Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters











Publication year range
1.
Plants (Basel) ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999662

ABSTRACT

The objective of this work was to evaluate the development of Davidiella sp. and its asexual form, Cladosporium sp., under different environmental conditions in the rubber tree (Hevea brasiliensis). Rubber tree leaves were inoculated with a spore suspension and kept in a humid chamber under different temperatures and wetness periods. The behavior of the fungi was evaluated using a scanning electron microscope (SEM) and an ultraviolet light microscope (UV). In the images obtained in SEM, four hours after inoculation of the fungus, it was possible to verify the germination and penetration of conidia at temperatures of 10 to 20 °C. The formation of conidiophores was verified from six hours after inoculation, indicating that it is in the reproductive period. In the sexual phase, in SEM, from four hours after inoculation, it was possible to verify the formation of small protuberances at temperatures between 10 and 20 °C. These black dots evolve into circular, protruding black spots, like the symptoms of black crust, with apparent spore formation on them. The data obtained from the UV analyses corroborate those from SEM, showing that the fungus has good development in its two phases between temperatures of 20 and 25 °C and that the period of wetness on the leaf can contribute to the initial development of the pathogen.

2.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732270

ABSTRACT

The majority of the world's natural rubber comes from the rubber tree (Hevea brasiliensis). As a key enzyme for synthesizing phenylpropanoid compounds, phenylalanine ammonia-lyase (PAL) has a critical role in plant satisfactory growth and environmental adaptation. To clarify the characteristics of rubber tree PAL family genes, a genome-wide characterization of rubber tree PALs was conducted in this study. Eight PAL genes (HbPAL1-HbPAL8), which spread over chromosomes 3, 7, 8, 10, 12, 13, 14, 16, and 18, were found to be present in the genome of H. brasiliensis. Phylogenetic analysis classified HbPALs into groups I and II, and the group I HbPALs (HbPAL1-HbPAL6) displayed similar conserved motif compositions and gene architectures. Tissue expression patterns of HbPALs quantified by quantitative real-time PCR (qPCR) proved that distinct HbPALs exhibited varying tissue expression patterns. The HbPAL promoters contained a plethora of cis-acting elements that responded to hormones and stress, and the qPCR analysis demonstrated that abiotic stressors like cold, drought, salt, and H2O2-induced oxidative stress, as well as hormones like salicylic acid, abscisic acid, ethylene, and methyl jasmonate, controlled the expression of HbPALs. The majority of HbPALs were also regulated by powdery mildew, anthracnose, and Corynespora leaf fall disease infection. In addition, HbPAL1, HbPAL4, and HbPAL7 were significantly up-regulated in the bark of tapping panel dryness rubber trees relative to that of healthy trees. Our results provide a thorough comprehension of the characteristics of HbPAL genes and set the groundwork for further investigation of the biological functions of HbPALs in rubber trees.


Subject(s)
Gene Expression Regulation, Plant , Hevea , Multigene Family , Phenylalanine Ammonia-Lyase , Plant Proteins , Gene Expression Profiling , Genome, Plant , Hevea/genetics , Hevea/enzymology , Hevea/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Stress, Physiological/genetics
3.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474173

ABSTRACT

Transgenic technology is a crucial tool for gene functional analysis and targeted genetic modification in the para rubber tree (Hevea brasiliensis). However, low efficiency of plant regeneration via somatic embryogenesis remains a bottleneck of successful genetic transformation in H. brasiliensis. Enhancing expression of GROWTH-REGULATING FACTOR 4 (GRF4)-GRF-INTERACTING FACTOR 1 (GIF1) has been reported to significantly improve shoot and embryo regeneration in multiple crops. Here, we identified endogenous HbGRF4 and HbGIF1 from the rubber clone Reyan7-33-97, the expressions of which dramatically increased along with somatic embryo (SE) production. Intriguingly, overexpression of HbGRF4 or HbGRF4-HbGIF1 markedly enhanced the efficiency of embryogenesis in two H. brasiliensis callus lines with contrasting rates of SE production. Transcriptional profiling revealed that the genes involved in jasmonic acid response were up-regulated, whereas those in ethylene biosynthesis and response as well as the S-adenosylmethionine-dependent methyltransferase activity were down-regulated in HbGRF4- and HbGRF4-HbGIF1-overexpressing H. brasiliensis embryos. These findings open up a new avenue for improving SE production in rubber tree, and help to unravel the underlying mechanisms of HbGRF4-enhanced somatic embryogenesis.


Subject(s)
Hevea , Hevea/genetics , Rubber/metabolism , Latex , Gene Expression Regulation, Plant
4.
Front Microbiol ; 14: 1286369, 2023.
Article in English | MEDLINE | ID: mdl-38156006

ABSTRACT

A novel virga-like virus, provisionally named Rubber tree latent virus 2 (RTLV2), was identified from rubber tree (Hevea brasiliensis). It is a close relative of the previously reported Rubber tree latent virus 1 (RTLV1). The complete genomes of RTLV1 and RTLV2 were sequenced and comparatively analyzed in terms of genome organization, putative gene products and phylogenetic relationship. Both RTLV1 and RTLV2 have positive-sense single-stranded RNA genomes that encode seven open reading frames (ORFs), forming a similar genomic layout. In phylogenetic analyses based on replicase and coat protein amino acid sequences, RTLV1 and RTLV2 were clustered with unclassified virga-like viruses. They are distinct from currently recognized plant virus families. RTLV1 and RTLV2 can be distinguished from members of Virgaviridae by the presence of a putative coat protein duplex and a poly(A) tail at the 3'-terminus. The authenticity of RTLV1 and RTLV2 as infectious viruses was confirmed through field investigations and transmissibility assays. In conclusion, RTLV1 and RTLV2 represent a novel plant virus group that does not readily fit into current virus families.

5.
Plants (Basel) ; 12(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903926

ABSTRACT

Rigidoporus microporus, which causes white root rot disease (WRD) in Hevea brasiliensis, is a looming threat to rubber plantation in Malaysia. The current study was conducted to determine and evaluate the efficiency of fungal antagonists (Ascomycota) against R. microporus in rubber trees under laboratory and nursery conditions. A total of 35 fungal isolates established from the rubber tree rhizosphere soil were assessed for their antagonism against R. microporus by the dual culture technique. Trichoderma isolates can inhibit the radial growth of R. microporus by 75% or more in the dual culture test. Strains of T. asperellum, T. koningiopsis, T. spirale, and T. reesei were selected to assess the metabolites involved in their antifungal activity. Results indicated that T. asperellum exhibited an inhibitory effect against R. microporus in both volatile and non-volatile metabolite tests. All Trichoderma isolates were then tested for their ability in producing hydrolytic enzymes such as chitinase, cellulase and glucanase, indole acetic acid (IAA), siderophores production, and phosphate solubilization. From the positive results of the biochemical assays, T. asperellum and T. spirale were selected as the biocontrol candidates to be further tested in vivo against R. microporus. The nursery assessments revealed that rubber tree clone RRIM600 pretreated with only T. asperellum or with the combination of T. asperellum and T. spirale was able to reduce the disease severity index (DSI) and exert higher suppression of R. microporus compared to other pretreated samples, with the average DSI below 30%. Collectively, the present study demonstrates that T. asperellum represents a potential biocontrol agent that should be further explored to control R. microporus infection on rubber trees.

6.
Plants (Basel) ; 12(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36986969

ABSTRACT

Brassinosteroids (BRs) are important for plant growth and development, with BRI1 and BAK1 kinases playing an important role in BR signal transduction. Latex from rubber trees is crucial for industry, medicine and defense use. Therefore, it is beneficial to characterize and analyze HbBRI1 and HbBAK1 genes to improve the quality of the resources obtained from Hevea brasiliensis (rubber tree). Based on bioinformatics predictions and rubber tree database, five HbBRI1s with four HbBAK1s were identified and named HbBRI1~HbBRL3 and HbBAK1a~HbBAK1d, respectively, which were clustered in two groups. HbBRI1 genes, except for HbBRL3, exclusively contain introns, which is convenient for responding to external factors, whereas HbBAK1b/c/d contain 10 introns and 11 exons, and HbBAK1a contains eight introns. Multiple sequence analysis showed that HbBRI1s include typical domains of the BRI1 kinase, indicating that HbBRI1s belong to BRI1. HbBAK1s that possess LRR and STK_BAK1_like domains illustrate that HbBAK1s belong to the BAK1 kinase. BRI1 and BAK1 play an important role in regulating plant hormone signal transduction. Analysis of the cis-element of all HbBRI1 and HbBAK1 genes identified hormone response, light regulation and abiotic stress elements in the promoters of HbBRI1s and HbBAK1s. The results of tissue expression patterns indicate that HbBRL1/2/3/4 and HbBAK1a/b/c are highly expressed in the flower, especially HbBRL2-1. The expression of HbBRL3 is extremely high in the stem, and the expression of HbBAK1d is extremely high in the root. Expression profiles with different hormones show that HbBRI1 and HbBAK1 genes are extremely induced by different hormone stimulates. These results provide theoretical foundations for further research on the functions of BR receptors, especially in response to hormone signals in the rubber tree.

7.
PeerJ ; 10: e13189, 2022.
Article in English | MEDLINE | ID: mdl-35586131

ABSTRACT

Brassinolide (BR) plays an important role in plant growth, development, and the adaptation adversity process. Moreover, BRI1-EMS-SUPPRESSOR 1 (BES1) genes are crucial transcription factors (TFs) in the BR signaling pathway. To realize the function of HbBES1 family is helpful to improve genetic resources for rubber tree breeding. Based on the rubber tree database, we used bioinformatics to characterize physicochemical properties, gene structure, cis-elements, and expression patterns. These results indicated that there were nine BES1 members in rubber tree, which we named HbBES1-1 to HbBES1-9 and divided into two groups (I and II) based on their genetic relationships. HbBES1 genes in the same group shared similar gene structures and motifs. Cis-acting element analysis showed that the promoter sequences of HbBES1 genes contained many regulator elements that were related to hormone and stress, indicating that HbBES1 genes might be involved in the regulation of hormone and stress signal pathways. Our analysis of tissue specificity revealed that all of the nine HbBES1 members expressed highly in branches. Gene expression profiles under different hormone treatments showed that the HbBES1 gene family was induced to varying degrees under different hormones, HbBES1-3 and HbBES1-9 were extremely induced by ethylene (ETH). These results lay the foundation for further exploration of the molecular mechanism of the BES1 gene family, especially HbBES1-3 and HbBES1-9, regulating plant stress tolerance in rubber tree.


Subject(s)
Hevea , Hevea/genetics , Plant Breeding , Transcription Factors/genetics , Genome , Hormones/metabolism
8.
Front Plant Sci ; 13: 1092411, 2022.
Article in English | MEDLINE | ID: mdl-36704172

ABSTRACT

The rubber tree is the primary source of natural rubber and is mainly cultivated in Southeast Asian countries. Low temperature is the major abiotic stress affecting the yield of the rubber tree. Therefore, uncovering the cold resistance mechanism in the rubber tree is necessary. The present study used RNA-sequencing technology and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the transcriptomic and metabolomic changes in two rubber tree clones with different cold resistance capacities (temperature-sensitive Reyan 8-79 and cold-resistant Yunyan 77-4) at 0 h, 2 h, 6 h, and 20 h of exposure to 4°C. Independent analysis of the transcriptome and metabolitome showed that under prolonged low-temperature treatment, Yunyan 77-4 expressed more genes involved in regulating enzyme activity, changing cell permeability, and synthesizing significant metabolites, such as flavonoids and amino acids, than Reyan 8-79. The KEGG annotation and enrichment analysis identified arginine metabolism and biosynthesis of flavonoids as the major pathway associated with cold resistance. Integrated transcriptome and metabolome analysis showed that the increase in the expression of genes modulated flavonoid biosynthesis, arginine biosynthesis, and anthocyanins biosynthesis, resulting in higher levels of metabolites, such as naringenin chalcone, apigenin, dihydroquercetin, cyanidin 3-glucoside, L-arginosuccinate, N-acetyl-ornithine, ornithine, and N-acetyl-glutamate, in Yunyan 77-4 than in Reyan 8-79 after prolonged low-temperature treatment. Phylogenetic analysis identified the genes, such as CHS (gene356) and F3H (gene33147) of flavonoid biosynthesis and NAGS (gene16028, gene33765), ArgC (gene2487), and ASS (gene6161) of arginine biosynthesis were the key genes involved in the cold resistant of rubber tree. Thus, the present study provides novel insights into how rubber clones resist cold and is a valuable reference for cold-resistance breeding.

9.
Tree Physiol ; 42(3): 629-645, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34533196

ABSTRACT

Noncoding RNAs (ncRNAs) play pivotal roles in various biological processes in plants. However, the role of ncRNAs in tapping panel dryness (TPD) of rubber tree (Hevea brasiliensis Muell. Arg.) is largely unknown. Here, the whole transcriptome analyses of bark tissues from healthy and TPD trees were performed to identify differentially expressed long ncRNAs (DELs), microRNAs/miRNAs (DEMs), genes (DEGs) and their regulatory networks involved in TPD. A total of 263 DELs, 174 DEMs and 1574 DEGs were identified in the bark of TPD tree compared with that of healthy tree. Kyoto Encyclopedia of Genes and Genomes analysis revealed that most of the DEGs and targets of DELs and DEMs were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Additionally, the majority of DEGs and DELs related to rubber biosynthesis were downregulated in TPD trees. Furthermore, 98 DEGs and 44 DELs were targeted by 54 DEMs, 190 DEGs were identified as putative targets of 56 DELs, and 2 and 44 DELs were predicted as precursors and endogenous target mimics of 2 and 6 DEMs, respectively. Based on these, the DEL-DEM-DEG regulatory network involved in TPD was constructed, and 13 hub DELs, 3 hub DEMs and 2 hub DEGs were identified. The results provide novel insights into the regulatory roles of ncRNAs underlying TPD and lay a foundation for future functional characterization of long ncRNAs, miRNAs and genes involved in TPD in rubber tree.


Subject(s)
Hevea , MicroRNAs , RNA, Long Noncoding , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Gene Regulatory Networks , Hevea/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
10.
Front Genet ; 12: 763841, 2021.
Article in English | MEDLINE | ID: mdl-34777481

ABSTRACT

Given the importance of wood in many industrial applications, much research has focused on wood formation, especially lignin biosynthesis. However, the mechanisms governing the regulation of lignin biosynthesis in the rubber tree (Hevea brasiliensis) remain to be elucidated. Here, we gained insight into the mechanisms of rubber tree lignin biosynthesis using reaction wood (wood with abnormal tissue structure induced by gravity or artificial mechanical treatment) as an experimental model. We performed transcriptome analysis of rubber tree mature xylem from tension wood (TW), opposite wood (OW), and normal wood (NW) using RNA sequencing (RNA-seq). A total of 214, 1,280, and 32 differentially expressed genes (DEGs) were identified in TW vs. NW, OW vs. NW, and TW vs. OW, respectively. GO and KEGG enrichment analysis of DEGs from different comparison groups showed that zeatin biosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interaction pathways may play important roles in reaction wood formation. Sixteen transcripts involved in phenylpropanoid biosynthesis and 129 transcripts encoding transcription factors (TFs) were used to construct a TF-gene regulatory network for rubber tree lignin biosynthesis. Among them, MYB, C2H2, and NAC TFs could regulate all the DEGs involved in phenylpropanoid biosynthesis. Overall, this study identified candidate genes and TFs likely involved in phenylpropanoid biosynthesis and provides novel insights into the mechanisms regulating rubber tree lignin biosynthesis.

11.
Plants (Basel) ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34834685

ABSTRACT

The objective of this study was to evaluate photosynthetic performance based on gas exchange traits, chlorophyll a fluorescence, and leaf water potential (ΨL) in nine Hevea brasiliensis genotypes from the ECC-1 (Élite Caquetá Colombia) selection and the cultivar IAN 873 (control) in response to different climatic (semi-humid warm and humid warm climates), seasonal (dry and rainy periods), and hourly (3:00 to 18:00) variations that can generate stress in the early growth stage (two-year-old plants) in two large-scale clonal trials in the Colombian Amazon. The photosynthetic performance in 60% of the Colombian genotypes was slightly affected under the conditions with less water availability (dry period, semi-humid warm site, and between 9:00 and 15:00 h), as compared with IAN 873, whose affectation was moderate in terms of photosynthesis rates, but its water conservation strategy was strongly affected. The ECC 90, ECC 83, and ECC 73 genotypes had the best photosynthetic performance under conditions of greater water limitation, and ECC 35, and ECC 64 had a higher water status based on the leaf water potential, with intermediate photosynthetic performance. This germplasm has a high potential for selection in rubber tree breeding programs in future scenarios of climate change in the Colombian Amazon.

12.
BMC Plant Biol ; 21(1): 420, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34517831

ABSTRACT

BACKGROUND: Natural rubber (cis-1,4-polyioprene, NR) is an indispensable industrial raw material obtained from the Pará rubber tree (H. brasiliensis). Natural rubber cannot be replaced by synthetic rubber compounds because of the superior resilience, elasticity, abrasion resistance, efficient heat dispersion, and impact resistance of NR. In NR production, latex is harvested by periodical tapping of the trunk bark. Ethylene enhances and prolongs latex flow and latex regeneration. Ethephon, which is an ethylene-releasing compound, applied to the trunk before tapping usually results in a 1.5- to 2-fold increase in latex yield. However, intense mechanical damage to bark tissues by excessive tapping and/or over-stimulation with ethephon induces severe oxidative stress in laticifer cells, which often causes tapping panel dryness (TPD) syndrome. To enhance NR production without causing TPD, an improved understanding of the molecular mechanism of the ethylene response in the Pará rubber tree is required. Therefore, we investigated gene expression in response to ethephon treatment using Pará rubber tree seedlings as a model system. RESULTS: After ethephon treatment, 3270 genes showed significant differences in expression compared with the mock treatment. Genes associated with carotenoids, flavonoids, and abscisic acid biosynthesis were significantly upregulated by ethephon treatment, which might contribute to an increase in latex flow. Genes associated with secondary cell wall formation were downregulated, which might be because of the reduced sugar supply. Given that sucrose is an important molecule for NR production, a trade-off may arise between NR production and cell wall formation for plant growth and for wound healing at the tapping panel. CONCLUSIONS: Dynamic changes in gene expression occur specifically in response to ethephon treatment. Certain genes identified may potentially contribute to latex production or TPD suppression. These data provide valuable information to understand the mechanism of ethylene stimulation, and will contribute to improved management practices and/or molecular breeding to attain higher yields of latex from Pará rubber trees.


Subject(s)
Ethylenes/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Hevea/genetics , Hevea/metabolism , Latex/metabolism , Seedlings/genetics , Seedlings/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Genes, Plant , Indonesia
13.
Phytopathology ; 111(9): 1648-1659, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34047620

ABSTRACT

Powdery mildew causes substantial losses in crop and economic plant yields worldwide. Although powdery mildew infection of rubber trees (Hevea brasiliensis), caused by the biotrophic fungus Erysiphe quercicola, severely threatens natural rubber production, little is known about the mechanism by which E. quercicola adapts to H. brasiliensis to invade the host plant. In barley and Arabidopsis thaliana, lifeguard (LFG) proteins, which have topological similarity to BAX INHIBITOR-1, are involved in host plant susceptibility to powdery mildew infection. In this study, we characterized an H. brasiliensis LFG protein (HbLFG1) with a focus on its function in regulating defense against powdery mildew. HbLFG1 gene expression was found to be upregulated during E. quercicola infection. HbLFG1 showed conserved functions in cell death inhibition and membrane localization. Expression of HbLFG1 in Nicotiana benthamiana leaves and A. thaliana Col-0 was demonstrated to significantly suppress callose deposition induced by conserved pathogen-associated molecular patterns chitin and flg22. Furthermore, we found that overexpression of HbLFG1 in H. brasiliensis mesophyll protoplasts significantly suppressed the chitin-induced burst of reactive oxygen species. Although A. thaliana Col-0 and E. quercicola displayed an incompatible interaction, Col-0 transformants overexpressing HbLFG1 were shown to be susceptible to E. quercicola. Collectively, the findings of this study provide evidence that HbLFG1 acts as a negative regulator of plant immunity that facilitates E. quercicola infection in H. brasiliensis.


Subject(s)
Hevea , Hevea/genetics , Plant Diseases , Plant Immunity
14.
Molecules ; 25(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153210

ABSTRACT

Natural rubber is usually synthesized in the rubber particles present in the latex of rubber-producing plants such as the Pará rubber tree (Hevea brasiliensis) and rubber dandelion (Taraxacum kok-saghyz). Since the detailed lipid compositions of fresh latex and rubber particles of the plants are poorly known, the present study reports detailed compound lipid composition, focusing on phospholipids and galactolipids in the latex and rubber particles of the plants. In the fresh latex and rubber particles of both plants, phospholipids were much more dominant (85-99%) compared to galactolipids. Among the nine classes of phospholipids, phosphatidylcholines (PCs) were most abundant, at ~80%, in both plants. Among PCs, PC (36:4) and PC (34:2) were most abundant in the rubber tree and rubber dandelion, respectively. Two classes of galactolipids, monogalactosyl diacylglycerol and digalactosyl diacylglycerol, were detected as 12% and 1%, respectively, of total compound lipids in rubber tree, whereas their percentages in the rubber dandelion were negligible (< 1%). Overall, the compound lipid composition differed only slightly between the fresh latex and the rubber particles of both rubber plants. These results provide fundamental data on the lipid composition of rubber particles in two rubber-producing plants, which can serve as a basis for artificial rubber particle production in the future.


Subject(s)
Hevea/chemistry , Latex/chemistry , Lipids/chemistry , Taraxacum/chemistry
15.
Int J Mol Sci ; 21(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545790

ABSTRACT

The natural rubber biosynthetic pathway is well described in Hevea, although the final stages of rubber elongation are still poorly understood. Small Rubber Particle Proteins and Rubber Elongation Factors (SRPPs and REFs) are proteins with major function in rubber particle formation and stabilization. Their corresponding genes are clustered on a scaffold1222 of the reference genomic sequence of the Hevea brasiliensis genome. Apart from gene expression by transcriptomic analyses, to date, no deep analyses have been carried out for the genomic environment of SRPPs and REFs loci. By integrative analyses on transposable element annotation, small RNAs production and gene expression, we analysed their role in the control of the transcription of rubber biosynthetic genes. The first in-depth annotation of TEs (Transposable Elements) and their capacity to produce TE-derived siRNAs (small interfering RNAs) is presented, only possible in the Hevea brasiliensis clone PB 260 for which all data are available. We observed that 11% of genes are located near TEs and their presence may interfere in their transcription at both genetic and epigenetic level. We hypothesized that the genomic environment of rubber biosynthesis genes has been shaped by TE and TE-derived siRNAs with possible transcriptional interference on their gene expression. We discussed possible functionalization of TEs as enhancers and as donors of alternative transcription start sites in promoter sequences, possibly through the modelling of genetic and epigenetic landscapes.


Subject(s)
Biosynthetic Pathways , Gene Expression Profiling/methods , Hevea/metabolism , Rubber/metabolism , DNA Transposable Elements , Gene Expression Regulation, Plant , Hevea/genetics , Molecular Sequence Annotation , Phylogeny , Plant Proteins/genetics , Promoter Regions, Genetic , RNA, Small Interfering/genetics , Sequence Analysis, RNA
16.
PeerJ ; 8: e8932, 2020.
Article in English | MEDLINE | ID: mdl-32391199

ABSTRACT

BACKGROUND: Small RNAs modulate plant gene expression at both the transcriptional and post-transcriptional level, mostly through the induction of either targeted DNA methylation or transcript cleavage, respectively. Small RNA networks are involved in specific plant developmental processes, in signaling pathways triggered by various abiotic stresses and in interactions between the plant and viral and non-viral pathogens. They are also involved in silencing maintenance of transposable elements and endogenous viral elements. Alteration in small RNA production in response to various environmental stresses can affect all the above-mentioned processes. In rubber trees, changes observed in small RNA populations in response to trees affected by tapping panel dryness, in comparison to healthy ones, suggest a shift from a transcriptional to a post-transcriptional regulatory pathway. This is the first attempt to characterise small RNAs involved in post-transcriptional silencing and their target transcripts in Hevea. METHODS: Genes producing microRNAs (MIR genes) and loci producing trans-activated small interfering RNA (ta-siRNA) were identified in the clone PB 260 re-sequenced genome. Degradome libraries were constructed with a pool of total RNA from six different Hevea tissues in stressed and non-stressed plants. The analysis of cleaved RNA data, associated with genomics and transcriptomics data, led to the identification of transcripts that are affected by 20-22 nt small RNA-mediated post-transcriptional regulation. A detailed analysis was carried out on gene families related to latex production and in response to growth regulators. RESULTS: Compared to other tissues, latex cells had a higher proportion of transcript cleavage activity mediated by miRNAs and ta-siRNAs. Post-transcriptional regulation was also observed at each step of the natural rubber biosynthesis pathway. Among the genes involved in the miRNA biogenesis pathway, our analyses showed that all of them are expressed in latex. Using phylogenetic analyses, we show that both the Argonaute and Dicer-like gene families recently underwent expansion. Overall, our study underlines the fact that important biological pathways, including hormonal signalling and rubber biosynthesis, are subject to post-transcriptional silencing in laticifers.

17.
BMC Plant Biol ; 19(1): 591, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31881921

ABSTRACT

BACKGROUND: Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. RESULTS: Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker's yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. CONCLUSIONS: Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.


Subject(s)
Hevea/metabolism , Latex/metabolism , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Sucrose/metabolism , Cytoplasm/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Hevea/genetics , Phloem/metabolism , Plant Bark/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae , Vacuoles/metabolism
18.
Plant Cell Rep ; 38(6): 699-714, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30830263

ABSTRACT

KEY MESSAGE: An ICE-like transcription factor mediates jasmonate-regulated cold tolerance in the rubber tree (Hevea brasiliensis), and confers cold tolerance in transgenic Arabidopsis. The rubber tree (Hevea brasiliensis) is susceptible to low temperatures, and understanding the mechanisms regulating cold stress is of great potential value for enhancing tolerance to this environmental variable. In this study, we find that treatment with exogenous methyl jasmonate (MeJA) could significantly enhance Hevea brasiliensis cold tolerance. In addition, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments show that JASMONATE ZIM-DOMAIN(JAZ) proteins, HbJAZ1 and HbJAZ12, key repressors of JA signaling pathway, interact with HbICE2, a novel ICE (Inducer of CBF Expression)-like protein. HbICE2 was nuclear-localised and bound to the MYC recognition (MYCR) sequence. The transcriptional activation activity of HbICE2 in yeast cells was dependent on the N-terminus, and overexpression of HbICE2 in Arabidopsis resulted in elevated tolerance to chilling stress. Furthermore, dual-luciferase transient assay reveals that HbJAZ1 and HbJAZ12 proteins inhibit the transcriptional function of HbICE2. The expression of C-repeat-binding factor (CBF) signalling pathway genes including HbCBF1, HbCBF2 and HbCOR47 were up-regulated by MeJA. Taken together, our data suggest that the new ICE-like transcription factor HbICE2 is involved in jasmonate-regulated cold tolerance in Hevea brasiliensis.


Subject(s)
Cyclopentanes/pharmacology , Hevea/drug effects , Hevea/metabolism , Oxylipins/pharmacology , Plant Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Hevea/genetics , Plant Proteins/genetics , Transcription Factors/genetics
19.
Tree Physiol ; 39(3): 391-403, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30496555

ABSTRACT

Tapping panel dryness (TPD) causes a significant reduction in the latex yield of rubber tree (Hevea brasiliensis Muell. Arg.). It is reported that TPD is a typical programmed cell death (PCD) process. Although PCD plays a vital role in TPD occurrence, there is a lack of detailed and systematic study. Metacaspases are key regulators of diverse PCD in plants. Based on our previous result that HbMC1 was associated with TPD, we further elucidate the roles of HbMC1 on rubber tree TPD in this study. HbMC1 was up-regulated by TPD-inducing factors including wounding, ethephon and H2O2. Moreover, the expression level of HbMC1 was increased along with TPD severity in rubber tree, suggesting a positive correlation between HbMC1 expression and TPD severity. To investigate its biological function, HbMC1 was overexpressed in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana benthamiana). Transgenic yeast and tobacco overexpressing HbMC1 showed growth retardation compared with controls under H2O2-induced oxidative stress. In addition, overexpression of HbMC1 in yeast and tobacco reduced cell survival after high-concentration H2O2 treatment and resulted in enhanced H2O2-induced leaf cell death, respectively. A total of 11 proteins, rbcL, TM9SF2-like, COX3, ATP9, DRP, HbREF/Hevb1, MSSP2-like, SRC2, GATL8, CIPK14-like and STK, were identified and confirmed to interact with HbMC1 by yeast two-hybrid screening and co-transformation in yeast. The 11 proteins mentioned above are associated with many biological processes, including rubber biosynthesis, stress response, autophagy, carbohydrate metabolism, signal transduction, etc. Taken together, our results suggest that HbMC1-mediated PCD plays an important role in rubber tree TPD, and the identified HbMC1-interacting proteins provide valuable information for further understanding the molecular mechanism of HbMC1-mediated TPD in rubber tree.


Subject(s)
Caspases/genetics , Cell Death , Gene Expression Regulation, Plant , Hevea/physiology , Latex/chemistry , Plant Proteins/genetics , Caspases/metabolism , Hevea/genetics , Plant Proteins/metabolism
20.
Genes Genomics ; 40(11): 1181-1197, 2018 11.
Article in English | MEDLINE | ID: mdl-30315521

ABSTRACT

Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at 4 °C for 2 h) and LT24 (cold treatment at 4 °C for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Hevea/genetics , Gene Expression Profiling , Gene Ontology , Hevea/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL