Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 911
Filter
1.
BMC Vet Res ; 20(1): 425, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306666

ABSTRACT

BACKGROUND: Zinc nanoparticles (NPs) are characterized by high bioavailability, small size, and high absorbability. The purpose of this experiment was to determine the effect of Zn-NP feed supplementation on ruminal fermentation, microbiota, and histopathology in lambs. In vitro (24 h), short-term (STE, 28 d), and long-term (LTE, 70 d) experiments were performed. The lambs in STE were fed a basal diet (BD) composed of 350 g/d ground barley and 700 g/d meadow hay (Control), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NPs), and BD enriched with Zn phosphate-based NPs (80 mg Zn/kg of diet, ZnP-NP). The in vitro gas production technique was used in incubated rumen fluid from STE. The lambs in LTE were fed BD (Control), BD enriched with ZnO-NPs (40 mg Zn/kg of diet, ZnO-NP40), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NP80) and BD enriched with ZnO (80 mg Zn/kg of diet, ZnO-80). RESULTS: After 24 h of incubation, dry matter digestibility was higher for ZnO-NP and ZnP-NP substrates than the control in an in vitro experiment (P < 0.001). The total bacterial population in the STE was lower (P < 0.001) in the ZnP-NP group than in the control and ZnO-NP groups, but the protozoan populations were not significantly different. The ammonia-N concentration in LTE was lowest in the ZnO-NP80 group (P = 0.002), but the activities of carboxymethyl cellulase (P < 0.001) and xylanase (P = 0.002) were higher in the ZnO-NP40, ZnO-NP80, and ZnO-80 groups than in the control group. Morphological observation after STE and LTE revealed histological changes (e.g. inflammation of the epithelium or edema of the connective tissue) in the rumen of lambs. CONCLUSION: Zn-NP supplementation up to 70 d improved feed-use efficiency and influenced ammonia-N concentration and activities of hydrolases in the rumen. The active ruminal fermentation affected the health of the ruminal papillae and epithelium in the lambs, regardless of the application's form, dose, or duration. However, by affecting rumen microbial fermentation, Zn-NPs could alter fermentation patterns, thereby increasing the capacity of host rumen epithelial cells to transport short-chain fatty acids.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Fermentation , Rumen , Zinc , Animals , Rumen/drug effects , Rumen/metabolism , Rumen/microbiology , Animal Feed/analysis , Diet/veterinary , Zinc/pharmacology , Zinc/administration & dosage , Zinc/metabolism , Sheep , Metal Nanoparticles/administration & dosage , Zinc Oxide/administration & dosage , Zinc Oxide/pharmacology , Gastrointestinal Microbiome/drug effects , Male
2.
Metabolites ; 14(9)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39330483

ABSTRACT

A pasture or concentrate-based dietary regime impacts a variety of factors including both ruminal health and function, and consequently milk production and quality. The objective of this study was to examine the effect of feeding differing pasture levels on the metabolite composition of bovine ruminal fluid. Ruminal fluid was obtained from rumen-cannulated spring-calving cows (N = 9, Holstein-Friesian breed, average lactation number = 5) fed one of three diets across a full lactation season. Group 1 (pasture) consumed perennial ryegrass supplemented with 5% concentrates; group 2 received a total mixed ration (TMR) diet; and group 3 received a partial mixed ration (PMR) diet which included pasture and a TMR. Samples were taken at two timepoints: morning and evening. Metabolomic analysis was performed using nuclear magnetic resonance (1H-NMR) spectroscopy. Statistical analysis revealed significant changes across the dietary regimes in both morning and evening samples, with distinct alterations in the metabolite composition of ruminal fluid from pasture-fed cows (FDR-adjusted p-value < 0.05). Acetate and butyrate were significantly higher in samples derived from a pasture-based diet whereas sugar-related metabolites were higher in concentrate-based samples. Furthermore, a distinct diurnal impact on the metabolite profile was evident. This work lays the foundation for understanding the complex interaction between dietary regime and ruminal health.

3.
Trop Anim Health Prod ; 56(8): 292, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331241

ABSTRACT

This study aimed to evaluate the effect of replacing Tifton 85 hay (TH) with Moringa hay (MH) on the intake, apparent digestibility, ingestive behaviour, rumen parameters, serum attributes, nitrogen balance, water balance, and urinary attributes of sheep. Thus, 5 rams, ½ Dorper + ½ Santa Inês, that were 12 ± 4 months of age with an initial body weight of 32.8 ± 2.6 kg were distributed in metabolic cages in a Latin square design. The experiment lasted 85 days and was divided into five 17-day periods. The animals received rations with increasing replacement (0, 100, 200, 300, or 400 g/kg of dry matter in the total diet) of TH for MH. The forage: concentrate ratio of the diets was 40:60. Replacing TH with MH reduced (P < 0.05) the intake of organic matter, crude protein, neutral detergent fibre (NDFap), and total digestible nutrients by sheep. The apparent digestibility of NDFap and the feeding and rumination efficiencies of NDFap were reduced (P < 0.05) when MH replaced TH in the animals' diet. This replacement did not influence (P > 0.05) serum urea, total protein, creatinine, or aspartate aminotransferase in sheep. Replacing TH with MH decreased water intake and excretion (P < 0.05). In addition, nitrogen excretion via urine, urinary creatinine, and nitrogen absorption decreased (P < 0.05) when TH was replaced with MH. However, there was an increase in the sheep's nitrogen retention and urine pH. We recommend replacing 30% TH with MH in the diet of lambs because it does not compromise nutrient metabolism.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Moringa oleifera , Animals , Animal Feed/analysis , Male , Diet/veterinary , Moringa oleifera/chemistry , Sheep, Domestic/physiology , Rumen/metabolism , Metabolome , Water-Electrolyte Balance , Nutrients/metabolism , Nitrogen/metabolism , Sheep
4.
Animals (Basel) ; 14(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39272399

ABSTRACT

The aim of this study was to evaluate the effect of conjugated linoleic acid (CLA) on milk fat globule (MFG) size and the ruminal microbiome of goats. Twenty-four mid-lactation Saanen dairy goats weighing 49 ± 4.5 kg (168 ± 27 d in milk, 1.2 ± 0.1 kg milk/d, 2-3 years old) were randomly divided into four groups-a control (CON) group, which was fed a basal diet, and three CLA supplementation groups, in which 30 g CLA (low-dose group, L-CLA), 60 g CLA (medium-dose group, M-CLA), or 90 g CLA (high-dose group, H-CLA) was added to the basal diet daily. The experiment lasted for 21 days, during which time goat milk was collected for composition and MFG size analysis. On day 21 of feeding, ruminal fluid was collected from the CON and H-CLA groups for analysis of the changes in microorganismal abundance. The results showed that CLA supplementation did not affect milk production, milk protein, or lactose content in the dairy goats (p > 0.05), but significantly reduced the milk fat content (p < 0.01) compared with the CON group. The CLA supplementation significantly decreased the D[3,2] and D[4,3] of the MFGs in a dose-dependent manner (p < 0.01). Moreover, dietary CLA inclusion increased the proportion of small-sized MFGs and decreased that of large-sized ones. The results of 16S rRNA gene sequencing showed that CLA-induced milk fat depression in dairy goats was accompanied by significant changes in the relative abundance of ruminal bacterial populations, most of which belonged to the Firmicutes and Bacteroidetes phyla. The relative abundance of Rikenellaceae_RC9_gut_group and Prevolellaceae_UCG-003 in Bacteroidetes and UCG-002, Succiniclasticum, and norank_f__norank_o__Clostridia_vadinBB60_group in Firmicutes was significantly higher in the CON group than in the H-CLA group. In contrast, the relative abundance of norank_f__UCG-011, norank_f_Eubacterium_coprostanoligenes_group, unclassified_f__Lachnospiraceae, and UCG-001 in Firmicutes and norank_f__Muribaculaceae in Bacteroidetes was significantly higher in the H-CLA group than in the CON group. Correlation analysis showed that the milk fat content was negatively correlated with the relative abundance of some bacteria, including members of Firmicutes and Bacteroidetes. Similarly, MFG size (D[3,2] and D[4,3]) was negatively correlated with several members of Firmicutes and Bacteroidetes, including Lachnospiraceae, norank_f__UCG-011, UCG-001, norank_f__Eubacterium_coprostanoligenes_group (Firmicutes), and norank_f__Muribaculaceae (Bacteroidetes), while positively correlated with the relative abundance of some members of Firmicutes and Bacteroidetes, including Mycoplasma, Succiniclasticum, norank_f__norank_o__Clostridia_vadinBB60_group, UCG-002 (Firmicutes), and Rikenellaceae_RC9_gut_group (Bacteroidetes). Overall, our data indicated that CLA treatment affected milk fat content and MFG size in dairy goats, and these effects were correlated with the relative abundance of ruminal bacterial populations. These results provide the first evidence to explain the mechanism underlying diet-induced MFG from the perspective of the ruminal microbiome in dairy goats.

5.
J Sci Food Agric ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291551

ABSTRACT

BACKGROUND: Flaxseed lignans, types of polyphenolic compounds, primarily consist of secoisolariciresinol diglucoside (SDG). Natural plant extracts are becoming increasingly important as feed for ruminant animals. An underutilized plant bioactive component, SDG shows promising benefits for young ruminant production. The objective of this study was to assess the impact of SDG on rumen fermentation using an in vitro rumen simulation technology. Additionally, we tested the effects of SDG (0.20 g kg-1 body weight) on rumen development and production performance of lambs in a production setting. RESULTS: The in vitro addition of 100 mg L-1 SDG demonstrated significant regulatory effects, with a notable decrease in the acetate/propionate ratio (P < 0.05). Feeding trials revealed that SDG significantly increased average daily feed intake and average daily weight gain (P < 0.05), and reduced the acetate/propionate ratio (P < 0.05). This led to a significant increase in the relative abundance of Eubacterium ruminantium (P = 0.038) and Butyrivibrio (P = 0.002). Furthermore, it promoted rumen development and upregulated the relative expression of mRNA of Cyclin E1 and CDK2 in rumen epithelial cells (P < 0.05). CONCLUSION: The SDG extract optimizes the composition of rumen microbiota and the development of rumen epithelial cells, promoting the growth of pre-weaning lambs. The SDG additive exhibits potential as a novel growth promoter for ruminant animals, offering a promising solution for sustainable livestock production. © 2024 Society of Chemical Industry.

6.
Trop Anim Health Prod ; 56(7): 249, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218956

ABSTRACT

Infrared thermography may be an alternative technology for measuring the amount of CH4 produced and has the advantages of low cost, speed and efficiency in obtaining results. The study's objective was to determine if the infrared thermography is adequate for predicting the emission of CH4 in hair sheep and the best time after feeding to carry out the measurement. Twelve Santa Inês lambs (females, non-pregnant, with twelve months old and mean body weight of 39.3 ± 2.1 kg) remained for two days in respirometric chambers, in a semi-closed system, to determine the CH4 production. The animals were divided into two treatments, according to the diet provided. During this period, seven thermographic photographs were taken, at times - 1 h, -0.5 h, 0 h, 0.5 h, 1 h, 2 h, 3 h, 5 h, and 7 h, according to the feeding time, defined as 0 h. CH4 production was measured over 24 h. Thermographic images measured the maximum, minimum, average and point temperatures at the left and right flanks. The temperature difference between the left and right flanks (left minus right) was calculated each time. Pearson correlation coefficients, multiple regression and principal component analysis were carried out in SAS®. The best prediction of emission intensity of CH4 (kg of CH4 per dry matter intake) was obtained at 3 h after feeding: CH4/DMI = 13.9016-0,38673 * DifP2 + 3.39089 * DifMed2 (R² = 0.48), using the difference between left and right flanks for point and average temperature measures. Therefore, infrared thermography can be used as an indicator of CH4 production in hair sheep three hours after feeding.


Subject(s)
Methane , Sheep, Domestic , Thermography , Animals , Thermography/veterinary , Thermography/methods , Methane/analysis , Methane/metabolism , Female , Sheep, Domestic/physiology , Animal Feed/analysis , Diet/veterinary , Infrared Rays , Sheep/physiology
7.
Trop Anim Health Prod ; 56(7): 229, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096346

ABSTRACT

Holocellulose (HC) fraction extracted from date-pits was evaluated as a novel feed additive for ruminant feeding. This study was performed to investigate the effectiveness of the HC additive on rumen fermentation, methane (CH4) production, and diet degradability over 24 h of in vitro incubation. Three independent incubation trials were conducted over three consecutive weeks, employing the same in vitro methodology to assess four treatment doses in a completely randomized design. The experimental diet incorporated four increasing doses of HC, containing HC at 0 (HC0), 10 (HC10), 20 (HC20), and 30 (HC30) g/kg dry matter (DM). In vitro gas production (GP) and CH4 production, volatile fatty acids (VFAs) concentration, protozoa accounts, degraded organic matter (DOM), metabolizable and net energy (ME and NE), and hydrogen (H2) estimates were measured. No significant differences in ruminal pH were observed as the HC doses gradually increased. All incremental doses of HC additive over 24 h resulted in a linear increase in GP (P < 0.001), DOM (P < 0.001), total VFAs (P = 0.011), and propionate (P < 0.001) concentrations, as well as estimated energy (ME and NE) (P < 0.05) and microbial protein (P = 0.017) values. However, the inclusion of increasing doses of HC in the diet displayed linear reductions in the net CH4 production (ml/kg DOM; P = 0.002), protozoa abundance (P = 0.027); acetate (P = 0.029), and butyrate (P < 0.001) concentrations, the acetate-to-propionate ratio (P < 0.001), and the estimated net H2 production concentration (P = 0.049). Thus, the use of date-pits HC additive generated positive ruminal fermentability, including increased total VFAs and a reduction in the acetate-to-propionate ratio, leading to decreased CH4 output over 24 h of in vitro incubation. Hence, HC could be considered a potent feed additive (at up to 30 g/kg DM), demonstrating promising CH4-mitigating competency and thereby enhancing energy-use efficiency in ruminants.


Subject(s)
Animal Feed , Diet , Digestion , Fermentation , Methane , Rumen , Animals , Rumen/parasitology , Rumen/metabolism , Animal Feed/analysis , Diet/veterinary , Methane/metabolism , Digestion/drug effects , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Random Allocation , Dietary Supplements/analysis
8.
Transl Anim Sci ; 8: txae107, 2024.
Article in English | MEDLINE | ID: mdl-39100920

ABSTRACT

The study aimed to evaluate the effects of forage quality and narasin inclusion on intake, digestibility, and ruminal fermentation of Nellore steers. Twenty-eight rumen-cannulated Nellore steers (initial body weight [BW] = 350 ±â€…32.4 kg) were allocated to individual pens in a randomized complete block design, with 7 blocks, defined according to the fasting BW at the beginning of the experiment. The steers were randomly assigned within blocks to 1 of 4 experimental diets in 2 × 2 factorial arrangements, being the first-factor forage quality (MEDIUM = 81 g of CP/kg of dry matter [DM], and HIGH = 153 g of CP/kg of DM), and the second factor was the inclusion (N13 = diet plus 13 mg/kg of DM of narasin) or not (N0) of narasin (Zimprova; Elanco Animal Health, São Paulo, Brazil). The experiment consisted of a 28-d period with 22 d for adaptation and the last 6 d for data collection. No haylage quality × narasin interaction (P ≥ 0.68) was observed on DM and nutrient intake. Haylage quality affected (P ≤ 0.01) DM intake, with greater values observed for steers fed HIGH compared with MEDIUM haylage. There was an increase (P < 0.001) in OM, NDF, hemicellulose, and CP intake for steers consuming HIGH vs. MEDIUM haylage. Including N13 did not affect (P > 0.39) DM and nutrient intake of steers. No haylage quality × narasin interactions were detected (P ≥ 0.60) for total tract nutrient digestibility. However, steers fed with HIGH haylage showed an increase (P > 0.001) in DM and digestibility of all nutrients compared with MEDIUM. Steers fed a MEDIUM haylage had a greater (P < 0.01) proportion of acetate compared with steers fed HIGH during all evaluated hours. Steers fed HIGH haylage had a greater (P < 0.01) proportion of propionate at 0 h compared with steers consuming MEDIUM, whereas at 12 h, steers consuming MEDIUM hay had a greater (P < 0.01) proportion of propionate vs. HIGH haylage. A haylage quality × narasin and haylage quality × time of collection interactions were detected (P ≤ 0.03) for rumen ammonia concentration, which was reduced (P < 0.03) in N13 vs. N0 steers consuming HIGH haylage. Collectively, high-quality haylage allows increased consumption and digestibility, with more energy-efficient ruminal fermentation. In addition, narasin might be an important nutritional tool in forage-based diets to enhance the ruminal fermentation parameters of Bos indicus Nellore steers.

9.
Front Vet Sci ; 11: 1371939, 2024.
Article in English | MEDLINE | ID: mdl-39132431

ABSTRACT

The motility pattern of the reticulo-rumen is a key factor affecting feed intake, rumen digesta residence time, and rumen fermentation. However, it is difficult to study reticulo-ruminal motility using general methods owing to the complexity of the reticulo-ruminal structure. Thus, we aimed to develop a technique to demonstrate the reticulo-ruminal motility pattern in static goats. Six Xiangdong black goats (half bucks and half does, body weight 29.5 ± 1.0 kg) were used as model specimens. Reticulo-ruminal motility videos were obtained using medical barium meal imaging technology. Videos were then analyzed using image annotation and the centroid method. The results showed that reticulo-ruminal motility was divided into primary (stages I, II, III, and IV) and secondary contraction, and the movements of ruminal digesta depended on reticulo-ruminal motility. Our results indicated common motility between the ruminal dorsal sac and ruminal dorsal blind sac. We observed that stages I (3.92 vs. 3.21 s) (P < 0.01), II (4.81 vs. 4.23 s) (P < 0.01), and III (5.65 vs. 5.15 s) (P < 0.05); interval (53.79 vs. 50.95 s); secondary contraction time (10.5 vs. 10 s); and were longer, whereas stage IV appeared to be shorter in the bucks than in the does (7.83 vs. 14.67 s) (P < 0.01). The feasibility of using barium meal imaging technology for assessing reticulo-ruminal and digesta motility was verified in our study. We determined the duration of each stage of reticulo-ruminal motility and collected data on the duration and interval of each stage of ruminal motility in goats. This research provides new insights for the study of gastrointestinal motility and lays a solid foundation for the study of artificial rumen.

10.
J Anim Sci Biotechnol ; 15(1): 109, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118120

ABSTRACT

BACKGROUND: Subacute ruminal acidosis (SARA) causes an increase in endotoxin, which can induce immune and inflammatory responses in the ruminal epithelium of dairy cows. In non-ruminants, epigallocatechin-3-gallate (EGCG), a major bioactive ingredient of green tea, is well-known to alleviate inflammation. Whether EGCG confers protection against SARA-induced inflammation and the underlying mechanisms are unknown. RESULTS: In vivo, eight ruminally cannulated Holstein cows in mid-lactation were randomly assigned to either a low-concentrate (40%) diet (CON) or a high-concentrate (60%) diet (HC) for 3 weeks to induce SARA (n = 4). Cows with SARA had greater serum concentrations of tumor necrosis factor (TNF)-α and interleukin-6, and epithelium had histological signs of damage. In vitro, immortalized bovine ruminal epithelial cells (BREC) were treated with lipopolysaccharide (LPS) to imitate the inflammatory damage caused by SARA. Our data revealed that BREC treated with 10 µg/mL LPS for 6 h successfully induce a robust inflammatory response as indicated by increased phosphorylation of IκBα and nuclear factor kappa-B (NF-κB) p65. Pre-treatment of BREC with 50 µmol/L EGCG for 6 h before LPS challenge promoted the degradation of NLR family pyrin domain containing 3 (NLRP3) inflammasome through activation of autophagy, which further repressed activation of NF-κB pathway targeting Toll-like receptor 4 (TLR4). Analyses also revealed that the ECGG upregulated tight junction (TJ) protein expression upon incubation with LPS. CONCLUSIONS: Subacute ruminal acidosis causes ruminal epithelium injury and systemic inflammation in dairy cows. However, the anti-inflammatory effects of EGCG help preserve the integrity of the epithelial barrier through activating autophagy when BREC are exposed to LPS. Thus, EGCG could potentially serve as an effective therapeutic agent for SARA-associated inflammation.

11.
Animals (Basel) ; 14(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39123665

ABSTRACT

Microplastics (MPs) raise environmental concerns. However, their effects on the ruminal-gastro-intestinal system have not yet been studied. This study aims to investigate the effects of polyethylene terephthalate (PET) MPs on the ability of the ruminal-gastro-intestinal system to degrade and digest mixed hay. Using a three-step in vitro ruminal-gastro-intestinal incubation system, PET MPs were introduced at concentrations of 0, 5, 10, and 15 g/L in ruminal and gastro-intestinal solutions. Ruminal fluid was collected from three 16-month-old Piedmontese bulls. The experiment was conducted on three mixed hays and was repeated three times, with triplicate incubations in each run. The results reveal that PET MPs reduced the degradability and digestibility of crude protein. Specifically, crude protein degradation was reduced by 9% at medium and 16% at high PET MP concentrations in the ruminal phase, while the crude protein digestibility of undegraded crude protein was reduced by 8% at the lowest PET MPs concentration in the gastro-intestinal tract. Additionally, PET MPs reduced the degradation of neutral detergent fiber at medium and high PET MP concentrations in the ruminal phase by 9% and 13%, respectively. These results highlight the risks of PET MPs contamination on ruminal-gastro-intestinal functions and underscore the urgent need to mitigate MPs contamination in the livestock sector.

12.
J Ayurveda Integr Med ; 15(4): 100962, 2024.
Article in English | MEDLINE | ID: mdl-39121784

ABSTRACT

Downer cow syndrome, or secondary recumbency, is a condition primarily affecting dairy cows, where the animal is unable to rise and stand, due to unknown cause. It is usually associated with poor prognosis. Terminal downers are euthanized in most countries. A four-year old Kasarkode dwarf-cow, post-calving was brought up laterally recumbent with heavy nasal discharge, labored breathing, loss of appetite and signs of dehydration on 6th day of its recumbency. Before this, the patient was diagnosed with milk fever and standard treatment with calcium borogluconate was administered intravenously. The animal was left to succumb under unprotected conditions, due to various constraints on euthanasia. After adopting the cow, Nasya was started immediately to avoid death due to sepsis and shock. The animal was drenched with Ayurvedic fluids containing deepana-pacana herbs. Sternal recumbency, warm and moistened muzzle was observed on the fourth day of commencing ayurvedic treatment. Respiratory distress was minimal. Drastic prognostic shift from "no hope" to "good" was possible within 6 days thanks to Nasya, and the animal was stable. Thereafter, integrative care comprising of antibiotics, rehydrating IV fluids, and supplementations, along with ayurvedic medicines was initiated. Ruminal-fluid obtained from slaughterhouse was used for ruminal-flora replacement. Rumination on 14th day, cow on its feet by 19th day and complete healing of decubital ulcers by approximately 40 days was recorded. A downed cow which did not respond to standard veterinary care was managed with Ayurveda-integrated veterinary care. Ayurveda herbs like bamboo leaves (Bambusa vulgaris), green chiretta (Andrographis paniculata) that cattle prefer eating during certain illness, turn out to be useful for Ayurvedic management. Hence, Ayurveda veterinary medicine might be, a good choice for integrative management of terminal downers, preventing early death in downed dairy cows.

13.
Front Vet Sci ; 11: 1416365, 2024.
Article in English | MEDLINE | ID: mdl-39170637

ABSTRACT

Introduction: Feeding local forages to ruminants is a promising strategy for enhancing metabolic processes, promoting sustainable farming, and improving product quality. However, studies comparing the effects of different forages on rumen histology and meat attributes of heifers are limited and variable. Material and methods: This study evaluated the benefits of incorporating local forages into heifer diets by comparing barley straw (BS) and oat hay (OH) on heifer attributes focusing on meat quality (MQ) and rumen status (RS). Sixteen crossbred (Charolais x Limousin) female heifers (7 months of age, 263 ± 10.50 kg) were randomly assigned to two dietary treatments (BS or OH) over 120 days. Results and discussion: Heifers fed OH showed enhanced RS (p < 0.05), characterized by improved intestinal epithelial integrity and a lower percentage of hyperpigmented cells, suggesting a potential reduction in inflammatory processes compared to BS, which may indicate a lower risk of metabolic diseases. Despite this, no significant differences (p > 0.05) were found in animal performance, chemical composition, and technological properties of the meat between the dietary groups, while lower levels (p < 0.05) of certain saturated fatty acids (C12:0, C15:0, and C22:0) were found in the meat from heifers fed OH. Principal component analysis (PCA) reduced the variables and demonstrated that all variables assessed can be condensed into four new variables explaining 75.06% of the variability. Moreover, biplot analysis reveals that the OH diet could be discriminated from BS. Our findings suggest that OH is a valuable fiber source, positively influencing certain heifer attributes, and supporting sustainable animal agriculture practices.

14.
Animals (Basel) ; 14(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39199960

ABSTRACT

The resource-intensive nature of the ruminant farming sector, which has been exacerbated by population growth and increasing pressure to reduce feed antibiotics and growth promoters, has sparked interest in looking for sustainable alternative feed sources to enhance ruminant production efficiency. Edible filamentous fungi, rich in macronutrients like proteins, offer promise in reducing the reliance on conventional protein sources and antimicrobials to improve feed quality and animal performance. The inclusion of single-cell proteins, particularly filamentous fungi, in ruminant feed has long been of scientific and industrial interest. This review focuses on the potential application of the extensively studied Aspergillus oryzae and its fermentation extracts in ruminant nutrition. It provides an overview of conventional ruminant feed ingredients, supplements, and efficiency. Additionally, this review analyzes the re-utilization of organic residues for A. oryzae cultivation and examines the effects of adding fungal extracts to ruminant feed on ruminal digestibility and animal performance, all within a circular bioeconomy framework.

15.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39096210

ABSTRACT

The study aimed to determine the effects of a postbiotic feeding program consisting of liquid and dry Saccharomyces cerevisiae fermentation product (SCFP) on ruminal fermentation, digestibility, and plasma metabolome of Holstein steers receiving a grain-based diet. Eight Holstein steers (body weight, BW, 467 ±â€…13.9 kg) equipped with rumen cannulas were used in a crossover design study, with 21 d per period and a 7-d washout period in between periods. Steers were stratified by initial BW and assigned to 1 of 2 treatments. The treatments were 1) Control, basal finishing diet only (CON); 2) SCFP, 1-d feeding of liquid SCFP (infused into the rumen via the cannula at 11 mL/100 kg BW) followed by daily feeding of dry SCFP (12 g/d, top-dressed). Feed and spot fecal samples were collected during days 17 to 20 for determination of digestibility and fecal excretion of N, P, Cu, and Zn. Digestibility was measured using acid-insoluble ash as an internal marker. Blood samples were collected on day 21 before the morning feeding. Rumen fluid samples were collected on days 0, 1, 2, 3, 5, and 21 via rumen cannula. Results were analyzed with the GLIMMIX procedure of SAS 9.4 (SAS, 2023). Treatment did not affect dry matter intake (P = 0.15) and digestibility (P ≥ 0.62). The fecal output and absorption of Zn, Cu, P, and N were not affected (P > 0.22) by treatment. On day 1, the liquid SCFP supplementation tended to reduce (P = 0.07) ruminal VFA concentration and increased (P < 0.01) the molar proportion of valerate. Feeding SCFP tended to increase total ruminal VFA on day 5 (P = 0.08) and significantly increased total VFA on day 21 (P = 0.05). Ruminal NH3-N was reduced (P = 0.02) on day 21 by supplementing SCFP. Treatment did not affect the production of proinflammatory cytokines, interleukin (IL)-1ß (P > 0.19), and IL-6 (P > 0.12) in the whole blood in response to various toll-like receptor stimulants in vitro. Feeding SCFP enriched (P ≤ 0.05) plasma metabolic pathways, including citric acid cycle, pyrimidine metabolism, glycolysis/gluconeogenesis, retinol metabolism, and inositol phosphate metabolism pathways. In summary, supplementing liquid SCFP with subsequent dry SCFP enhanced ruminal total VFA production and reduced NH3-N concentration in the rumen. Furthermore, feeding SCFP enriched several important pathways in lipid, protein, and glucose metabolism, which may improve feed efficiency of energy and protein in Holstein steers.


Previous research has shown the positive effects of Saccharomyces cerevisiae fermentation product (SCFP) on beef cattle performance. Liquid SCFP is a novel form of SCFP and has the potential to prime the rumen environment and improve subsequent ruminal fermentation and performance of Holstein steers receiving a grain-based diet. We investigated the impact of a novel feeding program using liquid and dry SCFP on ruminal fermentation, digestibility, and plasma metabolome of beef steers. Compared to non-supplemented control, feeding SCFP did not affect nutrient digestibility but enhanced ruminal fermentation, as shown by improved total volatile fatty acid production by rumen microbes after 5 d of supplementation. The supplementation of SCFP also enriched several plasma metabolic pathways related to energy and nitrogen metabolism, such as the citric acid cycle, pyrimidine metabolism, and glycolysis/gluconeogenesis pathways.


Subject(s)
Animal Feed , Diet , Digestion , Edible Grain , Fermentation , Rumen , Saccharomyces cerevisiae , Animals , Cattle/physiology , Cattle/metabolism , Saccharomyces cerevisiae/metabolism , Male , Rumen/metabolism , Animal Feed/analysis , Digestion/drug effects , Digestion/physiology , Diet/veterinary , Cross-Over Studies , Metabolome , Animal Nutritional Physiological Phenomena
16.
Trop Anim Health Prod ; 56(7): 219, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039346

ABSTRACT

Soybean molasses (SBMO) is a byproduct derived from the production of soy protein concentrate, obtained through solubilization in water and alcohol. The utilization of SBMO as an animal feed ingredient shows promising potential, primarily due to its low cost and as a potential energy concentrate. This study aimed to assess the intake, digestibility, ruminal parameters (pH and ruminal ammonia - NH3), nitrogen retention (NR) and microbial protein synthesis in grazing beef cattle supplemented with SBMO as a substitute for corn during the rainy season. Five Nellore (10-month-old) bulls with an average initial weight of 246 ± 11.2 kg were utilized in a 5 × 5 Latin square design. The animals were housed in five paddocks, each consisting of 0.34 ha of Marandu grass (Urochloa brizantha). Five isonitrogenous protein-energy supplements (300 g crude protein [CP]/kg supplement) were formulated, with SBMO replacing corn at varying levels (0, 0.25, 0.50, 0.75, or 1.00 g-1 g). The supplements were provided daily at a quantity of 2.0 kg-1 animal. The inclusion of SBMO at any level of corn substitution did not significantly affect the intake of pasture dry matter or total dry matter (P > 0.10). Likewise, the intake of CP and, consequently, the ruminal concentration of NH3 did not differ among the SBMO levels. Increasing the inclusion of SBMO did not have a significant impact on NR (P > 0.10), indicating that animals receiving supplements containing 100% SBMO as a substitute for corn may perform similarly to animals receiving supplements with 100% corn (0% SBMO). Soybean molasses represents a viable alternative energy source for grazing beef cattle during the rainy season and can entirely replace corn without adversely affecting animal nutritional performance.


Subject(s)
Animal Feed , Dietary Supplements , Digestion , Glycine max , Molasses , Rumen , Seasons , Animals , Cattle/physiology , Animal Feed/analysis , Molasses/analysis , Male , Glycine max/chemistry , Dietary Supplements/analysis , Rumen/metabolism , Zea mays/chemistry , Diet/veterinary , Animal Nutritional Physiological Phenomena , Rain , Nitrogen/metabolism
17.
Animals (Basel) ; 14(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998042

ABSTRACT

For protein evaluation of feedstuffs for ruminants, the Streptomyces griseus protease test provides a solely enzymatic method for estimating ruminal protein degradation. Since plant proteins are often structured in carbohydrate complexes, the use of carbohydrase during the test might improve its accuracy. It is advisable to co-incubate protease and carbohydrase, risking that the carbohydrase activity is reduced under the influence of the protease. The present study was conducted to investigate this impact by using α-amylase or the multi-enzyme complex Viscozym® L as carbohydrase. The detection of active protease was determined fluorescence photometrically using internally quenched fluorogenic substrates (IQFS). Cellulose, pectin, and starch degradation were determined spectrophotometrically using 3,5-dinitro salicylic acid as a colorimetric agent. The Streptomyces griseus protease mixture proved to be active for the selected IQFS immediately after the start of measurements (p < 0.05). Starch hydrolysis catalyzed by α-amylase or Viscozym® L, respectively, was decreased by co-incubation with protease mixture by maximal 3% or 37%, respectively, at 5 h incubation time (p > 0.05). Pectin and cellulose hydrolysis catalyzed by Viscozym® L, respectively, was not significantly influenced by co-incubation with a protease mixture (p > 0.05). Although a decrease in carbohydrase activity during co-incubation with Streptomyces griseus protease occurred, it was only numerical and might be counteracted by an adapted carbohydrase activity.

18.
J Dairy Sci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38971559

ABSTRACT

Our objective was to validate the possibility of detecting SARA from milk Fourier transform mid-infrared spectroscopy estimated fatty acids (FA) and machine learning. Subacute ruminal acidosis is a common condition in modern commercial dairy herds for which the diagnostic remains challenging due to its symptoms often being subtle, nonexclusive, and not immediately apparent. This observational study aimed at evaluating the possibility of predicting SARA by developing machine learning models to be applied to farm data and to provide an estimated portrait of SARA prevalence in commercial dairy herds. A first data set composed of 488 milk samples of 67 cows (initial DIM = 8.5 ± 6.18; mean ± SD) from 7 commercial dairy farms and their corresponding SARA classification (SARA+ if rumen pH <6.0 for 300 min, else SARA-) was used for the development of machine learning models. Three sets of predictive variables: i) milk major components (MMC), ii) milk FA (MFA), and iii) MMC combined with MFA (MMCFA) were submitted to 3 different algorithms, namely Elastic net (EN), Extreme gradient boosting (XGB), and Partial least squares (PLS), and evaluated using 3 different scenarios of cross-validation. Accuracy, sensitivity, and specificity of the resulting 27 models were analyzed using a linear mixed model. Model performance was not significantly affected by the choice of algorithm. Model performance was improved by including fatty acids estimations (MFA and MMCFA as opposed to MMC alone). Based on these results, one model was selected (algorithm: EN; predictive variables: MMCFA; 60.4, 65.4, and 55.3% of accuracy, sensitivity, and specificity, respectively) and applied to a large data set comprising the first test-day record (milk major components and FA within the first 70 DIM of 211,972 Holstein cows (219,503 samples) collected from 3001 commercial dairy herds. Based on this analysis, the within-herd SARA prevalence of commercial farms was estimated at 6.6 ± 5.29% ranging from 0 to 38.3%. A subsequent linear mixed model was built to investigate the herd-level factors associated to higher within-herd SARA prevalence. Milking system, proportion of primiparous cows, herd size and seasons were all herd-level factors affecting SARA prevalence. Furthermore, milk production was positively, and milk fat yield negatively associated with SARA prevalence. Due to their moderate levels of accuracy, the SARA prediction models developed in our study, using data from continuous pH measurements on commercial farms, are not suitable for diagnostic purpose. However, these models can provide valuable information at the herd level.

19.
mBio ; 15(8): e0078224, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38953639

ABSTRACT

Copious amounts of methane, a major constituent of greenhouse gases currently driving climate change, are emitted by livestock, and efficient methods that curb such emissions are urgently needed to reduce global warming. When fed to cows, the red seaweed Asparagopsis taxiformis (AT) can reduce enteric methane emissions by up to 80%, but the achieved results can vary widely. Livestock produce methane as a byproduct of methanogenesis, which occurs during the breakdown of feed by microbes in the rumen. The ruminant microbiome is a diverse ecosystem comprising bacteria, protozoa, fungi, and archaea, and methanogenic archaea work synergistically with bacteria to produce methane. Here, we find that an effective reduction in methane emission by high-dose AT (0.5% dry matter intake) was associated with a reduction in methanol-utilizing Methanosphaera within the rumen, suggesting that they may play a greater role in methane formation than previously thought. However, a later spike in Methanosphaera suggested an acquired resistance, possibly via the reductive dehalogenation of bromoform. While we found that AT inhibition of methanogenesis indirectly impacted ruminal bacteria and fermentation pathways due to an increase in spared H2, we also found that an increase in butyrate synthesis was due to a direct effect of AT on butyrate-producing bacteria such as Butyrivibrio, Moryella, and Eubacterium. Together, our findings provide several novel insights into the impact of AT on both methane emissions and the microbiome, thereby elucidating additional pathways that may need to be targeted to maintain its inhibitory effects while preserving microbiome health and animal productivity. IMPORTANCE: Livestock emits copious quantities of methane, a major constituent of the greenhouse gases currently driving climate change. Methanogens within the bovine rumen produce methane during the breakdown of feed. While the red seaweed Asparagopsis taxiformis (AT) can significantly reduce methane emissions when fed to cows, its effects appear short-lived. This study revealed that the effective reduction of methane emissions by AT was accompanied by the near-total elimination of methane-generating Methanosphaera. However, Methanosphaera populations subsequently rebounded due to their ability to inactivate bromoform, a major inhibitor of methane formation found in AT. This study presents novel findings on the contribution of Methanosphaera to ruminal methanogenesis, the mode of action of AT, and the possibility for complementing different strategies to effectively curb methane emissions.


Subject(s)
Methane , Rumen , Animals , Methane/metabolism , Cattle , Rumen/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Gastrointestinal Microbiome , Microbiota , Archaea/metabolism , Archaea/classification , Archaea/genetics , Seaweed/metabolism , Rhodophyta/metabolism , Animal Feed/analysis , Fermentation
20.
Sci Total Environ ; 949: 174618, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38986687

ABSTRACT

Understanding the dynamics of the rumen microbiome is crucial for optimizing ruminal fermentation to improve feed efficiency and addressing concerns regarding antibiotic resistance in the livestock production industry. This study aimed to investigate the adaptive effects of microbiome and the properties of carbohydrate-active enzymes (CAZy) and antibiotic resistance genes (ARGs) in response to dietary protein shifts. Twelve Charolais bulls were randomly divided into two groups based on initial body weight: 1) Treatment (REC), where the animals received a 7 % CP diet in a 4-week restriction period, followed by a 13 % CP diet in a 2-week re-alimentation period; 2) Control (CON), where the animals were fed the 13 % CP diet both in the restriction period and the re-alimentation period. Protein restriction decreased the concentrations of acetate, propionate, isovalerate, glutamine, glutamate, and isoleucine (P < 0.05), while protein re-alimentation increased the concentrations of arginine, methionine sulfoxide, lysine, and glutamate (P < 0.05). Protein restriction decreased the relative abundances of Bacteroidota but increased Proteobacteria, with no difference observed after re-alimentation. Protein restriction decreased relative abundances of the genera Bacteroides, Prevotella, and Bifidobacterium. Following protein recovery, Escherichia was enriched in CON, while Pusillibacter was enriched in REC, indicating that distinct microbial adaptations to protein shifts. Protein restriction increased GH97 while reducing GH94 and GT35 compared to CON. Protein restriction decreased abundances of KO genes involved in VFA production pathways, while they were recovered in the re-alimentation period. Protein restriction reduced tet(W/32/O) abundances but increased those of tet(X), nimJ, and rpoB2. Following protein re-alimentation, there was a decrease in ErmQ and tet(W/N/W), and an increase in Mef(En2) compared to CON, highlighting the impact of dietary protein on the distribution of antibiotic-resistant bacteria. Overall, comprehensive metagenomic analysis reveals the dynamic adaptability of the microbiome in response to dietary shifts, indicating its capacity to modulate carbohydrate metabolism and ARGs in response to protein availability.


Subject(s)
Animal Feed , Rumen , Rumen/microbiology , Rumen/metabolism , Animals , Animal Feed/analysis , Gastrointestinal Microbiome , Cattle , Dietary Proteins/metabolism , Fermentation , Metagenomics , Diet, Protein-Restricted , Male , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL