Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 777
Filter
1.
Cell ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368476

ABSTRACT

Diatoms are central to the global carbon cycle. At the heart of diatom carbon fixation is an overlooked organelle called the pyrenoid, where concentrated CO2 is delivered to densely packed Rubisco. Diatom pyrenoids fix approximately one-fifth of global CO2, but the protein composition of this organelle is largely unknown. Using fluorescence protein tagging and affinity purification-mass spectrometry, we generate a high-confidence spatially defined protein-protein interaction network for the diatom pyrenoid. Within our pyrenoid interaction network are 10 proteins with previously unknown functions. We show that six of these form a shell that encapsulates the Rubisco matrix and is critical for pyrenoid structural integrity, shape, and function. Although not conserved at a sequence or structural level, the diatom pyrenoid shares some architectural similarities to prokaryotic carboxysomes. Collectively, our results support the convergent evolution of pyrenoids across the two main plastid lineages and uncover a major structural and functional component of global CO2 fixation.

2.
Ecol Lett ; 27(10): e14523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380337

ABSTRACT

Changing CO2 concentrations will continue to affect plant growth with consequences for ecosystem functioning. The adaptive capacity of C3 photosynthesis to changing CO2 concentrations is, however, insufficiently investigated so far. Here, we focused on the phylogenetic dynamics of maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax)-two key determinants of photosynthetic capacity in C3 plants-and their relation to deep-time dynamics in species diversification, speciation and atmospheric CO2 concentrations during the last 80 million years. We observed positive relationships between photosynthetic capacity and species diversification as well as speciation rates. We furthermore observed a shift in the relationships between photosynthetic capacity, evolutionary dynamics and prehistoric CO2 fluctuations about 30 million years ago. From this, we deduce strong links between photosynthetic capacity and evolutionary dynamics in C3 plants. We furthermore conclude that low CO2 environments in prehistory might have changed adaptive processes within the C3 photosynthetic pathway.


Subject(s)
Biological Evolution , Carbon Dioxide , Photosynthesis , Phylogeny , Plants , Carbon Dioxide/metabolism , Plants/genetics , Atmosphere , Biodiversity
3.
Biosci Rep ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361893

ABSTRACT

Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42oC), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42oC). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.

4.
Food Chem ; 463(Pt 4): 141544, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39388881

ABSTRACT

Discovering alternative protein sources that are both nutritious and environmentally friendly is essential to meet the growing global population's needs. Duckweed offers promise due to its cosmopolitan distribution, rapid growth, high protein content, and scalability from household tanks to large lagoons without requiring arable land that competes for the major crops. Rich in essential amino acids, particularly branched-chain amino acids, duckweed supports human health. Extraction methods, such as ultrasound and enzymatic techniques, enhance protein yield compared to traditional methods. However, low protein solubility remains a challenge, addressed by protein modification techniques (physical, chemical, and biological) to broaden its applications. Duckweed proteins hold potential as functional food ingredients due to their unique physicochemical properties. This review also includes patents and regulations related to duckweed protein, filling a gap in current literature. Overall, duckweed presents a sustainable protein source with a lower environmental impact compared to conventional crops.

5.
AoB Plants ; 16(5): plae044, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380849

ABSTRACT

Leaf-scale photosynthetic optimization models can quantitatively predict photosynthetic acclimation and have become an important means of improving vegetation and land surface models. Previous models have generally been based on the optimality assumption of maximizing the net photosynthetic assimilation per unit leaf area (i.e. the area-based optimality) while overlooking other optimality assumptions such as maximizing the net photosynthetic assimilation per unit leaf dry mass (i.e. the mass-based optimality). This paper compares the predicted results of photosynthetic acclimation to different environmental conditions between the area-based optimality and the mass-based optimality models. The predictions are then verified using the observational data from the literatures. The mass-based optimality model better predicted photosynthetic acclimation to growth light intensity, air temperature and CO2 concentration, and captured more variability in photosynthetic traits than the area-based optimality models. The findings suggest that the mass-based optimality approach may be a promising strategy for improving the predictive power and accuracy of optimization models, which have been widely used in various studies related to plant carbon issues.

6.
J Exp Bot ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264212

ABSTRACT

Climate change due to anthropogenic CO2 emissions affects plant performance globally. To improve crop resilience, we need to understand the effects of elevated CO2 concentration (e[CO2]) on CO2 assimilation and Rubisco biochemistry. However, the interactive effects of e[CO2] and abiotic stress are especially unclear. This study analyses the CO2 effect on photosynthetic capacity under different water availability and temperature conditions in 42 different crop species, varying in functional group, photosynthetic pathway and phenological stage. We analysed close to 3000 data points extracted from 120 published manuscripts. For C3 species, e[CO2] increases net photosynthesis and intercellular [CO2], while reducing stomatal conductance and transpiration. Vmaxc, Rubisco in vitro extractable maximal activity and content also decrease with e[CO2] in C3 species, while C4 crops are less responsive to e[CO2]. The interaction with drought and/or heat stress does not significantly alter these photosynthetic responses, indicating that the photosynthetic capacity of stressed plants responds to e[CO2]. Moreover, e[CO2] has strong effect on the photosynthetic capacity of grasses mainly in the final stages of development. This study provides insight into the intricate interactions within the plant photosynthetic apparatus under the influence of climate change, enhancing the understanding of mechanisms governing plant responses to environmental parameters.

7.
Plants (Basel) ; 13(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273846

ABSTRACT

The Hyphomicrobiales (Rhizobiales) order contains soil bacteria with an irregular distribution of the Calvin-Benson-Bassham cycle (CBB). Key enzymes in the CBB cycle are ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), whose large and small subunits are encoded in cbbL and cbbS, and phosphoribulokinase (PRK), encoded by cbbP. These genes are often found in cbb operons, regulated by the LysR-type regulator CbbR. In Bradyrhizobium, pertaining to this order and bearing photosynthetic and non-photosynthetic species, the number of cbbL and cbbS copies varies, for example: zero in B. manausense, one in B. diazoefficiens, two in B. japonicum, and three in Bradyrhizobium sp. BTAi. Few studies addressed the role of CBB in Bradyrhizobium spp. symbiosis with leguminous plants. To investigate the horizontal transfer of the cbb operon among Hyphomicrobiales, we compared phylogenetic trees for concatenated cbbL-cbbP-cbbR and housekeeping genes (atpD-gyrB-recA-rpoB-rpoD). The distribution was consistent, indicating no horizontal transfer of the cbb operon in Hyphomicrobiales. We constructed a ΔcbbLS mutant in B. diazoefficiens, which lost most of the coding sequence of cbbL and has a frameshift creating a stop codon at the N-terminus of cbbS. This mutant nodulated normally but had reduced competitiveness for nodulation and long-term adhesion to soybean (Glycine max (L.) Merr.) roots, indicating a CBB requirement for colonizing soybean rhizosphere.

8.
Molecules ; 29(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39274875

ABSTRACT

The recovery of valuable nutritional compounds, like proteins, from waste streams and by-products is a key strategy for enhancing production sustainability and opening up new market potential. This research aimed to use high-intensity ultrasound as an innovative technique to extract the soluble proteins from the pumpkin leaves. The impact of various sonication amplitudes and duration periods on protein yield, functional properties, antioxidant qualities, and structural characteristics, were studied. Utilization of ultrasound technology significantly increased the yield of pumpkin leaf protein by up to 40%-six times higher than maceration. The ultrasound extraction provided a RuBisCO-rich protein fraction with high radical scavenging and chelating activities, especially at 40% amplitude. Cavitation modified the tertiary and secondary structures of leaf proteins: the amount of α-helix changed based on amplitude (12.3-37.7%), the amount of random coil increased to 20.4%, and the amount of ß-turn reduced from 31 to 18.6%. The alteration of the protein fluorescence spectrum (blue shift in spectrum) provides further evidence that ultrasound alters the proteins' molecular structure in comparation with maceration; the maximum tryptophan fluorescence intensity decreased from 22.000 to 17.096. The hydrophobicity values of 76.8-101.5 were substantially higher than the maceration value of 53.4, indicating that ultrasound improved the hydrophobicity of protein surfaces. Ultrasound resulted in a significant increase in solubility in an acidic environment with the increase in sonication amplitude. A 2.4-fold increase in solubility at pH 2 becomes apparent (20% amplitude; 43.1%) versus maceration (18.2%). The emulsifying ability decreases from 6.62 to 5.13 m2/g once the sonication amplitude increases by 20-70%. By combining the ultrasound periods and amplitudes, it is possible to create high-value protein leaf extracts with improved properties which can find real application as food additives and dietary supplements.


Subject(s)
Cucurbita , Green Chemistry Technology , Plant Leaves , Plant Proteins , Cucurbita/chemistry , Plant Leaves/chemistry , Plant Proteins/chemistry , Antioxidants/chemistry , Ultrasonic Waves , Sonication/methods , Hydrophobic and Hydrophilic Interactions
9.
bioRxiv ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39345498

ABSTRACT

Carboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria. This self-assembling proteinaceous organelle encapsulates the key CO2-fixing enzymes, Rubisco and carbonic anhydrase, using a polyhedral shell constructed by hundreds of shell protein paralogs. Deciphering the precise arrangement and structural organization of Rubisco enzymes within carboxysomes is crucial for understanding the formation process and overall functionality of carboxysomes. Here, we employed cryo-electron tomography and subtomogram averaging to delineate the three-dimensional packaging of Rubiscos within ß-carboxysomes in the freshwater cyanobacterium Synechococcus elongatus PCC7942 that were grown under low light. Our results revealed that Rubiscos are arranged in multiple concentric layers parallel to the shell within the ß-carboxysome lumen. We also identified the binding of Rubisco with the scaffolding protein CcmM in ß-carboxysomes, which is instrumental for Rubisco encapsulation and ß-carboxysome assembly. Using QconCAT-based quantitative mass spectrometry, we further determined the absolute stoichiometric composition of the entire ß-carboxysome. This study and recent findings on the ß-carboxysome structure provide insights into the assembly principles and structural variation of ß-carboxysomes, which will aid in the rational design and repurposing of carboxysome nanostructures for diverse bioengineering applications.

10.
J Mol Biol ; : 168800, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326491

ABSTRACT

CO2 fixation in most unicellular algae relies on the pyrenoid, a biomolecular condensate, which sequesters the cell's carboxylase Rubisco. In the marine diatom Phaeodactylum tricornutum, the pyrenoid tandem repeat protein Pyrenoid Component 1 (PYCO1) multivalently binds Rubisco to form a heterotypic Rubisco condensate. PYCO1 contains prion-like domains and can phase-separate homotypically in a salt-dependent manner. Here we dissect PYCO1 homotypic liquid-liquid phase separation (LLPS) by evaluating protein fragments and the effect of site-directed mutagenesis. Two of PYCO1's six repeats are required for homotypic LLPS. Mutagenesis of a minimal phase-separating fragment reveals tremendous sensitivity to the substitution of aromatic residues. Removing positively charged lysines and arginines instead enhances the propensity of the fragment to condense. We conclude that PYCO1 homotypic LLPS is mostly driven by π-π interactions mediated by tyrosine and tryptophan stickers. In contrast π-cation interactions involving arginine or lysine are not significant drivers of LLPS in this system.

11.
J Plant Res ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327385

ABSTRACT

We have previously suggested that in rice (Oryza sativa L.) leaves of different ages and N nutrition statuses, photosystems II and I (PSII and PSI, respectively) are regulated depending on N partitioning to Rubisco, which can determine the magnitude of unutilized light energy. The robustness of this mechanism was tested using Rubisco-antisense transgenic rice plants, in which reduced N partitioning to Rubisco markedly increases unutilized light energy. In wild-type plants, N partitioning to Rubisco tended to be smaller in the leaves at lower positions owing to leaf senescence. In the transgenic plants, N partitioning to Rubisco was generally smaller than in the wild-type plants and was relatively constant among leaf positions. The quantum efficiency of PSII [Y(II)] and quantum yield of non-photochemical quenching [Y(NPQ)] correlated positively and negatively, respectively, with N partitioning to Rubisco irrespective of leaf position or genotype. The oxidation levels of the reaction center chlorophyll of PSI (P700) [Y(ND)] negatively correlated with N partitioning to Rubisco. However, in mature and early senescent leaves of the transgenic plants, Y(ND) was markedly lower than expected from N partitioning to Rubisco. These results suggest that in the transgenic plants, the regulation depending on N partitioning to Rubisco is robust for PSII but fails for PSI in mature and early senescing leaves. In these leaves, the magnitudes of P700 oxidation were found to be less than expected from the Y(II) and Y(NPQ) values. The mechanistic reasons and physiological implications of these phenomena are discussed.

12.
New Phytol ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329431
13.
New Phytol ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39290056

ABSTRACT

Thaumatin-like proteins (TLPs) in plants play a crucial role in combating stress, and they have been proven to possess antifungal properties. However, the role of TLPs in pathogens has not been reported. We identified a effector protein, Pt9029, which contained a Thaumatin domain in Puccinia triticina (Pt), possessing a chloroplast transit peptide and localized in the chloroplasts. Silencing Pt9029 in the Pt physiological race THTT resulted in a notable reduction in virulence and stunted growth and development of Pt hypha in near-isogenic wheat line TcLr2b. Overexpression of Pt9029 in wheat exerted a suppressive effect on H2O2 production, consequently impeding the wheat's disease resistance mechanisms. The TLP domain of Pt9029 targets the Rubisco activase (TaRCA) in chloroplasts. This interaction effectively inhibited the function of TaRCA, subsequently leading to a decrease in Rubisco enzyme activity. Therefore, this indicates that TLPs in Pt can inhibit host defense mechanisms during the pathogenic process of Pt. Moreover, TaRCA silencing resulted in reduced resistance of TcLr2b against Pt race THTT. This clearly demonstrated that TaRCA positively regulates wheat resistance to leaf rust. These findings reveal a novel strategy exploited by Pt to manipulate wheat rust resistance and promote pathogenicity.

14.
J Plant Physiol ; 303: 154337, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39305568

ABSTRACT

Reducing nitrogen (N) application is crucial in addressing the low N utilization efficiency (NUE) and the risks of environmental pollution in wheat production. Improving low N (LN) tolerance in wheat can help balance the conflict between wheat growth and reduced N fertilization. Hydroponic experiments were conducted using Yangmai158 (LN-tolerant) and Zaoyangmai (LN-sensitive) cultivars to study whether LN priming (LNP) in the 3-leaf stage can improve the photosynthetic capacity of wheat seedlings under N-deficit stress at the 5-leaf stage. LNP increased the net photosynthetic rate (Pn), stomatal conductance (Gs), electron transfer rate (ETR), carboxylation efficiency (CE), maximum carboxylation rate (Vcmax), and the content and activity of Rubisco and Rubisco activase (RCA) in both cultivars, with Yangmai158 showing a greater increase than Zaoyangmai. After 14 days of N-deficit stress, the decreases in Pn, Gs, ETR, CE, Vcmax, and the content and activity of Rubisco and RCA of the two cultivars treated with LNP were significantly lower compared with those of the treatments without LNP. LNP improved the allocation proportion of leaf N to photosynthetic machinery, with the greatest increase in the carboxylation machinery. These results indicate that LNP can allocate more N to the photosynthetic apparatus, improving Rubisco content and activity to enhance the photosynthetic capacity and NUE of leaves under N-deficit stress.

15.
Bioresour Technol ; 410: 131214, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127361

ABSTRACT

Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of ß-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.


Subject(s)
Carbon Dioxide , Cupriavidus necator , Carbon Dioxide/metabolism , Cupriavidus necator/metabolism , Cupriavidus necator/genetics , Bicarbonates/metabolism , Carbon Cycle/physiology , Carbonic Anhydrases/metabolism , Autotrophic Processes , Halothiobacillus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Ribulose-Bisphosphate Carboxylase/metabolism
16.
Appl Environ Microbiol ; 90(9): e0143824, 2024 09 18.
Article in English | MEDLINE | ID: mdl-39162566

ABSTRACT

With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of phaR increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2 . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism Rhodopseudomonas palustris TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the phaR or phaZ genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.


Subject(s)
Polyhydroxyalkanoates , Rhodopseudomonas , Ribulose-Bisphosphate Carboxylase , Polyhydroxyalkanoates/metabolism , Polyhydroxyalkanoates/biosynthesis , Rhodopseudomonas/genetics , Rhodopseudomonas/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heterotrophic Processes
17.
Biochem J ; 481(15): 1043-1056, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39093337

ABSTRACT

Rubisco activity is highly regulated and frequently limits carbon assimilation in crop plants. In the chloroplast, various metabolites can inhibit or modulate Rubisco activity by binding to its catalytic or allosteric sites, but this regulation is complex and still poorly understood. Using rice Rubisco, we characterised the impact of various chloroplast metabolites which could interact with Rubisco and modulate its activity, including photorespiratory intermediates, carbohydrates, amino acids; as well as specific sugar-phosphates known to inhibit Rubisco activity - CABP (2-carboxy-d-arabinitol 1,5-bisphosphate) and CA1P (2-carboxy-d-arabinitol 1-phosphate) through in vitro enzymatic assays and molecular docking analysis. Most metabolites did not directly affect Rubisco in vitro activity under both saturating and limiting concentrations of Rubisco substrates, CO2 and RuBP (ribulose-1,5-bisphosphate). As expected, Rubisco activity was strongly inhibited in the presence of CABP and CA1P. High physiologically relevant concentrations of the carboxylation product 3-PGA (3-phosphoglyceric acid) decreased Rubisco activity by up to 30%. High concentrations of the photosynthetically derived hexose phosphates fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) slightly reduced Rubisco activity under limiting CO2 and RuBP concentrations. Biochemical measurements of the apparent Vmax and Km for CO2 and RuBP (at atmospheric O2 concentration) and docking interactions analysis suggest that CABP/CA1P and 3-PGA inhibit Rubisco activity by binding tightly and loosely, respectively, to its catalytic sites (i.e. competing with the substrate RuBP). These findings will aid the design and biochemical modelling of new strategies to improve the regulation of Rubisco activity and enhance the efficiency and sustainability of carbon assimilation in rice.


Subject(s)
Chloroplasts , Molecular Docking Simulation , Oryza , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/chemistry , Chloroplasts/metabolism , Chloroplasts/enzymology , Oryza/metabolism , Oryza/enzymology , Photosynthesis , Plant Proteins/metabolism , Plant Proteins/chemistry , Carbon Dioxide/metabolism , Ribulosephosphates/metabolism , Fructosephosphates/metabolism
18.
Cells ; 13(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39195209

ABSTRACT

Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.


Subject(s)
Photosynthesis , Photosynthesis/genetics , Genetic Engineering , Plants/genetics , Plants/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Plants, Genetically Modified , Carbon Dioxide/metabolism
19.
ACS Synth Biol ; 13(7): 2038-2044, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38954490

ABSTRACT

Carbon dioxide emission and acidification during chemical biosynthesis are critical challenges toward microbial cell factories' sustainability and efficiency. Due to its acidophilic traits among workhorse lineages, the probiotic Escherichia coli Nissle (EcN) has emerged as a promising chemical bioproducer. However, EcN lacks a CO2-fixing system. Herein, EcN was equipped with a simultaneous CO2 fixation system and subsequently utilized to produce low-emission 5-aminolevulinic acid (5-ALA). Two different artificial CO2-assimilating pathways were reconstructed: the novel ribose-1,5-bisphosphate (R15P) route and the conventional ribulose-5-phosphate (Ru5P) route. CRISPRi was employed to target the pfkAB and zwf genes in order to redirect the carbon flux. As expected, the CRISPRi design successfully strengthened the CO2 fixation. The CO2-fixing route via R15P resulted in high biomass, while the engineered Ru5P route acquired the highest 5-ALA and suppressed the CO2 release by 77%. CO2 fixation during 5-ALA production in EcN was successfully synchronized through fine-tuning the non-native pathways with CRISPRi.


Subject(s)
Aminolevulinic Acid , Carbon Dioxide , Escherichia coli , Metabolic Engineering , Escherichia coli/metabolism , Escherichia coli/genetics , Carbon Dioxide/metabolism , Aminolevulinic Acid/metabolism , Metabolic Engineering/methods , CRISPR-Cas Systems/genetics
20.
Photochem Photobiol Sci ; 23(8): 1521-1531, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38995521

ABSTRACT

The defensive role performed by exogenously supplied ascorbic acid in the cyanobacterium Nostoc muscorum Meg1 against damages produced by UV-C radiation exposure was assessed in this study. Exposure to UV-C (24 mJ/cm2) significantly enhanced reactive oxygen species (ROS) (50%) along with peroxidation of lipids (21%) and protein oxidation (22%) in the organism. But, addition of 0.5 mM ascorbic acid prior to UV-C exposure showed reduction in ROS production (1.7%) and damages to lipids and proteins (1.5 and 2%, respectively). Light and transmission electron microscopic studies revealed that ascorbic acid not only protected filament breakage but also restricted severe ultrastructural changes and cellular damages in the organism. Although the growth of the organism was repressed up to 9% under UV-C treatment within 15 days, a pre-treatment with ascorbic acid led to growth enhancement by 42% in the same period. Various growth parameters such as photo-absorbing pigments (phycoerythrin, phycocyanin, allophycocyanin, chlorophyll a, and carotenoids), water splitting complex (WSC), D1 protein, RuBisCO, glutamine synthetase and nitrogenase activities in the UV-C treated organism were seen to be relatively intact in the presence of ascorbic acid. Thus, a detailed analysis undertaken in the present study was able to demonstrate that ascorbic acid not only act as first responder against harmful UV-C radiation by down-regulating ROS production, it also accelerated the growth performance in the organism in the post UV-C incubation period as an immediate response to an adverse experience presented in the form of UV-C radiation exposure.


Subject(s)
Ascorbic Acid , Reactive Oxygen Species , Ultraviolet Rays , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Reactive Oxygen Species/metabolism , Nostoc muscorum/drug effects , Nostoc muscorum/metabolism , Nostoc muscorum/chemistry , Lipid Peroxidation/drug effects , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL