ABSTRACT
BACKGROUND: Alpaca (Vicugna pacos), llama (Lama glama), vicugna (Vicugna vicugna) and guanaco (Lama guanicoe), are the camelid species distributed over the Andean high-altitude grasslands, the Altiplano, and the Patagonian arid steppes. Despite the wide interest on these animals, most of the loci under selection are still unknown. Using whole-genome sequencing (WGS) data we investigated the occurrence and the distribution of Runs Of Homozygosity (ROHs) across the South American Camelids (SACs) genome to identify the genetic relationship between the four species and the potential signatures of selection. RESULTS: A total of 37 WGS samples covering the four species was included in the final analysis. The multi-dimensional scaling approach showed a clear separation between the four species; however, admixture analysis suggested a strong genetic introgression from vicugna and llama to alpaca. Conversely, very low genetic admixture of the guanaco with the other SACs was found. The four species did not show significant differences in the number, length of ROHs (100-500 kb) and genomic inbreeding values. Longer ROHs (> 500 kb) were found almost exclusively in alpaca. Seven overlapping ROHs were shared by alpacas, encompassing nine loci (FGF5, LOC107034918, PRDM8, ANTXR2, LOC102534792, BSN, LOC116284892, DAG1 and RIC8B) while nine overlapping ROHs were found in llama with twenty-five loci annotated (ERC2, FZD9, BAZ1B, BCL7B, LOC116284208, TBL2, MLXIPL, PHF20, TRNAD-AUC, LOC116284365, RBM39, ARFGEF2, DCAF5, EXD2, HSPB11, LRRC42, LDLRAD1, TMEM59, LOC107033213, TCEANC2, LOC102545169, LOC116278408, SMIM15, NDUFAF2 and RCOR1). Four overlapping ROHs, with three annotated loci (DLG1, KAT6B and PDE4D) and three overlapping ROHs, with seven annotated genes (ATP6V1E1, BCL2L13, LOC116276952, BID, KAT6B, LOC116282667 and LOC107034552), were detected for vicugna and guanaco, respectively. CONCLUSIONS: The signatures of selection revealed genomic areas potentially selected for production traits as well as for natural adaptation to harsh environment. Alpaca and llama hint a selection driven by environment as well as by farming purpose while vicugna and guanaco showed selection signals for adaptation to harsh environment. Interesting, signatures of selection on KAT6B gene were identified for both vicugna and guanaco, suggesting a positive effect on wild populations fitness. Such information may be of interest to further ecological and animal production studies.
Subject(s)
Camelids, New World , Animals , Humans , Camelids, New World/genetics , Racial Groups , Acclimatization , Agriculture , South America , Receptors, Peptide , Transcription Factors , Histone AcetyltransferasesABSTRACT
Our objective was to establish a SNPs panel for pedigree reconstruction using microarrays of different densities and evaluate the genomic relationship coefficient of the inferred pedigree, in addition to analyzing the population structure based on genomic analyses in Gir cattle. For parentage analysis and genomic relationship, 16,205 genotyped Gir animals (14,458 females and 1747 males) and 1810 common markers to the four SNP microarrays were used. For population structure analyses, including linkage disequilibrium, effective population size, and runs of homozygosity (ROH), genotypes from 21,656 animals were imputed. Likelihood ratio (LR) approach was used to reconstruct the pedigree, deepening the pedigree and showing it is well established in terms of recent information. Coefficients for each relationship category of the inferred pedigree were adequate. Linkage disequilibrium showed rapid decay. We detected a decrease in the effective population size over the last 50 generations, with the average generation interval around 9.08 years. Higher ROH-based inbreeding coefficient in a class of short ROH segments, with moderate to high values, was also detected, suggesting bottlenecks in the Gir genome. Breeding strategies to minimize inbreeding and avoid massive use of few proven sires with high genetic value are suggested to maintain genetic variability in future generations. In addition, we recommend reducing the generation interval to maximize genetic progress and increase effective population size.
Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Animals , Female , Male , Cattle , Pedigree , Genotype , HomozygoteABSTRACT
Purunã is a composite beef cattle breed, developed in Southern Brazil by crossing the Angus, Charolais, Canchim, and Caracu breeds. The goal of this study was to perform the first genetic characterization of the Purunã breed, based on both pedigree and genomic information. For this, 100 randomly selected animals were genotyped, and 11,205 animals born from 1997 to 2019 had pedigree information. The genetic analyses performed were principal component analysis, admixture, phylogenic tree, pedigree and genomic inbreeding, linkage disequilibrium (LD), effective population size (Ne), consistency of the gametic phase, runs of homozygosity (ROH), heterozygosity-enriched regions (HERs), and functional analyses of the ROH and HER regions identified. Our findings indicate that Purunã is more genetically related to the Charolais, Canchim, and Angus breeds than Caracu or Nellore. The levels of inbreeding were shown to be small based on all the metrics evaluated and ranged from -0.009 to 0.029. A low (-0.12-0.31) correlation of the pedigree-based inbreeding compared to all the genomic inbreeding coefficients evaluated was observed. The LD average was 0.031 (±0.0517), and the consistency of the gametic phase was shown to be low for all the breed pairs, ranging from 0.42 to 0.27 to the distance of 20 Mb. The Ne values based on pedigree and genomic information were 158 and 115, respectively. A total of 1,839 ROHs were found, and the majority of them are of small length (<4 Mb). An important homozygous region was identified on BTA5 with pathways related to behavioral traits (sensory perception, detection of stimulus, and others), as well as candidate genes related to heat tolerance (MY O 1A), feed conversion rate (RDH5), and reproduction (AMDHD1). A total of 1,799 HERs were identified in the Purunã breed with 92.3% of them classified within the 0.5-1 Mb length group, and 19 HER islands were identified in the autosomal genome. These HER islands harbor genes involved in growth pathways, carcass weight (SDCBP), meat and carcass quality (MT2A), and marbling deposition (CISH). Despite the genetic relationship between Purunã and the founder breeds, a multi-breed genomic evaluation is likely not feasible due to their population structure and low consistency of the gametic phase among them.
ABSTRACT
This study aimed to identify inbreeding coefficient (F) estimators useful for improvement programs in a small Holstein population through the evaluation of different methodologies in the Mexican Holstein population. F was estimated as follows: (a) from pedigree information (Fped); (b) through runs of homozygosity (Froh); (c) from the number of observed and expected homozygotic SNP in the individuals (Fgeno); (d) through the genomic relationship matrix (Fmg). The study included information from 4277 animals with pedigree records and 100,806 SNP. The average and standard deviation values of F were 3.11 ± 2.30 for Fped, -0.02 ± 3.55 for Fgeno, 2.77 ± 0.71 for Froh and 3.03 ± 3.05 for Fmg. The correlations between coefficients varied from 0.30 between Fped and Froh, to 0.96 between Fgeno and Fmg. Differences in the level of inbreeding among the parent's country of origin were found regardless of the method used. The correlations among genomic inbreeding coefficients were high; however, they were low with Fped, so further research on this topic is required.
ABSTRACT
Cattle population history, breeding systems, and geographic subdivision may be reflected in runs of homozygosity (ROH), effective population size (N e), and linkage disequilibrium (LD) patterns. Thus, the assessment of this information has become essential to the implementation of genomic selection on purebred and crossbred cattle breeding programs. In this way, we assessed the genotype of 19 cattle breeds raised in Brazil belonging to taurine, indicine, synthetic crossbreds, and Iberian-derived locally adapted ancestries to evaluate the overall LD decay patterns, N e, ROH, and breed composition. We were able to obtain a general overview of the genomic architecture of cattle breeds currently raised in Brazil and other tropical countries. We found that, among the evaluated breeds, different marker densities should be used to improve the genomic prediction accuracy and power of genome-wide association studies. Breeds showing low N e values indicate a recent inbreeding, also reflected by the occurrence of longer ROH, which demand special attention in the matting schemes to avoid extensive inbreeding. Candidate genes (e.g., ABCA7, PENK, SPP1, IFNAR1, IFNAR2, SPEF2, PRLR, LRRTM1, and LRRTM4) located in the identified ROH islands were evaluated, highlighting biological processes involved with milk production, behavior, rusticity, and fertility. Furthermore, we were successful in obtaining the breed composition regarding the taurine and indicine composition using single-nucleotide polymorphism (SNP) data. Our results were able to observe in detail the genomic backgrounds that are present in each breed and allowed to better understand the various contributions of ancestor breeds to the modern breed composition to the Brazilian cattle.
ABSTRACT
The objectives of this study were to provide the buffalo research community with an updated SNP map for the Axiom Buffalo Genotyping (ABG) array with genomic positions for SNP currently unmapped and to map all cattle QTL from the CattleQTLdb onto the buffalo reference assembly. To update the ABG array map, all SNP probe sequences from the ABG array were re-aligned against the UOA_WB_1 assembly. With the new map, the number of mapped markers increased by approximately 10% and went from 106 778 to 116 708, which reduced the average marker spacing by approximately 2 kb. A comparison of results between signatures of autozygosity study using the ABG and the new map showed that, when the additional markers were used there was an increase in the autozygosity peaks and additional peaks in BBU5 and BBU11 could be identified. After sequence alignment and quality control, 64 650 (UMD3.1) and 76 530 (ARS_UCD1.2) cattle QTL were mapped onto the buffalo genome. The mapping of the bovine QTL database onto the buffalo genome should be useful for genome-wide association studies in buffalo and, given the high homology between the two species, the positions of cattle QTL on the buffalo genome can serve as a stepping stone towards a water buffalo QTL database.
Subject(s)
Buffaloes/genetics , Genome-Wide Association Study/veterinary , Genotype , Quantitative Trait Loci , Animals , Cattle/geneticsABSTRACT
The effect of inbreeding depression on sperm motility is well documented, but its influence on sperm morphometry has been scarcely examined to date. Here, we combined the use of computer-assisted sperm morphometry analysis (CASMA) with a SNP-based genomic approach to determine and characterize the effect of inbreeding on the sperm shape of a highly inbred cattle population. We determined seven morphometric parameters on frozen-thawed sperm samples of 57 Retinta bulls: length (L, µm), width (W, µm), area (A, µm2 ), perimeter (P, µm), ellipticity (ELI; L/W), elongation (L-W)/(L + W) and perimeter-to-area shape factor (p2a; P2 /4 × π × A). The comparison of highly inbred (HI) and lowly inbreed (LI) individuals based on runs of homozygosity (ROH) inbreeding values (F ROH ) showed no differences between groups. An additional two-step unsupervised sperm subpopulation analysis based on morphometric parameters showed significant differences in the abundance of different sperm subpopulations between groups (p < 0.05). This analysis revealed that HI bulls harbored a higher percentage of narrow-head sperm as opposed to the higher percentage of large- and round-headed sperm detected in LI. A further genomic characterization revealed 23 regions differentially affected by inbreeding in both groups, detecting six genes (SPAG6, ARMC3, PARK7, VAMP3, DYNLRB2, and PHF7) previously related to different spermatogenesis-associated processes.
Subject(s)
Cattle/genetics , Inbreeding Depression/genetics , Inbreeding , Spermatozoa/ultrastructure , Animals , Animals, Inbred Strains , Biological Variation, Individual , Cell Shape , DNA/genetics , Genetic Association Studies , Genotype , Haplotypes/genetics , Male , Sperm Head/ultrastructureABSTRACT
The ultimate goal of genetic selection is to improve genetic progress by increasing favorable alleles in the population. However, with selection, homozygosity, and potentially harmful recessive alleles can accumulate, deteriorating genetic variability and hampering continued genetic progress. Such potential adverse side effects of selection are of particular interest in populations with a small effective population size like the Romosinuano beef cattle in Mexico. The objective of this study was to evaluate the genetic background and inbreeding depression in Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH) of different length classes. Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals born between 1950 and 2019, of which 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The reduction in effective population size implies the existence of genetic bottlenecks and the decline of genetic diversity due to the intensive use of few individuals as parents of the next generations. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The shortest and longest segments were 1.0 and 36.0 Mb long, respectively, reflecting ancient and recent inbreeding. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. The correlation between FPED and FGRM was -0.25, and the correlations among FPED and FROH of different length classes were low (from 0.16 to 0.31). The correlations between FGRM and FROH of different length classes were moderate (from 0.44 to 0.58), indicating better agreement. A 1% increase in population inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to more sustainable breeding programs for the Mexican Romosinuano beef cattle breed.
ABSTRACT
Inbreeding and effective population size (Ne) are fundamental indicators for the management and conservation of genetic diversity in populations. Genomic inbreeding gives accurate estimates of inbreeding, and the Ne determines the rate of the loss of genetic variation. The objective of this work was to study the distribution of runs of homozygosity (ROHs) in order to estimate genomic inbreeding (FROH) and an effective population size using 38,789 Single Nucleotide Polymorphisms (SNPs) from the Illumina Bovine 50K BeadChip in 86 samples from populations of Charolais de Cuba (n = 40) cattle and to compare this information with French (n = 20) and British Charolais (n = 26) populations. In the Cuban, French, and British Charolais populations, the average estimated genomic inbreeding values using the FROH statistics were 5.7%, 3.4%, and 4%, respectively. The dispersion measured by variation coefficient was high at 43.9%, 37.0%, and 54.2%, respectively. The effective population size experienced a very similar decline during the last century in Charolais de Cuba (from 139 to 23 individuals), in French Charolais (from 142 to 12), and in British Charolais (from 145 to 14) for the ~20 last generations. However, the high variability found in the ROH indicators and FROH reveals an opportunity for maintaining the genetic diversity of this breed with an adequate mating strategy, which can be favored with the use of molecular markers. Moreover, the detected ROH were compared to previous results obtained on the detection of signatures of selection in the same breed. Some of the observed signatures were confirmed by the ROHs, emphasizing the process of adaptation to tropical climate experienced by the Charolais de Cuba population.
ABSTRACT
The characterization of runs of homozygosity (ROH), using high-density single nucleotide polymorphisms (SNPs) allows inferences to be made about the past demographic history of animal populations and the genomic ROH has become a common approach to characterize the inbreeding. We aimed to analyze and characterize ROH patterns and compare different genomic and pedigree-based methods to estimate the inbreeding coefficient in two pure lines (POP A and B) and one recently admixed line (POP C) of coho salmon (Oncorhynchus kisutch) breeding nuclei, genotyped using a 200 K Affymetrix Axiom® myDesign Custom SNP Array. A large number and greater mean length of ROH were found for the two "pure" lines and the recently admixed line (POP C) showed the lowest number and smaller mean length of ROH. The ROH analysis for different length classes suggests that all three coho salmon lines the genome is largely composed of a high number of short segments (<4 Mb), and for POP C no segment >16 Mb was found. A high variable number of ROH, mean length and inbreeding values across chromosomes; positively the consequence of artificial selection. Pedigree-based inbreeding values tended to underestimate genomic-based inbreeding levels, which in turn varied depending on the method used for estimation. The high positive correlations between different genomic-based inbreeding coefficients suggest that they are consistent and may be more accurate than pedigree-based methods, given that they capture information from past and more recent demographic events, even when there are no pedigree records available.
Subject(s)
Genome/genetics , Genomics , Inbreeding , Oncorhynchus kisutch/genetics , Animals , Breeding , Fisheries , Genotype , Homozygote , Pedigree , Polymorphism, Single Nucleotide/geneticsABSTRACT
Studies of Native South American genetic diversity have helped to shed light on the peopling and differentiation of the continent, but available data are sparse for the major ecogeographic domains. These include the Pacific Coast, a potential early migration route; the Andes, home to the most expansive complex societies and to one of the most widely spoken indigenous language families of the continent (Quechua); and Amazonia, with its understudied population structure and rich cultural diversity. Here, we explore the genetic structure of 176 individuals from these three domains, genotyped with the Affymetrix Human Origins array. We infer multiple sources of ancestry within the Native American ancestry component; one with clear predominance on the Coast and in the Andes, and at least two distinct substrates in neighboring Amazonia, including a previously undetected ancestry characteristic of northern Ecuador and Colombia. Amazonian populations are also involved in recent gene-flow with each other and across ecogeographic domains, which does not accord with the traditional view of small, isolated groups. Long-distance genetic connections between speakers of the same language family suggest that indigenous languages here were spread not by cultural contact alone. Finally, Native American populations admixed with post-Columbian European and African sources at different times, with few cases of prolonged isolation. With our results we emphasize the importance of including understudied regions of the continent in high-resolution genetic studies, and we illustrate the potential of SNP chip arrays for informative regional-scale analysis.
Subject(s)
Genome, Human , Human Migration/history , History, Ancient , Humans , Language , Peru , PhylogeographyABSTRACT
BACKGROUND: Natural and artificial selection leads to changes in certain regions of the genome resulting in selection signatures that can reveal genes associated with the selected traits. Selection signatures may be identified using different methodologies, of which some are based on detecting contiguous sequences of homozygous identical-by-descent haplotypes, called runs of homozygosity (ROH), or estimating fixation index (FST) of genomic windows that indicates genetic differentiation. This study aimed to identify selection signatures in a paternal broiler TT line at generations 7th and 16th of selection and to investigate the genes annotated in these regions as well as the biological pathways involved. For such purpose, ROH and FST-based analysis were performed using whole genome sequence of twenty-eight chickens from two different generations. RESULTS: ROH analysis identified homozygous regions of short and moderate size. Analysis of ROH patterns revealed regions commonly shared among animals and changes in ROH abundance and size between the two generations. Results also suggest that whole genome sequencing (WGS) outperforms SNPchip data avoiding overestimation of ROH size and underestimation of ROH number; however, sequencing costs can limited the number of animals analyzed. FST-based analysis revealed genetic differentiation in several genomic windows. Annotation of the consensus regions of ROH and FST windows revealed new and previously identified genes associated with traits of economic interest, such as APOB, IGF1, IGFBP2, POMC, PPARG, and ZNF423. Over-representation analysis of the genes resulted in biological terms of skeletal muscle, matrilin proteins, adipose tissue, hyperglycemia, diabetes, Salmonella infections and tyrosine. CONCLUSIONS: Identification of ROH and FST-based analyses revealed selection signatures in TT line and genes that have important role in traits of economic interest. Changes in the genome of the chickens were observed between the 7th and 16th generations showing that ancient and recent selection in TT line may have acted over genomic regions affecting diseases and performance traits.
Subject(s)
Chickens/genetics , Genetics, Population , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Chickens/physiology , Female , Genome , Homozygote , Inbreeding , Male , PhenotypeABSTRACT
Intellectual disability is a highly heterogeneous disease that affects the central nervous system and impairs patients' ability to function independently. Despite multiples genes involved in the etiology of disease, most of the genetic background is yet to be discovered. We used runs of homozygosity and exome sequencing to study a large Costa Rican family with four individuals affected with severe intellectual disability and found a novel homozygous missense mutation, p. 96G>R, c. 286G>A, in all affected individuals. This gene encodes for a pyridoxal enzyme involved in the production of the neurotransmitter glutamate and is highly expressed in the white matter of brain and cerebellum. Protein modeling of GPT2 predicted that the mutation is located in a loop where the substrate binds to the active site of the enzyme, therefore, suggesting that the catalytic activity is impaired. With our report of a second mutation we fortify the importance of GPT2 as a novel cause of autosomal recessive nonsyndromic intellectual disability and support the premise that GPT2 is highly important for the neurodevelopment of the central nervous system. SYNOPSIS: The mutation p. 96G>R c. 286G>A in GPT2, located in a loop where the substrate binds to the active site of the enzyme, fortifies the importance of GPT2 in the pathogenesis of nonsyndromic intellectual disability.
ABSTRACT
The use of relatively low numbers of sires in cattle breeding programs, particularly on those for carcass and weight traits in Nellore beef cattle (Bos indicus) in Brazil, has always raised concerns about inbreeding, which affects conservation of genetic resources and sustainability of this breed. Here, we investigated the distribution of autozygosity levels based on runs of homozygosity (ROH) in a sample of 1,278 Nellore cows, genotyped for over 777,000 SNPs. We found ROH segments larger than 10 Mb in over 70% of the samples, representing signatures most likely related to the recent massive use of few sires. However, the average genome coverage by ROH (>1 Mb) was lower than previously reported for other cattle breeds (4.58%). In spite of 99.98% of the SNPs being included within a ROH in at least one individual, only 19.37% of the markers were encompassed by common ROH, suggesting that the ongoing selection for weight, carcass and reproductive traits in this population is too recent to have produced selection signatures in the form of ROH. Three short-range highly prevalent ROH autosomal hotspots (occurring in over 50% of the samples) were observed, indicating candidate regions most likely under selection since before the foundation of Brazilian Nellore cattle. The putative signatures of selection on chromosomes 4, 7, and 12 may be involved in resistance to infectious diseases and fertility, and should be subject of future investigation.