadillos/blood , Cell Proliferation/drug effects , Chromosome Aberrations/chemically induced , Cytogenetic Analysis , Female , Glycine/toxicity , Humans , Lymphocytes/drug effects , Male , Mitotic Index , Sister Chromatid Exchange/drug effects , Glyphosate
16.
Biosci. j. (Online) ; 34(1): 34-41, jan./feb. 2018.
Article in English | LILACS | ID: biblio-966539

ABSTRACT

The constant presence of genetically modified (GM) soybean in conventional seed lots has become a growing problem for international seed trade. In this context, seed companies have prompted the development of routine tests for accurate genetically modified soybean seeds detection. In this study, a quantitative PCR-based method was standardized in order to detect and quantify mixtures of seeds (i.e. certified seed) or GM grains (i.e. seeds came from field) into samples of non-GM soybean, in a way that soybean lots can be assessed within the standards established by legislation. The method involved the use of p35S-f2/petu-r1 primers targeting CP-4 enolpyruvylshikimate-3-phosphate synthase (cp4-epsps) gene (i.e. that confers herbicide tolerance in Roundup ReadyTM (RR)) for real-time PCR detection and quantification through mericon Quant GMO Detection Assay. The results revealed the method efficiency to detect and quantify the presence of even one soybean seed in batch used for routine evaluation of GM seeds. In addition, it was possible to detect of up to 0.1% of transgenic DNA relative to the soybean grains content. Thus, the sensitive GMO quantitative approach described in this study will provide support in supervising activities, and facilitate the process and control of GM soybean.


A constante presença da soja geneticamente modificada (GM) em lotes de sementes convencionais têm se tornado um grande problema para o comércio internacional de sementes. Neste contexto, as empresas de sementes estão em busca de testes de rotina extremamente precisos para a detecção de sementes de soja geneticamente modificadas. Neste estudo, um método baseado em PCR quantitativo foi padronizado para detectar e quantificar misturas de sementes (i.e. sementes certificadas) ou grãos geneticamente modificados (i.e. sementes oriundas do campo) dentro de lotes de soja não transgênica, de um modo que os lotes de soja possam ser avaliados dentro dos parâmetros estabelecidos pela legislação. O método envolveu o uso dos iniciadores p35S-f2/petu-r1 alvejando o gene CP-4 5-nolpiruvil-shikimato-3-fosfato sintase (cp4-epsps) (i.e. que confere a tolerância ao herbicida Roundup Ready® (RR)) para detecção e quantificação em PCR de tempo real via Ensaio de detecção Mericon Quant GMO. Os resultados revelaram um método eficiente para detectar e quantificar a presença de até mesmo uma única semente de soja no lote usado para a avaliação de rotina de sementes geneticamente modificadas. Adicionalmente, foi possível detectar até 0,1% de DNA transgênico relativo ao conteúdo de grãos de soja. Dessa forma, uma abordagem quantitativa sensível à soja geneticamente modificada foi descrita nesse estudo e poderá fornecer suporte em atividades de supervisão, além de facilitar o processo de controle da soja geneticamente modificada.


Subject(s)
Seeds , Glycine max , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Herbicides
17.
Environ Sci Pollut Res Int ; 25(2): 1568-1575, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29098583

ABSTRACT

Adult females of the estuarine crab Neohelice granulata were exposed to the glyphosate formulation Roundup Ultramax® during the entire 3-month pre-reproductive period. At the end of the assay, a significant higher increment of glycemia was noted at both glyphosate concentrations assayed (0.01 and 0.2 mg/L, acid equivalent). Although no differences were observed in the gonadosomatic index, a significantly higher proportion of reabsorbed vitellogenic oocyte was observed at the highest glyphosate concentration, together with a significant decrease of vitellogenin content in the ovary. In addition, some in vitro assays were carried out by co-incubating small pieces of ovary with or without the addition of Roundup; at both concentrations tested (same as those used in vivo), a decrease in the ovarian vitellogenin content was observed, whereas the ovarian protein synthesis was significantly inhibited by glyphosate at 0.2 mg/L in the Roundup formulation used.


Subject(s)
Brachyura/drug effects , Environmental Exposure , Glycine/analogs & derivatives , Herbicides/toxicity , Animals , Female , Glycine/toxicity , Ovary/drug effects , Ovary/growth & development , Ovary/pathology , Reproduction/drug effects , Seafood/analysis , Vitellogenins/analysis , Glyphosate
18.
Animal ; 12(7): 1424-1434, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29173213

ABSTRACT

Roundup is a glyphosate-based herbicide (GBH) widely used in agriculture and may cause toxic effects in non-target organisms. Model organisms, as zebrafish, and analysis of gene expression by reverse transcription-quantitative PCR (RT-qPCR) could be used to better understand the Roundup toxicity. A prerequisite for RT-qPCR is the availability of appropriate reference genes; however, they have not been described for Roundup-exposed fish. The aim of this study was to evaluate the expression stability of six reference genes (rpl8, ß-act, gapdh, b2m, ef1α, hprt1) and one expressed repetitive element (hatn10) in organs of males (brain, gill, testis) and females (ovary) of zebrafish exposed to Roundup WG at three concentrations (0.065, 0.65 and 6.5 mg N-(phosphonomethyl) glycine/l) for 7 days. Genes were ranked by geNorm, NormFinder, BestKeeper, Delta C t and RefFinder, and their best combinations were determined by geNorm and NormFinder programs. The two most stable ranked genes were specific to each organ: gill (ß-act; rpl8); brain (rpl8; ß-act); testis (ef1α; gapdh); and ovary (rpl8; hprt1). The cat transcript level was used to evaluate the effect of normalization with these reference genes. These are the first suitable reference genes described for the analysis of gene expression in organs of Roundup-exposed zebrafish, and will allow investigations of the molecular mechanisms of Roundup toxicity.


Subject(s)
Gene Expression Profiling , Glycine/analogs & derivatives , Real-Time Polymerase Chain Reaction , Zebrafish , Animals , Female , Glycine/toxicity , Herbicides , Male , Reference Standards , Reverse Transcription , Zebrafish/genetics , Glyphosate
19.
Environ Toxicol Pharmacol ; 56: 241-248, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29031220

ABSTRACT

Roundup Original® is an herbicide widely used in Mato Grosso's agriculture and it may contamine water bodies, being an unforeseen xenobiotic to aquatic organisms, particularly fish. This study investigated the effects on the hybrid fish jundiara (Leiarius marmoratus×Pseudoplatystoma reticulatum) of an environmentally relevant exposure to this herbicide. Glucose levels in liver, muscle and plasma decreased after exposure to 1.357mgL-1 of Roundup Original® (glyphosate nominal concentration), while glycogen levels reduced in liver and muscle for different times. Elevated cholesterol and triglycerides revealed an adaptive response. Protein and lactate levels also increased during the experiment, however no changes were observed for muscle lactate. Increment of the transaminases suggests damage to the liver cells. After 96hours of exposure, reductions in all hematological parameters were observed, whereas the micronucleus test findings showed genotoxic scenery. Histological analysis did not display pathological alterations of the hepatic tissue. The results obtained provide valuable data for noticing the effects of pollutants on non-target organisms.


Subject(s)
Fishes/genetics , Fishes/metabolism , Glucose/metabolism , Glycine/analogs & derivatives , Herbicides/toxicity , Animals , DNA Damage , Environmental Monitoring , Fish Proteins/metabolism , Fishes/blood , Gene Expression Regulation/drug effects , Glycine/toxicity , Lactic Acid/metabolism , Liver/drug effects , Liver/metabolism , Muscles/drug effects , Muscles/metabolism , Mutagenicity Tests , Water Pollutants, Chemical/toxicity , Glyphosate
20.
Toxicology ; 392: 32-39, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29032223

ABSTRACT

Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup®. This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup®-treated adult zebrafish demonstrated a significant impairment in memory. Both glyphosate and Roundup® reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup®, altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response.


Subject(s)
Behavior, Animal/drug effects , Embryo, Nonmammalian/drug effects , Glycine/analogs & derivatives , Herbicides/toxicity , Zebrafish/physiology , Aggression/drug effects , Animals , Female , Glycine/toxicity , Larva/drug effects , Male , Memory/drug effects , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL