Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Discov Oncol ; 15(1): 272, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977545

ABSTRACT

Glioblastoma (GBM) is an aggressive form of cancer affecting the Central Nervous System (CNS) of thousands of people every year. Redox alterations have been shown to play a key role in the development and progression of these tumors as Reactive Oxygen Species (ROS) formation is involved in the modulation of several signaling pathways, transcription factors, and cytokine formation. The second-generation oral alkylating agent temozolomide (TMZ) is the first-line chemotherapeutic drug used to treat of GBM, though patients often develop primary and secondary resistance, reducing its efficacy. Antioxidants represent promising and potential coadjutant agents as they can reduce excessive ROS formation derived from chemo- and radiotherapy, while decreasing pharmacological resistance. S-allyl-cysteine (SAC) has been shown to inhibit the proliferation of several types of cancer cells, though its precise antiproliferative mechanisms remain poorly investigated. To date, SAC effects have been poorly explored in GBM cells. Here, we investigated the effects of SAC in vitro, either alone or in combination with TMZ, on several toxic and modulatory endpoints-including oxidative stress markers and transcriptional regulation-in two glioblastoma cell lines from rats, RG2 and C6, to elucidate some of the biochemical and cellular mechanisms underlying its antiproliferative properties. SAC (1-750 µM) decreased cell viability in both cell lines in a concentration-dependent manner, although C6 cells were more resistant to SAC at several of the tested concentrations. TMZ also produced a concentration-dependent effect, decreasing cell viability of both cell lines. In combination, SAC (1 µM or 100 µM) and TMZ (500 µM) enhanced the effects of each other. SAC also augmented the lipoperoxidative effect of TMZ and reduced cell antioxidant resistance in both cell lines by decreasing the TMZ-induced increase in the GSH/GSSG ratio. In RG2 and C6 cells, SAC per se had no effect on Nrf2/ARE binding activity, while in RG2 cells TMZ and the combination of SAC + TMZ decreased this activity. Our results demonstrate that SAC, alone or in combination with TMZ, exerts antitumor effects mediated by regulatory mechanisms of redox activity responses. SAC is also a safe drug for testing in other models as it produces non-toxic effects in primary astrocytes. Combined, these effects suggest that SAC affords antioxidant properties and potential antitumor efficacy against GBM.

2.
Nutrients ; 15(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37686723

ABSTRACT

The use of garlic (Allium sativum) for treating arterial hypertension has been recognized as effective for several decades. However, tolerance to treatment is low, and several technological modifications have been developed to improve its tolerability, such as the aging process at controlled temperature and humidity. This study aims to validate the antihypertensive effects of an optimized extract of aged black garlic with low doses of s-allyl-cysteine (SAC) in a Grade I hypertensive population with drug treatment. A randomized, triple-blind, placebo-controlled parallel trial was developed, where a daily supplementation with 0.25 mg/day of SAC for 12 weeks was performed. A reduction in systolic and diastolic blood pressure of 1.8 mmHg (0.7 to 4.1 95% CI) and 1.5 mmHg (0.3 to 3.0 95% CI), respectively, was observed. Similarly, an increase in blood nitric oxide (10.3 µM, 1.1 to 19.5 95% CI) and antioxidant capacity (7 × 10-3 µM TE/min, (1.2 to 13 × 10-3 95% CI) and a reduction in uric acid levels (-0.3 mg/dL, -0.5 to -0.001 95% CI) and ACE activity (-9.3 U/L; -18.4 to -0.4 95% CI) were observed. No changes in endothelial function and inflammatory cytokines were observed. It was concluded that low-dose SAC supplementation in an optimized black-garlic extract allows for an extra-significant reduction in blood pressure in a Grade I hypertensive population receiving drug treatment.


Subject(s)
Biological Products , Garlic , Hypertension , Humans , Antihypertensive Agents/therapeutic use , Antioxidants , Hypertension/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
Curr Pharm Des ; 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36809972

ABSTRACT

Alzheimer's disease (AD) is one of the most complicated neurodegenerative diseases causing dementia in human beings. Aside from that incidence of AD is increasing also its treatment is very complicated. There are several known hypotheses regarding the pathology of Alzheimer's disease, including the Amyloid beta hypothesis, Tau hypothesis, inflammation hypothesis, and cholinergic hypothesis, which are investigated in different researches to completely elucidate the pathology of AD. Aside from these some new mechanisms such as immune, endocrine, and vagus pathways, as well as bacteria metabolite secretions are being explained as other causes that are somehow related to AD pathogenesis. There is still no definite treatment for Alzheimer's disease that can completely cure and eradicate AD. Garlic (Allium sativum) is a traditional herb used as a spice in different cultures and due to the organosulfur compounds like allicin it possesses highly anti-oxidant properties and the benefits of garlic in cardiovascular diseases like hypertension and atherosclerosis is examined and reviewed, although its beneficiary effects in neurodegenerative diseases such as AD is not completely understood. In this review, we discuss the effects of garlic based on its components such as allicin, S-allyl cysteine on Alzheimer's disease and the mechanisms that garlic components can be beneficiary for AD patients, including its effects amyloid beta, oxidative stress, tau protein, gene expression, and cholinesterase enzymes. Based on the literature review we have done, garlic has revealed beneficiary effects on Alzheimer's disease, especially in animal studies; however, more studies should be done on human populations to find the exact mechanism of garlic effects on AD patients.

4.
Crit Rev Food Sci Nutr ; : 1-51, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503329

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.

5.
Appl Environ Microbiol ; 88(24): e0155422, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36445356

ABSTRACT

The development of suppressive soil is an ideal strategy to sustainably combat soilborne diseases. Previously, the cultivation of Allium plants increased antagonistic bacteria populations in soil, alleviating Fusarium wilt of different crops. This study aimed to identify a compound produced by Allium plants that can induce bacteria-mediated soil suppressiveness toward Fusarium wilt. The amendment of soils with γ-glutamyl-S-allyl-l-cysteine (GSAC), a unique dipeptide abundantly detected in the root extract of Welsh onion (Allium fistulosum), significantly suppressed Fusarium wilt diseases, whereas three other commercial dipeptides had no such effects. GSAC application did not suppress the disease in sterilized soil. Furthermore, the suppressiveness of soil amended with GSAC could be transferred to sterilized soil via soil microflora transplantation. This suppressiveness was eliminated by pretreating GSAC-amended soil microflora with antibacterial antibiotics, indicating that the suppressiveness of GSAC-amended soil is generated by the activity of antagonistic bacteria. Amplicon sequencing of the 16S rRNA gene revealed that GSAC application significantly increased the relative abundance of Pseudomonas (OTU224), Burkholderia-Caballeronia-Paraburkholderia (OTU387), and Bdellovibrio (OTU1259) in soils. Surprisingly, the relative abundance of OTU224 was significantly greater in Welsh onion rhizospheres than in noncultivated soil. Pseudomonas strains corresponding to OTU224, isolated from Welsh onion rhizospheres, displayed a remarkable suppressive effect against cucumber Fusarium wilt, implying that OTU224 was involved in GSAC-mediated suppressiveness. This is the first study on the potential of GSAC as a soil microflora-manipulating agent that can enhance soil suppressiveness to Fusarium wilt. IMPORTANCE Methods for increasing soil suppressiveness via soil microflora manipulation have long been explored as an ideal strategy to protect plants from soilborne pathogens. However, viable methods offering consistent disease control effects have not yet been developed. Previously, the cultivation of Allium plants was demonstrated to induce bacteria-mediated soil suppressiveness to Fusarium wilt of different crop plants. This study discovered that the application of γ-glutamyl-S-allyl-l-cysteine, a unique dipeptide synthesized by Welsh onion, to soil enhances Fusarium wilt suppressiveness by increasing the relative abundance of indigenous antagonistic bacteria irrespective of the soil type. This finding will facilitate research supporting the development of environmentally friendly control measures for soilborne diseases.


Subject(s)
Fusarium , Fusarium/genetics , Soil/chemistry , Soil Microbiology , Cysteine/pharmacology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Onions , Pseudomonas/genetics , Dipeptides , Plant Diseases/prevention & control , Plant Diseases/microbiology
6.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296587

ABSTRACT

Black garlic (BG) is an emerging derivative of fresh garlic with enhanced nutritional properties. This study aimed to develop functional BG products with good consumer acceptance. To this end, BG was treated with freezing (F-BG), ultrasound (U-BG), and HHP (H-BG) to assess its sensory and functional properties. The results showed that F-BG and H-BG had higher S-allyl-cysteine (SAC), polyphenol, and flavonoid contents than BG. H-BG and F-BG displayed the best sensory quality after 18 days of aging, while 5-hydroxymethylfurfural (5-HMF), SAC, and polyphenols were identified as the most influential sensory parameters. Moreover, the F-BG and H-BG groups achieved optimal taste after 18 days, as opposed to untreated BG, which needed more than 24 days. Therefore, the proposed approaches significantly reduced the processing time while enhancing the physical, sensory, and functional properties of BG. In conclusion, freezing and HHP techniques may be considered promising pretreatments to develop BG products with good functional and sensory properties.


Subject(s)
Biological Products , Garlic , Polyphenols , Freezing , Cysteine , Antioxidants , Flavonoids
7.
Appl Biochem Biotechnol ; 194(12): 5827-5847, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35819687

ABSTRACT

In recent years, derivatives of natural compounds are synthesized to increase the bioavailability, pharmacology, and pharmacokinetics properties. The naphthoquinone, plumbagin (PLU), is well known for its anticancer activity. However, the clinical use of PLU is hindered due to its toxicity. Previous reports have shown that modification of PLU at 5'-hydroxyl group has reduced its toxicity towards normal cell line. In accordance, in the present study, 5'-hydroxyl group of PLU was esterified with S-allyl cysteine (SAC) to obtain PLU-SAC ester. The drug-likeness of PLU-SAC was understood by in silico ADME analysis. PLU-SAC was characterized by UV-visible spectroscopy, mass spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Molecular docking and dynamics simulation analysis revealed the interaction of PLU-SAC with proteins of interest in cancer therapy such as human estrogen receptor α, tumor protein p53 negative regulator mouse double minute 2, and cyclin-dependent kinase 2. MMGBSA calculation showed the favorable binding energy which in turn demonstrated the stable binding of PLU-SAC with these proteins. PLU-SAC showed apoptosis in breast cancer cell line (MCF-7) by inducing oxidative stress, disturbing mitochondrial function, arresting cells at G1 phase of cell cycle, and initiating DNA fragmentation. However, PLU-SAC did not show toxicity towards normal Vero cell line. PLU-SAC was synthesized and structurally characterized, and its anticancer activity was determined by in silico and in vitro analysis.


Subject(s)
Esters , Naphthoquinones , Humans , Mice , Animals , Molecular Docking Simulation , Esters/pharmacology , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Cysteine/chemistry , Apoptosis , Cell Line, Tumor
8.
Arch Physiol Biochem ; : 1-9, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35482540

ABSTRACT

Purpose: High glucose (HG)-induced oxidative stress is associated with apoptosis in pancreatic ß-cells. The protective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against HG-induced oxidative stress in pancreatic ß-cells (ßTC-tet cell line) in in vitro was studied.Materials and Methods: ßTC-tet cell line was exposed to HG in the presence and absence of AST-SAC. Various parameters such as cell viability, reactive oxygen species generation, mitochondrial membrane potential, DNA fragmentation and expression of proteins involved in apoptosis [p53, B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), cytochrome c and caspase 3] were studied.Results: Pre-treatment of ßTC-tet cells with AST-SAC (4, 8 and 12 µg/ml) in the presence of HG (25 mM) protected the viability of the cells in a dose-dependent manner. AST-SAC treatment mitigated the oxidative stress thereby preventing the mitochondrial dysfunction, DNA damage and apoptosis in ßTC-tet cells against HG toxicity. Treatment with AST-SAC prevented the increased expression of p53 under HG conditions. Further, AST-SAC treatment maintained the level of pro-apoptotic (Bax, cleaved caspase-3 and cytochrome c) and anti-apoptotic (Bcl-2) proteins to that of the control level under HG exposed conditions in ßTC-tet cells.Conclusion: Altogether, AST-SAC alleviated HG-induced oxidative damage and apoptosis in pancreatic ß-cells by enhancing the antioxidant status and altering apoptotic-related protein expression.

9.
Compr Rev Food Sci Food Saf ; 21(3): 2665-2687, 2022 05.
Article in English | MEDLINE | ID: mdl-35355410

ABSTRACT

S-allyl cysteine (SAC), which is the most abundant bioactive compound in black garlic (BG; Allium sativum), has been shown to have antioxidant, anti-apoptotic, anti-inflammatory, anti-obesity, cardioprotective, neuroprotective, and hepatoprotective activities. Sulfur compounds are the most distinctive bioactive elements in garlic. Previous studies have provided evidence that the concentration of SAC in fresh garlic is in the range of 19.0-1736.3 µg/g. Meanwhile, for processed garlic, such as frozen and thawed garlic, pickled garlic, fermented garlic extract, and BG, the SAC content increased to up to 8021.2 µg/g. BG is an SAC-containing product, with heat treatment being used in nearly all methods of BG production. Therefore, strategies to increase the SAC level in garlic are of great interest; however, further knowledge is required about the effect of processing factors and mechanistic changes. This review explains the formation of SAC in garlic, introduces its biological effects, and summarizes the recent advances in processing methods that can affect SAC levels in garlic, including heat treatment, enzymatic treatment, freezing, fermentation, ultrasonic treatment, and high hydrostatic pressure. Thus, the aim of this review was to summarize the outcomes of treatment aimed at maintaining or increasing SAC levels in BG. Therefore, publications from scientific databases in this field of study were examined. The effects of processing methods on SAC compounds were evaluated on the basis of the SAC content. This review provides information on the processing approaches that can assist food manufacturers in the development of value-added garlic products.


Subject(s)
Biological Products , Garlic , Antioxidants/pharmacology , Cysteine/analogs & derivatives , Cysteine/pharmacology , Food Handling/methods
10.
J Biomol Struct Dyn ; 40(22): 11511-11525, 2022.
Article in English | MEDLINE | ID: mdl-34344261

ABSTRACT

Nonivamide (NOV), less pungent analogue of capsaicin present in various Capsicum species is known for various biological properties. S-allyl cysteine (SAC) abundantly present in aged garlic extract is gaining importance for anticancer property. NOV was esterified with SAC to increase the biological activity. In silico ADME analysis revealed the drug-likeness of NOV-SAC. Molecular docking and dynamics simulation analysis were done to understand the interaction of NOV-SAC with therapeutic target proteins (human estrogen receptor α, tumo protein negative regulator mouse double minute 2, B-cell lymphoma 2 and cyclin-dependent kinase 2) to treat cancer. NOV-SAC interacted with these proteins stably with favorable binding energy which was calculated through MMGBSA method. In line with in silico results, NOV-SAC showed antiproliferative activity against breast cancer cell line (MCF-7). NOV-SAC treatment increased ROS generation, decreased the antioxidant level, arrested cells at G1/S phase, disrupted mitochondrial membrane potential and initiated DNA fragmentation. The expression of p53 is increased by NOV-SAC treatment, in concordance the ratio of Bcl-2/Bax was decreased. Altogether, NOV-SAC was synthesized for the first time and it induced apoptosis in MCF-7 cells through triggering ROS generation and increasing the expression of p53. The in silico results has been mirrored in in vitro analysis of NOV-SAC against cancer cell line.Communicated by Ramaswamy H. Sarma.


Subject(s)
Capsaicin , Tumor Suppressor Protein p53 , Mice , Humans , Animals , Aged , Reactive Oxygen Species/metabolism , Capsaicin/pharmacology , Molecular Docking Simulation , Antioxidants/pharmacology , Apoptosis , Cysteine/chemistry , MCF-7 Cells
11.
Braz. J. Pharm. Sci. (Online) ; 58: e201183, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420376

ABSTRACT

Abstract The present study was designed to evaluate the beneficial synergistic effects of S-allyl Cysteine (SAC) and Taurine (TAU) on hyperglycemia, lipid profile and renal damage markers in type 2 diabetes mellitus (T2DM) in rats. Experimental T2DM was developed by administering an intraperitoneal single dose of nicotinamide (NA; 230 mg/kg) and streptozotocin (STZ; 65 mg/ kg) in adult rats. Control and diabetic rats were treated with SAC (150 mg/kg); TAU (200 mg/ kg) or SAC and TAU (75+100 mg/kg) combination for four weeks. Measurements of traditional markers of kidney toxicity in serum, such as blood urea nitrogen (BUN), serum creatinine (Scr), and alkaline phosphatase (ALP), together with serum cholesterol/triglyceride such as serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and very low-density lipoprotein cholesterol (VLDL-C) may yield a snapshot of renal damage and lipid profile in NA/STZ-treated rats. The variation in levels of fasting blood glucose, glycosylated hemoglobin, insulin and lipid profile was significantly augmented in SAC/TAU treatment group. The diabetic group showed elevated renal injury markers in serum, which were decreased significantly by SAC/TAU treatment. Thus the results of the experiment clearly indicate the potential of the SAC/TAU combination in improving diabetic complications.

12.
Braz. J. Pharm. Sci. (Online) ; 58: e20822, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420404

ABSTRACT

Abstract In order to overcome the challenges of discovering new antiprotozoal drugs, we synthesized a new class of hybrids based on S-allylCysteine Ester/Caffeic Acid Amide and evaluated four of them against Trypanosoma cruzi and Plasmodium falciparum. Hybrid 6 exhibited good activity on T. cruzi with an EC50 value of 5.45 µM, whereas hybrid 3 was active over P. falciparum with an EC50 of 18.08 µM. All hybrids displayed a good selectivity index on P. falciparum. Molecular docking computations indicated that several hybrids have good binding affinities towards the protozoa related enzymes (Cruzipain or Falcipain-2) when compared against current inhibitors. In silico studies showed that conjugates 1-3 and 6 fulfilled optimal ADME characteristics, suggesting them as safe alternatives for oral treatment of protozoal infections.

13.
Iran J Pharm Res ; 20(3): 351-367, 2021.
Article in English | MEDLINE | ID: mdl-34903994

ABSTRACT

We synthesized twelve hybrids, S-allyl Cysteine methyl, ethyl and propyl ester-based non-steroidal anti-inflammatory drugs and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of all compounds was evaluated against SW480 human colon adenocarcinoma cells and the non-malignant CHO-K1 cell line. Among the tested compounds, hybrids 10b-c, 11b and 12b displayed the best anticancer activity with IC50 values between 0.131-0.183 mM and selectivity indices higher than 1 after 48 h of treatment. Selectivity indices were comparable to those reported for the reference drug, 5-fluorouracil (SI > 1). The SAR analysis showed that compounds with two carbon atom alkylic chains displayed the best activity (10b, 11b and 12b). Modeling studies including drug-likeness, bioactivity score and ADME/tox studies using online tools like molinspiration and Osiris suggested that these designed hybrids have a good pharmacological profile and can be considered as promising scaffolds for further studies in the search for new therapeutic alternatives to treat colorectal cancer.

14.
Microbiol Spectr ; 9(3): e0017021, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34817207

ABSTRACT

Prenatal screening in pregnant women between 35 and 37 weeks of gestation and intrapartum antibiotic prophylaxis has successfully reduced the incidence of neonatal morbidity and mortality related to Streptococcus agalactiae. However, the contamination rates of newborns are still considerable. In traditional and folk medicines, it has been observed that garlic has been effective in treating S. agalactiae infection. The aim of this study was to isolate and identify the active compounds from garlic that have antimicrobial activity against S. agalactiae. In order to do this, SP80 (Sep-Pak 80%) obtained from crude garlic extract (CGE) was fractionated by reverse-phase ultrafast liquid chromatography with UV (RP-UFLC-UV) using a Shim-pack PREP-ODS column. All fractions obtained were tested using a microbial growth inhibition test against the S. agalactiae strain (ATCC 12386). Five clinical isolates were used to confirm the action of the fractions with antimicrobial activity, and the bacterial growth curve was determined. Identification of the antimicrobial compounds was carried out through liquid chromatography coupled with mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR). The active compounds found to exhibit antimicrobial activity were Ƴ-glutamyl-S-allyl-cysteine (fraction 18), Ƴ-glutamyl-phenylalanine (fraction 20), and the two stereoisomers (E and Z) of ajoene (fraction 42). The MICs of these fractions were 5.41 mg/ml, 4.60 mg/ml, and 0.16 mg/ml, respectively, and they inhibited the growth of the clinical isolates tested. Antimicrobial compounds from garlic may be a promising source in the search for new drugs against S. agalactiae. IMPORTANCE Invasive disease due to group B streptococcal (GBS) infection results in a wide spectrum of clinical disease in neonates. Maternal colonization by GBS is the primary risk factor for disease. The strategy recommended by the Centers for Disease Control to reduce neonatal GBS infection is the culture-based screening of all pregnant women at 35 to 37 weeks of gestation and intrapartum antibiotic prophylaxis (IAP). However, indiscriminate use of antibiotics favors the selection and spread of resistant bacteria. The global scenario of antibacterial resistance has been of great concern for public health, and natural products can be a source of new substances to help us grapple with this problem.


Subject(s)
Anti-Bacterial Agents/pharmacology , Garlic/chemistry , Plant Extracts/pharmacology , Streptococcal Infections/microbiology , Streptococcus agalactiae/drug effects , Anti-Bacterial Agents/chemistry , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Streptococcal Infections/drug therapy , Streptococcus agalactiae/genetics , Streptococcus agalactiae/physiology
15.
Neurotoxicology ; 86: 114-124, 2021 09.
Article in English | MEDLINE | ID: mdl-34339762

ABSTRACT

Neuroprotective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against high glucose (HG)-induced oxidative stress in in vitro and cognitive decline under diabetes conditions in in vivo has been explored. Pretreatment of AST-SAC (5, 10 and 15 µM) dose-dependently preserved the neuronal cells (SH-SY5Y) viability against HG toxicity through i) decreasing oxidative stress (decreasing reactive oxygen species generation and increasing endogenous antioxidants level); ii) protecting mitochondrial function [oxidative phosphorylation (OXPHOS) complexes activity and mitochondrial membrane potential (MMP)]; and iii) decreasing p53 level thereby subsequently decreasing the level of apoptotic marker proteins. Male Spraque-Dawley rats were orally administered AST-SAC (1 mg/kg/day) for 45 days in streptozotocin-induced diabetes mellitus (DM) rats. AST-SAC administration prevented the loss of spatial memory in DM rats as determined using the novel object location test. AST-SAC administration alleviated the DM-induced injury in brain such as increased cholinesterases activity, elevated oxidative stress and mitochondrial dysfunction. Altogether, the results from the present study demonstrated that AST-SAC averted the neuronal apoptosis and preserved the cognitive function against HG toxicity under DM conditions.


Subject(s)
Cognitive Dysfunction/metabolism , Cysteine/analogs & derivatives , Diabetes Mellitus, Experimental/metabolism , Mitochondria/metabolism , Oxidative Stress/drug effects , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cysteine/pharmacology , Cysteine/therapeutic use , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Dose-Response Relationship, Drug , Glucose/toxicity , Humans , Male , Mitochondria/drug effects , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Tumor Suppressor Protein p53/metabolism , Xanthophylls/pharmacology , Xanthophylls/therapeutic use
16.
Molecules ; 26(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071846

ABSTRACT

This study was conducted to determine the potential interaction of aged garlic extract (AGE) with carvedilol (CAR), as well as to investigate the role of S-allyl-l-cysteine (SAC), an active constituent of AGE, in rats with isoproterenol (ISO)-induced myocardial dysfunction. At the end of three weeks of treatment with AGE (2 and 5 mL/kg) or SAC (13.1 and 32.76 mg/kg), either alone or along with CAR (10 mg/kg) in the respective groups of animals, ISO was administered subcutaneously to induce myocardial damage. Myocardial infarction (MI) diagnostic predictor enzymes, lactate dehydrogenase (LDH) and creatinine kinase (CK-MB), were measured in both serum and heart tissue homogenates (HTH). Superoxide dismutase (SOD), catalase, and thiobarbituric acid reactive species (TBARS) were estimated in HTH. When compared with other groups, the combined therapy of high doses of AGE and SAC given alone or together with CAR caused a significant decrease in serum LDH and CK-MB activities. Further, significant rise in the LDH and CK-MB activities in HTH was noticed in the combined groups of AGE and SAC with CAR. It was also observed that both doses of AGE and SAC significantly increased endogenous antioxidants in HTH. Furthermore, histopathological observations corroborated the biochemical findings. The cytoprotective potential of SAC and AGE were dose-dependent, and SAC was more potent than AGE. The protection offered by aged garlic may be attributed to SAC. Overall, the results indicated that a high dose of AGE and its constituent SAC, when combined with carvedilol, has a synergistic effect in preventing morphological and physiological changes in the myocardium during ISO-induced myocardial damage.


Subject(s)
Carvedilol/administration & dosage , Cysteine/analogs & derivatives , Garlic/metabolism , Heart/drug effects , Myocardium/pathology , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Catalase/metabolism , Creatine Kinase, MB Form/metabolism , Cysteine/administration & dosage , Female , Hemodynamics , Isoproterenol/chemistry , L-Lactate Dehydrogenase/metabolism , Necrosis , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances
17.
Molecules ; 26(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803601

ABSTRACT

Hypogonadism, associated with low levels of testosterone synthesis, has been implicated in several diseases. Recently, the quest for natural alternatives to prevent and treat hypogonadism has gained increasing research interest. To this end, the present study explored the effect of S-allyl cysteine (SAC), a characteristic organosulfur compound in aged-garlic extract, on testosterone production. SAC was administered at 50 mg/kg body weight intraperitoneally into 7-week-old BALB/c male mice in a single-dose experiment. Plasma levels of testosterone and luteinizing hormone (LH) and testis levels of proteins involved in steroidogenesis were measured by enzymatic immunoassay and Western blot, respectively. In addition, mouse testis-derived I-10 cells were also used to investigate the effect of SAC on steroidogenesis. In the animal experiment, SAC significantly elevated testosterone levels in both the plasma and the testis without changing the LH level in plasma and increased phosphorylated protein kinase A (p-PKA) levels. Similar results were also observed in I-10 cells. The findings demonstrating the increasing effect of SAC on p-PKA and mRNA levels of Cyp11a suggest that SAC increases the testosterone level by activating the PKA pathway and could be a potential target for hypogonadism therapeutics.


Subject(s)
Cysteine/analogs & derivatives , Testis/drug effects , Testis/metabolism , Testosterone/biosynthesis , Animals , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Cysteine/pharmacology , Enzyme Activation/drug effects , Garlic/chemistry , Leydig Cells/drug effects , Leydig Cells/metabolism , Luteinizing Hormone/blood , Male , Mice , Mice, Inbred BALB C , Phosphorylation , Testis/cytology , Testosterone/blood
18.
Phytochem Anal ; 32(6): 1051-1058, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33779027

ABSTRACT

INTRODUCTION: Giant garlic is a functional food that contains different kinds of bioactive molecules with beneficial effects on chronic noncommunicable diseases like diabetes and cardiovascular conditions. Considering biosynthesis pathways, abundance, and biological activity, alliin and S-allyl-cysteine were used as chemical markers of organosulphur compounds present in giant garlic. OBJECTIVE: To establish a chemometric optimisation of pressurised liquid extraction for the determination of alliin and S-allyl-cysteine in giant garlic by liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODOLOGY: Samples were blanched (ca. 90°C for 10 min) to inactivate alliinase and γ-glutamyl transpeptidase enzymes and then freeze-dried. Chemometric optimisation was performed via response surface methodology based on central composite design (CCD). Organosulphur compound yields were determined applying a validated LC-MS/MS method in multiple reaction monitoring (MRM) mode using the following transitions: for alliin m/z 178 → 74 and for S-allyl-cysteine m/z 162 → 41. RESULTS: According to CCD results, under constant conditions of pressure (1500 psi) and time (20 min), the optimal conditions for pressurised liquid extraction of alliin and S-allyl-cysteine were 70.75 and 68.97% v/v of ethanol in extraction solvent and 76.45 and 98.88°C as extraction temperature, respectively. Multiple response optimisation for the simultaneous extraction of both organosulphur compounds was established via desirability function. Under these conditions, 2.70 ± 0.27 mg g-1 dry weight (DW) of alliin and 2.79 ± 0.22 mg g-1 DW of S-allyl-cysteine were extracted. CONCLUSIONS: These results clearly demonstrated that pressurised liquid extraction is an efficient green technique to extract bioactive organosulphur compounds from giant garlic. Extraction yields were significantly (p < 0.05) higher than those obtained with conventional ultra-turrax extraction.


Subject(s)
Garlic , Chromatography, Liquid , Cysteine/analogs & derivatives , Tandem Mass Spectrometry
19.
Toxicol Appl Pharmacol ; 416: 115469, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33640343

ABSTRACT

Heat stress-induced oxidative stress in bovine mammary epithelial cells (BMECs) threatens the normal growth and development of bovine mammary tissue, resulting in lower milk production of dairy cows. The aim of the present study is to investigate the protective effects of S-allyl cysteine (SAC), an organosulfur component extracted from aged garlic, on heat stress-induced oxidative stress and apoptosis in BMECs and to explore its underlying mechanisms. Our results showed that heat stress treatment considerably decreased cell viability, whereas SAC treatment dose-dependently restored cell viability of BMECs under heat-stress conditions. In addition, SAC protected BMECs from heat stress-induced oxidative damage by inhibiting the excessive accumulation of reactive oxygen species (ROS) and increasing the activity of antioxidant enzymes. It also inhibited heat stress-induced apoptosis by reducing the ratio of Bax/Bcl-2 and blocking proteolytic the cleavage of caspase-3 in BMECs. Interestingly, we found that the protective effect of SAC on heat stress-induced oxidative stress and apoptosis was dependent on the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. SAC promoted the Nrf2 nuclear translocation in heat stress-induced BMECs. The results were also validated by Nrf2 and Keap1 knockdown experiments further demonstrating that Nrf-2 was indeed involved in the protective effect of SAC on heat stress-induced oxidative damage and apoptosis. In summary, our results showed that SAC could protect BMECs from heat stress-induced injury by mediating the Nrf2/HO-1 signaling pathway, suggesting that SAC could be considered as a therapeutic drug for attenuating heat stress-induced mammary gland diseases.


Subject(s)
Antioxidants/pharmacology , Cysteine/analogs & derivatives , Epithelial Cells/drug effects , Heat-Shock Response/drug effects , Heme Oxygenase-1/metabolism , Mammary Glands, Animal/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cattle , Cells, Cultured , Cysteine/pharmacology , Epithelial Cells/enzymology , Epithelial Cells/pathology , Female , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mammary Glands, Animal/enzymology , Mammary Glands, Animal/pathology , Signal Transduction
20.
J Adv Res ; 27: 127-135, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33318872

ABSTRACT

BACKGROUND: Over the last several decades, hydrogen sulfide (H2S) has been found to exert multiple physiological functions in mammal systems. The endogenous production of H2S is primarily mediated by cystathione ß-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are widely expressed in the liver tissues and regulate hepatic functions by acting on various molecular targets. AIM OF REVIEW: In the present review, we will highlight the recent advancements in the cellular events triggered by H2S under liver diseases. The therapeutic effects of H2S donors on hepatic diseases will also be discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW: As a critical regulator of liver functions, H2S is critically involved in the etiology of various liver disorders, such as nonalcoholic steatohepatitis (NASH), hepatic fibrosis, hepatic ischemia/reperfusion (IR) injury, and liver cancer. Targeting H2S-producing enzymes may be a promising strategy for managing hepatic disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...