ABSTRACT
Hemileia vastatrix, causal agent of coffee leaf rust (CLR), is an aggressive pathogen of coffee plants worldwide. Conventional fungicides play a major role in the suppression of this disease, but a recent shift toward eco-friendly farming practices has occurred and additional novel, effective, and sustainable strategies for CLR control are needed. Naturally occurring fungal antagonists could be well-positioned to meet this demand, but these fungi need to be isolated and tested for efficacy to identify organisms with potential. In this study, a survey of fungi associated with CLR lesions in four districts of Hawai'i Island, HI, USA (Kona, Ka'u, Hamakua, and Hilo) was conducted. Coffee leaves infected with CLR were collected from 22 locations and over 600 lesions were plated on ½ APDA and CTC 4T media. DNA was extracted from purified isolates and the internal transcribed spacer region (ITS) was sequenced and analyzed by BLASTn. In total, 194 isolates comprising 50 taxa were recovered. Several of the genera are known antagonists of CLR or other plant pathogens, including Simplicillium, Akanthomyces, Cladosporium, Fusarium, and Clonostachys. The wide diversity of fungi associated with CLR lesions provide a wealth of possibilities for identifying potential CLR antagonists that could serve as a valuable tool for coffee farmers as part of an integrated pest management plan.
Subject(s)
Coffea , Plant Diseases , Plant Leaves , Coffea/microbiology , Hawaii , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Leaves/microbiology , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Fungi/drug effects , Basidiomycota/isolation & purification , Basidiomycota/genetics , Basidiomycota/classification , AntibiosisABSTRACT
Coffee leaf rust, caused by the fungus Hemileia vastatrix, has become a major concern for coffee-producing countries. Additionally, there has been an increase in the resistance of certain races of the fungus to fungicides and breeding cultivars, making producers use alternative control methods. In this work, we transplanted the leaf surface microbiota of rust-resistant coffee species (Coffea racemosa and Coffea stenophylla) to Coffea arabica and tested whether the new microbiota would be able to minimize the damage caused by H. vastatrix. It was seen that the transplant was successful in controlling rust, especially from C. stenophylla, but the protection depended on the concentration of the microbiota. Certain fungi, such as Acrocalymma, Bipolaris, Didymella, Nigrospora, Setophaeosphaeria, Simplicillium, Stagonospora and Torula, and bacteria, such as Chryseobacterium, Sphingobium and especially Enterobacter, had their populations increased and this may be related to the antagonism seen against H. vastatrix. Interestingly, the relative population of bacteria from genera Pantoea, Methylobacterium and Sphingomonas decreased after transplantation, suggesting a positive interaction between them and H. vastatrix development. Our findings may help to better understand the role of the microbiota in coffee leaf rust, as well as help to optimize the development of biocontrol agents.
Subject(s)
Basidiomycota , Coffea , Disease Resistance , Microbiota , Plant Diseases , Plant Leaves , Coffea/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Leaves/microbiology , Basidiomycota/genetics , Basidiomycota/growth & development , Bacteria/genetics , Bacteria/growth & development , Bacteria/classification , Fungi/growth & development , Fungi/geneticsABSTRACT
Breeding for disease resistance is a central component of strategies implemented to mitigate biotic stress impacts on crop yield. Conventionally, genotypes of a plant population are evaluated through a labor-intensive process of assigning visual scores (VS) of susceptibility (or resistance) by specifically trained staff, which limits manageable volumes and repeatability of evaluation trials. Remote sensing (RS) tools have the potential to streamline phenotyping processes and to deliver more standardized results at higher through-put. Here, we use a two-year evaluation trial of three newly developed biparental populations of maize doubled haploid lines (DH) to compare the results of genomic analyses of resistance to common rust (CR) when phenotyping is either based on conventional VS or on RS-derived (vegetation) indices. As a general observation, for each population × year combination, the broad sense heritability of VS was greater than or very close to the maximum heritability across all RS indices. Moreover, results of linkage mapping as well as of genomic prediction (GP), suggest that VS data was of a higher quality, indicated by higher -logp values in the linkage studies and higher predictive abilities for genomic prediction. Nevertheless, despite the qualitative differences between the phenotyping methods, each successfully identified the same genomic region on chromosome 10 as being associated with disease resistance. This region is likely related to the known CR resistance locus Rp1. Our results indicate that RS technology can be used to streamline genetic evaluation processes for foliar disease resistance in maize. In particular, RS can potentially reduce costs of phenotypic evaluations and increase trialing capacities.
ABSTRACT
Wheat yellow (stripe) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Pst populations are composed of multiple genetic groups, each carrying one or more races characterized by different avirulence/virulence combinations. Since the severe epidemics in 2017, yellow rust has become the most economically important wheat foliar disease in Uruguay. A set of 124 Pst isolates collected from wheat fields in Uruguay between 2017 and 2021 were characterized phenotypically, and 27 of those isolates were subsequently investigated in-depth by additional molecular genotyping and race phenotyping analyses. Three genetic groups were identified, PstS7, PstS10, and PstS13, with the latter being the most prevalent. Two races previously reported in Europe, Warrior (PstS7) and Benchmark (PstS10), were detected in four and two isolates, respectively. A third race, known as Triticale2015 (PstS13), that was first detected in Europe in 2015 and in Argentina in 2017 was detected at several locations. Additional virulence to Yr3, Yr17, Yr25, Yr27, or Yr32 was detected in three new race variants within PstS13. The identification of these new races, which have not been reported outside South America, provides strong evidence of the local evolution of virulence in Pst during the recent epidemic years.
Subject(s)
Plant Diseases , Puccinia , Triticum , Virulence/genetics , Plant Diseases/microbiology , Puccinia/pathogenicity , Puccinia/genetics , Triticum/microbiology , Uruguay , Genotype , Biological Evolution , Phenotype , Basidiomycota/genetics , Basidiomycota/pathogenicity , Basidiomycota/classification , Basidiomycota/physiologyABSTRACT
Peru is one of the leading countries that produce and export specialty coffees, favorably positioned in the international markets for its physical and organoleptic cup qualities. In recent years, yellow coffee rust caused by the phytopathogenic fungus Hemileia vastatrix stands out as one of the main phytosanitary diseases that affect coffee culture yields. Many studies have demonstrated bacteria antagonistic activity against a number of phytopathogen fungi. In this context, the aim of this work was to select and characterize phyllospheric bacteria isolated from Coffea arabica with antagonistic features against coffee rust to obtain biocontrollers. For that purpose, a total of 82 phyllospheric bacteria were isolated from two coffee leaf rust-susceptible varieties, typica and caturra roja, and one tolerant variety, catimor. Of all the isolates, 15% were endophytic and 85% were epiphytes. Among all the isolates, 14 were capable of inhibiting the mycelial radial growth of Mycena citricolor, and Colletotrichum sp. 16S rRNA gene sequence-based analysis showed that 9 isolates were related to Achromobacter insuavis, 2 were related to Luteibacter anthropi and 1 was related to Rodococcus ceridiohylli, Achromobacter marplatensis and Pseudomonas parafulva. A total of 7 representative bacteria of each group were selected based on their antagonistic activity and tested in germination inhibition assays of coffee rust uredinospores. The CRRFLT7 and TRFLT8 isolates showed a high inhibition percentage of urediniospores germination (81% and 82%, respectively), similar to that obtained with the chemical control (91%). An experimental field assay showed a good performance of both strains against rust damage too, making them a promising alternative for coffee leaf rust biocontrol.
ABSTRACT
Leaf rust, caused by Puccinia triticina, is the most common rust disease of wheat. The fungus is an obligate parasite capable of producing infectious urediniospores. To study the genetic structure of the leaf rust population 20 RAPD primers were evaluated on 15 isolates samples collected in Pakistan. A total of 105 RAPD fragments were amplified with an average of 7 fragments per primer. The number of amplified fragments varied from 1 to 12. GL Decamer L-07 and GL Decamer L-01 amplified the highest number of bands (twelve) and primer GL Decamer A-03 amplified the lowest number of bands i.e one. Results showed that almost all investigated isolates were genetically different that confirms high genetic diversity within the leaf rust population. Rust spores can follow the migration pattern in short and long distances to neighbor areas. Results indicated that the greatest variability was revealed by 74.9% of genetic differentiation within leaf rust populations. These results suggested that each population was not completely identical and high gene flow has occurred among the leaf rust population of different areas. The highest differentiation and genetic distance among the Pakistani leaf rust populations were detected between the leaf rust population in NARC isolate (NARC-4) and AARI-11and the highest similarity was observed between NARC isolates (NARC-4) and (NARC-5). The present study showed the leaf rust population in Pakistan is highly dynamic and variable.
A ferrugem da folha, causada por Puccinia triticina, é a ferrugem mais comum do trigo. O fungo é um parasita obrigatório, capaz de produzir urediniósporos infecciosos. Para estudar a estrutura genética da população de ferrugem da folha, 20 primers RAPD foram avaliados em 15 amostras de isolados coletadas no Paquistão. Um total de 105 fragmentos RAPD foram amplificados com uma média de 7 fragmentos por primer. O número de fragmentos amplificados variou de 1 a 12. GL Decamer L-07 e GL Decamer L-01 amplificaram o maior número de bandas (doze), e o primer GL Decamer A-03 amplificou o menor número de bandas, ou seja, um. Os resultados mostraram que quase todos os isolados investigados eram geneticamente diferentes, o que confirma a alta diversidade genética na população de ferrugem da folha. Os esporos de ferrugem podem seguir o padrão de migração em distâncias curtas e longas para áreas vizinhas. Os resultados indicaram que a maior variabilidade foi revelada por 74,9% da diferenciação genética nas populações de ferrugem. Esses resultados sugeriram que cada população não era completamente idêntica e um alto fluxo gênico ocorreu entre a população de ferrugem da folha de diferentes áreas. A maior diferenciação e distância genética entre as populações de ferrugem da folha do Paquistão foram detectadas entre a população de ferrugem da folha no isolado NARC (NARC-4) e AARI-11 e a maior similaridade foi observada entre os isolados NARC (NARC-4) e (NARC-5). O presente estudo mostrou que a população de ferrugem da folha no Paquistão é altamente dinâmica e variável.
Subject(s)
Triticum/parasitology , Biomarkers , Agricultural Pests , Fungi/genetics , Puccinia/geneticsABSTRACT
Many mites of the family Eriophyidae are important pests worldwide. In citrus crops, the eriophyid Phyllocoptruta oleivora stands out for the economic losses caused. The pest's injuries cause the darkening of leaves, twigs, and fruits, making them unfit for the fresh fruit market and affecting plant productivity. Another species that causes similar symptoms was described in Brazil recently, the brown citrus rust mite, Tegolophus brunneus. Although studies have not been performed with this species, growers and technicians have attributed the rise in rust damages in Brazil to T. brunneus, affirming that this mite is more aggressive and resistant to acaricides than P. oleivora. In this study, the distribution of T. brunneus in the main Brazilian citrus belt and the differential toxicity of the acaricides sulfur and abamectin were evaluated for both species. Infested fruits were collected from different orchards in many municipalities, covering the main citrus species and cultivars grown, aiming to show the main T. brunneus hosts. It was observed that only plants of Tahiti acid lime (Citrus latifolia) were infested by T. brunneus, whereas P. oleivora infested all citrus cultivars and species evaluated (Citrus spp.). In our study, T. brunneus and P. oleivora were never observed coinfesting the same fruit/leaf or plant. The acute toxicity test of sulfur and abamectin as acaricides showed that T. brunneus has greater tolerance to abamectin than P. oleivora. However, the acute toxicity of sulfur was similar for both species. These results showed T. brunneus specificity to infest Tahiti acid lime, causing important damage to this crop, and suggest that attention should be paid to managing this mite using abamectin.
Subject(s)
Acaricides , Citrus , Mites , Animals , Brazil , SulfurABSTRACT
The coffee industry faces coffee leaf rust caused by Hemileia vastratix, which is considered the most devastating disease of the crop, as it reduces the photosynthetic rate and limits productivity. The use of plant resistance inducers, such as chitosan, is an alternative for the control of the disease by inducing the synthesis of phytoalexins, as well as the activation of resistance genes. Previously, the effect of chitosan from different sources and physicochemical properties was studied; however, its mechanisms of action have not been fully elucidated. In this work, the ability of food-grade high-density chitosan (0.01% and 0.05%) to control the infection caused by the pathogen was evaluated. Subsequently, the effect of high-density chitosan (0.05%) on the induction of pathogenesis-related gene expression (GLUC, POX, PAL, NPR1, and CAT), the enzymatic activity of pathogenesis-related proteins (GLUC, POX, SOD, PPO, and APX), and phytoalexin production were evaluated. The results showed that 0.05% chitosan increased the activity and gene expression of ß-1,3 glucanases and induced a differentiated response in enzymes related to the antioxidant system of plants. In addition, a correlation was observed between the activities of polyphenol oxidase and the production of phytoalexin, which allowed an effective defense response in coffee plants.
Subject(s)
Basidiomycota , Chitosan , Coffea , Coffea/genetics , Chitosan/pharmacology , Phytoalexins , Basidiomycota/genetics , Plant Diseases/geneticsABSTRACT
Coffee leaf rust, caused by the fungus Hemileia vastatrix (Basidiomycota; Pucciniomycota), is a devastating disease spread worldwide. To improve the available genomes, we use PacBio HiFi sequencing enhanced by Dovetail Omni-C chromatin conformation capture to assemble a highly contiguous 747.98 Mb genome of an isolate collected from Coffea arabica.
ABSTRACT
Frangipani (Plumeria rubra L.; Apocynaceae.) is a deciduous ornamental shrub, native to tropical America and widely distributed in tropical and subtropical regions. In Mexico, P. rubra is also used in traditional medicine and religious ceremonies. In November 2018-2022, rust-diseased leaves of P. rubra were found in Yautepec (18°49'29"N; 99°05'46"W), Morelos, Mexico. Symptoms of the disease included small chlorotic spots on the adaxial surface of the infected leaves, which as the disease progressed turned into necrotic areas surrounded by a chlorotic halo. The chlorotic spots observed on the adaxial leaf surface coincided with numerous erumpent uredinia of bright orange color on the abaxial leaf surface. As a result of the infection, foliar necrosis and leaves abscission was observed. Of the 40 sampled trees, 95% showed symptoms of the disease. On microscopic examination of the fungus, bright orange, subepidermal uredinia were observed, which subsequently faded to white. Urediniospores were bright yellow-orange color. They were ellipsoid or globose, sometimes angular, echinulate, (21.5) 26.5 (33.0) × (16.0) 19.0 (23.0) µm in size. Morphological features of the fungus correspond with previous descriptions of Coleosporium plumeriae by Holcomb and Aime (2010) and Soares et al., (2019). A voucher specimen was deposited in the Herbarium of the Departmet of Plant-Insect Interactions at the Biotic Products Development Center of the National Polytechnic Institute under accession no. IPN 10.0113. Species identity was confirmed by amplifying the 5.8S subunit, the ITS 2 region, and part of the 28S region with rust-specific primer Rust2inv (Aime, 2006) and LR6 (Vilgalys and Hester 1990). The sequence was deposited in GenBank (OQ518406) and showed 100% sequence homology (1435/1477bp) with a reference sequence (MG907225) of C. plumeriae from Plumeria spp. (Aime et al. 2018). Pathogenicity was confirmed by spraying a urediniospores suspension of 2×104 spores ml-1 onto ten plants of P. rubra. Six plants were inoculated and sealed in plastic bags, while four noninoculated plants were applied with sterile distilled water. Plants were inoculated at 25°C and held for 48 h in a dew chamber, after this, the plants were transferred to greenhouse conditions (33ï±/span>2°C). The experiment was performed twice. All inoculated plants developed rust symptoms after 14 days, whereas the non-inoculated plants remained symptomless. The recovered fungus was morphologically identical to that observed in the original diseased plants, thus fulfilling Koch's postulates. According to international databases (Crous 2004; Farr and Rossman 2023), C. plumeriae has not been officially reported in Mexico, despite being a prevalent disease. Diseased plants have been collected and deposited in herbaria, unfortunately, these reports lack important information such as geographic location of sampling, pathogenicity tests, or molecular evidence, which are essential for a comprehensive study of the disease in Mexico. To our knowledge, this is the molecular confirmation of Coleosporium plumeriae causing rust of Plumeria rubra in Mexico. Rust of P. rubra caused by C. plumeriae has been previously identified in India, Taiwan, Malaysia, and Indonesia by Baiswar et al. (2008), Chung et al. (2006), Holcomb and Aime (2010) and Soares et al., (2019). This disease causes important economic losses in nurseries, due to the defoliation of infected plants.
ABSTRACT
Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.
Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Breeding , GenomicsABSTRACT
Austropuccinia psidii is a biotrophic fungus that causes myrtle rust. First described in Brazil, it has since spread to become a globally important pathogen that infects more than 480 myrtaceous species. One of the most important commercial crops affected by A. psidii is eucalypt, a widely grown forestry tree. The A. psidii-Eucalyptus spp. interaction is poorly understood, but pathogenesis is likely driven by pathogen-secreted effector molecules. Here, we identified and characterized a total of 255 virulence effector candidates using a genome assembly of A. psidii strain MF-1, which was recovered from Eucalyptus grandis in Brazil. We show that the expression of seven effector candidate genes is modulated by cell wax from leaves sourced from resistant and susceptible hosts. Two effector candidates with different subcellular localization predictions, and with specific gene expression profiles, were transiently expressed with GFP-fusions in Nicotiana benthamiana leaves. Interestingly, we observed the accumulation of an effector candidate, Ap28303, which was upregulated under cell wax from rust susceptible E. grandis and described as a peptidase inhibitor I9 domain-containing protein in the nucleus. This was in accordance with in silico analyses. Few studies have characterized nuclear effectors. Our findings open new perspectives on the study of A. psidii-Eucalyptus interactions by providing a potential entry point to understand how the pathogen manipulates its hosts in modulating physiology, structure, or function with effector proteins.
ABSTRACT
The myrtle rust (MR), caused by Austropuccinia psidii, is a worldwide threat to the cultivated and wild Myrtaceae. Originally from the neotropics, it has spread to North America, Africa, and Asia and has reached geographically isolated areas in the Pacific and Australasia. It is attacking native species in those new ranges and is still spreading and causing great concern for the damage caused to endemic Myrtaceae, and to the environment. Classical biological control is regarded as the most sustainable management option for mitigating such biological invasions. However, there are no examples of introductions of host-specific co-evolved natural enemies of plant pathogens, from their native range, as a management strategy for plant pathogens. In order to explore this neglected approach, a survey of potential fungal natural enemies of A. psidii was initiated recently in the state of Minas Gerais (Brazil). Several purported mycoparasites have been collected from A. Psidii pustules formed on myrtaceous hosts. This included some isolates of dematiaceous fungi recognized as having a Cladosporium-like morphology. Here we present the results of the investigation aimed at elucidating their identity through a polyphasic taxonomic approach. Besides morphological and cultural features, molecular analyses using sequences of translation elongation factor 1-α (EF1) and actin (ACT) were performed. The combination of data generated is presented herein and placed all Cladosporium-like isolates in six species of Cladosporium, namely, Cladosporium angulosum, C. anthropophilum, C. bambusicola, C. benschii, C. guizhouense, and C. macadamiae. None of these have ever been recorded in association with A. psidii. Now, with the identification of these isolates at hand, an evaluation of biocontrol potential of these fungi will be initiated. In contrast with the ready finding of fungicolous (possibly mycoparasitic) fungi on MR in this study, no evidence of those was recorded from Australasia until now.
Subject(s)
Basidiomycota , Myrtus , Brazil , Cladosporium/genetics , Basidiomycota/geneticsABSTRACT
Peppermint (Lamiaceae) is an aromatic herb with culinary, medicinal, and industrial properties. In June 2022, symptoms and signs of foliar rust were observed in four commercial fields of peppermint (Mentha × piperita) in San Buenaventura Tecalzingo, San Martín Texmelucan, Puebla, Mexico (19°14'34.0"N 98°27'25.4"W; 19°14'16.7"N 98°27'21.4"W; 19°14'37.0"N 98°27'07.7"W; 19°15'00.6"N 98°26'54.7"W). Two diseased plants were collected at each site. The disease was present in 50% of the plants and the damaged foliar tissue was under 17%. Initial symptoms included small chlorotic spots on the adaxial surface of the leaves, which later spread to form a necrotic area surrounded by a broad chlorotic halo. Necrosis developed only in the presence of abundant reddish-brown pustules on the abaxial surface of the leaf, while smaller pustules were observed on the adaxial surface. The signs were detected as numerous reddish-brown pustules on the abaxial surface of the leaves. The infected leaves of all samples showed subepidermal uredinia, erumpent, with hyaline and cylindrical paraphyses. Urediniospores (n = 50) were hyaline to light brown, echinulate, with two germinative pores, obovoid (16.5-26.5 × 11.5-25.5 µm, mean ± SD = 22 ± 1.6 × 19 ± 0.4 µm and 0.6 µm of wall thickness), individually supported on pedicels. Morphological characteristics aligned most closely with the description of Puccinia menthae by Kabaktepe et al. (2017) and Solano-Báez et al. (2022). A voucher specimen was deposited in the Herbarium of the Department of Plant-Insect Interactions at the Biotic Products Development Center of the National Polytechnic Institute under accession no. IPN 10.0115. From one sample, genomic DNA was extracted, and the 28S gene region of rDNA was amplified by a nested PCR using the primer sets Rust2inv (Aime, 2006) and LR6 (Vilgalys and Hester, 1990), and Rust28SF (Aime et al., 2018), and LR5 (Vilgalys and Hester, 1990) for the first and second reactions, respectively. The obtained sequence (GenBank accession No. OQ552847) showed 100% homology (902/1304bp) with the type-specimen sequence of P. menthae (DQ354513) from Cunila origanoides from USA (Aime, 2006). A phylogenetic analysis using Maximum Likelihood including a published 28S dataset for Puccinia species was executed and the isolate IPN 10.0115 was grouped into a clade of P. menthae with bootstrap support value of 100%. Pathogenicity was assessed by spraying a suspension of urediniospores (1×104 spores/ml) of the isolate IPN 10.0115 onto six healthy peppermint plants (Mentha × piperita) that were 30 days old, while six other plants were sprayed with sterile distilled water. All plants were kept in a wet chamber for 48 h at temperatures from 28±2°C and relative humidity of 95%, after which the plastic bag was removed. All inoculated plants developed disease symptoms after 15 days, whereas the control plants remained symptomless. The pathogenicity assay was conducted twice with similar results. The morphology of the pathogen recovered from the pustules of the inoculated plants was identical to that originally recollected, thus fulfilling Koch'postulates. To our knowledge, this is the first report of Puccinia menthae causing leaf rust on Mentha × piperita in Mexico. This species has been previously identified using morphological characteristics in Brazil, Canada, Poland, and USA on Mentha × piperita (Farr and Rossman, 2023). Since the disease defoliates peppermint plants reducing yield, further information on disease management is needed.
ABSTRACT
In the present era of climate instability, Canadian wheat production has been frequently affected by abiotic stresses and by dynamic populations of pathogens and pests that are more virulent and aggressive over time. Genetic diversity is fundamental to guarantee sustainable and improved wheat production. In the past, the genetics of Brazilian cultivars, such as Frontana, have been studied by Canadian researchers and consequently, Brazilian germplasm has been used to breed Canadian wheat cultivars. The objective of this study was to characterize a collection of Brazilian germplasm under Canadian growing conditions, including the reaction of the Brazilian germplasm to Canadian isolates/pathogens and to predict the presence of certain genes in an effort to increase genetic diversity, improve genetic gain and resilience of Canadian wheat. Over 100 Brazilian hard red spring wheat cultivars released from 1986 to 2016 were evaluated for their agronomic performance in eastern Canada. Some cultivars showed good adaptability, with several cultivars being superior or statistically equal to the highest yielding Canadian checks. Several Brazilian cultivars had excellent resistance to leaf rust, even though only a few of these tested positive for the presence of either Lr34 or Lr16, two of the most common resistance genes in Canadian wheat. Resistance for stem rust, stripe rust and powdery mildew was variable among the Brazilian cultivars. However, many Brazilian cultivars had high levels of resistance to Canadian and African - Ug99 strains of stem rust. Many Brazilian cultivars had good Fusarium head blight (FHB) resistance, which appears to be derived from Frontana. In contrast FHB resistance in Canadian wheat is largely based on the Chinese variety, Sumai-3. The Brazilian germplasm is a valuable source of semi-dwarf (Rht) genes, and 75% of the Brazilian collection possessed Rht-B1b. Many cultivars in the Brazilian collection were found to be genetically distinct from Canadian wheat, making them a valuable resource to increase the disease resistance and genetic variability in Canada and elsewhere.
ABSTRACT
Myrcianthes pungens is a tree fruit native to Brazil, unknown to a large part of the population, with fruit consumed only locally. In October 2022, at the experimental area at Universidade Tecnológica Federal do Paraná (UTFPR) in the Dois Vizinhos city, Paraná State, Brazil, symptoms of the disease were observed on mature leaves and fruits of 17 trees. Fungal fructifications were observed in the form of bright yellow uredinia containing a large mass of urediniospores on the surface and on the leaves and fruits that resembled the structures typical of a Myrtaceae rust pathogen. Leaves colonized by the fungus showed deformations, turning dark and rapidly causing senescence. In the orchard, the fungus affected 80% of the trees, with a severity of 40 to 45%. Diseased fruits (10) and leaves (10) (from each tree) were collected from 17 trees from different positions in the orchard. The observed structures (optical microscope) were hyaline and globose urediniospores (n = 30) which had pointed echinulate ornaments throughout their surface (Cummins & Hiratsuka, 2003), (n = 30, 14.84 µm × 21.1 µm). These characteristics were similar to the morphological characteristics of the genus Austropuccinia previously described by Young et al. (2019). A strain was selected as a representative for molecular characterization and pathogenicity tests (accession no. APM001). For molecular identification, the internal transcribed spacer (ITS) region (Kroop et al., 1995), b-tubulin (TUB2), and translation elongation factor 1-alpha (TEF) (Machado et al., 2015) were amplified by PCR and sequenced. The sequences were deposited in GenBank (accession nos. ITS: OQ442638, TUB2: OQ506543, and TEF: OQ506542). Phylogenetic analyses using Bayesian inference grouped the isolate with the type species of Austropuccinia psidii with a high posterior probability (1.0). Pathogenicity tests used conidial suspensions (1x105urediniospores/ml). Four branches containing twenty leaves and two young asymptomatic fruits were individually inoculated with 1.5 mL of urediniospore suspension using a bottle with a spray nozzle cap. The branches were protected with perforated transparent plastic bags moistened with distilled water and incubated at room temperature (18 ºC to 25 ºC). Three replicates (pathogen and control) spread on different trees in the orchard were used in this experiment. After seven days, symptoms of rust appeared on the leaves and on the tenth day of the fruits, with morphological characteristics similar to those previously reported. Control branches showed no fungal growth. The inoculation test was repeated, confirming the symptoms. This is the first report of the incidence of rust caused by A. psidii on leaves and fruits of M. pungens in Paraná State. The importance of the disease is due to the high percentage of fruit loss due to rapid rot and drop caused by the pathogen attack.
ABSTRACT
Introduction: Fungal foliar diseases can severely affect the productivity of the peanut crop worldwide. Late leaf spot is the most frequent disease and a major problem of the crop in Brazil and many other tropical countries. Only partial resistance to fungal diseases has been found in cultivated peanut, but high resistances have been described on the secondary gene pool. Methods: To overcome the known compatibility barriers for the use of wild species in peanut breeding programs, we used an induced allotetraploid (Arachis stenosperma × A. magna)4x, as a donor parent, in a successive backcrossing scheme with the high-yielding Brazilian cultivar IAC OL 4. We used microsatellite markers associated with late leaf spot and rust resistance for foreground selection and high-throughput SNP genotyping for background selection. Results: With these tools, we developed agronomically adapted lines with high cultivated genome recovery, high-yield potential, and wild chromosome segments from both A. stenosperma and A. magna conferring high resistance to late leaf spot and rust. These segments include the four previously identified as having QTLs (quantitative trait loci) for resistance to both diseases, which could be confirmed here, and at least four additional QTLs identified by using mapping populations on four generations. Discussion: The introgression germplasm developed here will extend the useful genetic diversity of the primary gene pool by providing novel wild resistance genes against these two destructive peanut diseases.
ABSTRACT
Late leaf rust is a fungal disease in raspberries caused by Aculeastrum americanum (Farl.) M. Scholler U. Braun (syn. Thekopsora americana (Farl.) Aime McTaggart) leading to early defoliation and yield losses. Red raspberries (Rubus idaeus L.) are susceptible to this pathogen, although this susceptibility varies among cultivars. In contrast, black raspberries were previously reported to be more resistant (Rubus occidentalis L.) and immune (Rubus niveus Thunb.) to this pathogen, raising their importance in plant breeding programs. However, what features make them respond differently to the same pathogen? In this study, we characterize for the first time the pre- and post-formed structural and biochemical defense mechanisms of R. idaeus cv. Autumn Bliss, R. occidentalis and R. niveus. Ultrastructural and histopathological analyses were used to uncover the interactions between these raspberries and A. americanum. The ultrastructural results indicate that the pathogen germinates on both leaf surfaces but can only form appressoria on the stomata. Although the three raspberry species were infected and colonized by A. americanum, a clear difference in susceptibility was observed between them. A compact mesophyll, pre- and post-formed phenolic compounds, and post-formed pectic compounds were the main plant defense mechanisms against fungal colonization. These findings provide new information about raspberries' defense mechanisms in response to A. americanum and elucidate the interactions occurring in these pathosystems.
ABSTRACT
The multicellular discoid convex teliospore heads represent a prominent generic feature of the genus Ravenelia. However, recent molecular phylogenetic work has shown that this is a convergent trait, and that this genus does not represent a natural group. In 2000, a rust fungus infecting the Caesalpinioid species Cenostigma macrophyllum (= C. gardnerianum) was described as Ravenelia cenostigmatis. This species shows some rare features, such as an extra layer of sterile cells between the cysts and the fertile teliospores, spirally ornamented urediniospores, as well as strongly incurved paraphyses giving the telia and uredinia a basket-like appearance. Using freshly collected specimens of Rav. cenostigmatis and Rav. spiralis on C. macrophyllum, our phylogenetic analyses based on the nuc 28S, nuc 18S, and mt CO3 (cytochrome c oxidase subunit 3) gene sequences demonstrated that these two rust fungi belong in a lineage within the Raveneliineae that is distinct from Ravenelia s. str. Besides proposing their recombination into the new genus Raveneliopsis (type species R. cenostigmatis) and briefly discussing their potentially close phylogenetic affiliations, we suggest that five other Ravenelia species that are morphologically and ecologically close to the type species of Raveneliopsis, i.e., Rav. corbula, Rav. corbuloides, Rav. parahybana, Rav. pileolarioides, and Rav. Striatiformis, may be recombined pending new collections and confirmation through molecular phylogenetic analyses.
Subject(s)
Basidiomycota , Fabaceae , Brazil , Phylogeny , Basidiomycota/geneticsABSTRACT
During surveys conducted in South America and Africa to identify natural fungal enemies of coffee leaf rust (CLR), Hemileia vastatrix, over 1500 strains were isolated, either as endophytes from healthy tissues of Coffea species or as mycoparasites growing on rust pustules. Based on morphological data, eight isolates-three isolated from wild or semiwild coffee and five from Hemileia species on coffee, all from Africa-were provisionally assigned to the genus Clonostachys. A polyphasic study of their morphological, cultural and molecular characteristics-including the Tef1 (translation elongation factor 1 alpha), RPB1 (largest subunit of RNA polymerase II), TUB (ß-tubulin) and ACL1 (ATP citrate lyase) regions-confirmed these isolates as belonging to three species of the genus Clonostachys: namely C. byssicola, C. rhizophaga and C. rosea f. rosea. Preliminary assays were also conducted to test the potential of the Clonostachys isolates to reduce CLR severity on coffee under greenhouse conditions. Foliar and soil applications indicated that seven of the isolates had a significant effect (p < 0.05) in reducing CLR severity. In parallel, in vitro tests that involved conidia suspensions of each of the isolates together with urediniospores of H. vastatrix resulted in high levels of inhibition of urediniospore germination. All eight isolates showed their ability to establish as endophytes in C. arabica during this study, and some proved to be mycoparasites of H. vastatrix. In addition to reporting the first records of Clonostachys associated with healthy coffee tissues and with Hemileia rusts of coffee, this work provides the first evidence that Clonostachys isolates have potential as biological control agents against CLR.