Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Acta Diabetol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103505

ABSTRACT

AIMS: The present study investigated the vasorelaxant mechanisms of an oral antidiabetic drug, anagliptin, using phenylephrine (Phe)-induced pre-contracted rabbit aortic rings. METHODS: Arterial tone measurement was performed in rabbit thoracic aortic rings. RESULTS: Anagliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the classical voltagedependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly decreased the vasorelaxant effect of anagliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and the large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not attenuate the vasorelaxant effect. Furthermore, the vasorelaxant response of anagliptin was effectively inhibited by pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid. Neither cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) nor cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) reduced the vasorelaxant effect of anagliptin. Similarly, the anagliptin-induced vasorelaxation was independent of the endothelium. CONCLUSIONS: Based on these results, we suggest that anagliptin-induced vasorelaxation in rabbit aortic smooth muscle occurs by activating Kv channels and the SERCA pump, independent of other vascular K+ channels, cAMP/PKA- or cGMP/PKG-related signaling pathways, and the endothelium.

2.
J Biol Phys ; 50(2): 229-251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753214

ABSTRACT

Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium ( C a 2 + ) and nitric oxide (NO) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between NO and the control of C a 2 + dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum C a 2 + -ATPase (SERCA) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and NO dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, SERCA pump, and inositol trisphosphate ( I P 3 ) receptor, may contribute to deregulation in the calcium and NO dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.


Subject(s)
Calcium , Fibroblasts , Fibrosis , Models, Biological , Nitric Oxide , Fibroblasts/metabolism , Nitric Oxide/metabolism , Calcium/metabolism , Signal Transduction , Humans , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Calcium Signaling
3.
Eur J Pharmacol ; 972: 176589, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38631503

ABSTRACT

We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 µM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 µM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 µM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 µM) and XE991 (10 µM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 µM) and cyclopiazonic acid (10 µM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 µM) and KT5720 (1 µM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Femoral Artery , Glucosides , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Signal Transduction , Thiophenes , Vasodilation , Animals , Rabbits , Femoral Artery/drug effects , Femoral Artery/physiology , Vasodilation/drug effects , Signal Transduction/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Thiophenes/pharmacology , Male , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Vasodilator Agents/pharmacology , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors
4.
Expert Opin Ther Targets ; 27(11): 1159-1172, 2023.
Article in English | MEDLINE | ID: mdl-37971192

ABSTRACT

INTRODUCTION: Recent neuroscience breakthroughs have shed light on the sophisticated relationship between calcium channelopathies and movement disorders, exposing a previously undiscovered tale focusing on the Ryanodine Receptor (RyR) and the Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA). Calcium signaling mainly orchestrates neural communication, which regulates synaptic transmission and total network activity. It has been determined that RyR play a significant role in managing neuronal functions, most notably in releasing intracellular calcium from the endoplasmic reticulum. AREAS COVERED: It highlights the involvement of calcium channels such as RyR and SERCA in physiological and pathophysiological conditions. EXPERT OPINION: Links between RyR and SERCA activity dysregulation, aberrant calcium levels, motor and cognitive dysfunction have brought attention to the importance of RyR and SERCA modulation in neurodegenerative disorders. Understanding the obscure function of these proteins will open up new therapeutic possibilities to address the underlying causes of neurodegenerative diseases. The unreported RyR and SERCA narrative broadens the understanding of calcium channelopathies in movement disorders and calls for more research into cutting-edge therapeutic approaches.


Subject(s)
Channelopathies , Movement Disorders , Neurodegenerative Diseases , Humans , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Calcium Signaling , Channelopathies/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Endoplasmic Reticulum/metabolism , Movement Disorders/metabolism
5.
Elife ; 122023 05 30.
Article in English | MEDLINE | ID: mdl-37249575

ABSTRACT

The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.


Subject(s)
Muscle, Skeletal , Thermogenesis , Mice , Humans , Animals , Muscle, Skeletal/metabolism , Thermogenesis/genetics , Energy Metabolism/physiology , Proteolipids/metabolism , Cytoplasm/metabolism , Chromosomes, Human/metabolism , Calcium/metabolism
6.
J Biol Phys ; 49(2): 133-158, 2023 06.
Article in English | MEDLINE | ID: mdl-36811722

ABSTRACT

Calcium ([Formula: see text]), inositol trisphosphate ([Formula: see text]), and nitric oxide (NO) signaling are essential to maintain the structural integrity and physiological activity of fibroblast cells. The accumulation of excess quantity of NO for longer periods can lead to a variety of fibrotic disorders, including heart disease, penile fibrosis in Peyronie's disease (PD), and cystic fibrosis. The dynamics of these three signaling processes and their interdependence in fibroblast cells are not clearly known to date. A systems biology model is proposed using reaction-diffusion equations for calcium, [Formula: see text], and calcium-dependent NO synthesis in fibroblast cells. The finite element method (FEM) is used to examine [Formula: see text], [Formula: see text], and NO regulation and dysregulation in cells. The results throw light on the conditions that disturb the coupled [Formula: see text] and [Formula: see text] dynamics and the influence of these factors on the levels of NO concentration in the fibroblast cell. The findings suggest that changes in source inflow, buffers, and diffusion coefficient might induce an increase or reduction in nitric oxide and [Formula: see text] synthesis, resulting in fibroblast cell diseases. Furthermore, the findings provide new information regarding the size and intensity of diseases in response to changes in several factors of their dynamics, which has been linked to the development of cystic fibrosis and cancer. This knowledge could be valuable for developing novel approaches to the diagnosis of diseases and therapies for various disorders of fibroblast cells.


Subject(s)
Cystic Fibrosis , Nitric Oxide , Male , Humans , Calcium , Signal Transduction , Fibrosis
7.
Fundam Clin Pharmacol ; 37(1): 75-84, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36093990

ABSTRACT

We investigated the vasodilatory effect of omarigliptin, an oral antidiabetic drug in the dipeptidyl peptidase-4 inhibitor class, and its related mechanisms using phenylephrine (Phe)-induced pre-contracted aortic rings. Omarigliptin dilated aortic rings pre-constricted with Phe in a dose-dependent manner. Pretreatment with the voltage-dependent K+ channel inhibitor 4-aminopyridine significantly attenuated the vasodilatory effect of omarigliptin, whereas pretreatment with the inwardly rectifying K+ channel inhibitor Ba2+ , ATP-sensitive K+ channel inhibitor glibenclamide, and large-conductance Ca2+ -activated K+ channel inhibitor paxilline did not alter its vasodilation. Pretreatment with the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid significantly reduced the vasodilatory effect of omarigliptin. Neither cAMP/PKA-related signaling pathway inhibitors nor cGMP/PKG-related signaling pathway inhibitors modulated the vasodilatory effect of omarigliptin. Removal of endothelium did not diminish the vasodilatory effect of omarigliptin. Furthermore, pretreatment with the nitric oxide synthase inhibitor L-NAME or small-conductance Ca2+ -activated K+ channel inhibitor apamin, together with the intermediate-conductance Ca2+ -activated K+ channel inhibitor TRAM-34, did not influence the vasodilatory effect of omarigliptin. In conclusion, omarigliptin induced vasodilation in rabbit aortic smooth muscle by activating voltage-dependent K+ channels and the SERCA pump independently of other K+ channels, cAMP/PKA- and cGMP/PKG-related signaling pathways, and the endothelium.


Subject(s)
Adenosine Triphosphatases , Hypoglycemic Agents , Animals , Rabbits , Hypoglycemic Agents/pharmacology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Muscle, Smooth, Vascular/metabolism , Aorta , Vasodilation , Endothelium, Vascular , Vasodilator Agents/pharmacology , Aorta, Thoracic
8.
Eur J Pharmacol ; 935: 175305, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36183856

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease closely related to cardiovascular disease. The dipeptidyl peptidase-4 inhibitor teneligliptin is used to treat DM and has recently been shown to have a cardiovascular protective effect against diseases such as hypertension and heart failure. The present study demonstrates the vasodilatory effect of teneligliptin using aortic rings pre-contracted with phenylephrine. Teneligliptin induced a vasodilatory effect in a dose-dependent manner, with and without endothelium. In addition, pretreatment with the nitric oxide synthase inhibitor L-NAME and small-conductance Ca2+-activated K+ channel inhibitor apamin did not alter the teneligliptin-induced vasodilatory effect. Although the adenylyl cyclase inhibitor SQ 22536 and protein kinase A (PKA) inhibitor KT 5720 did not modulate the vasodilatory effect of teneligliptin, the guanylyl cyclase inhibitor ODQ and protein kinase G (PKG) inhibitor KT 5823 effectively reduced the effect of teneligliptin. Similarly, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) also reduced teneligliptin-induced vasodilation. However, pretreatment with the inward rectifier K+ (Kir) channel inhibitor Ba2+, large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline, and ATP-sensitive K+ (KATP) channel inhibitor glibenclamide did not alter the vasodilatory effect of teneligliptin. Our data suggest that Kv7.X, but not Kv1.5 or Kv2.1, is one of the major Kv subtypes involved in teneligliptin-induced vasodilation. Furthermore, pretreatment with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin and CPA inhibited the vasodilation induced by teneligliptin. Our results suggest that teneligliptin-induced vasodilation occurs via activation of PKG, SERCA pumps and Kv channels, but not the PKA signaling pathway, other K+ channels, or endothelium.


Subject(s)
Cyclic GMP-Dependent Protein Kinases , Vasodilation , Cyclic GMP-Dependent Protein Kinases/metabolism , Hypoglycemic Agents/pharmacology , Vasodilator Agents/pharmacology , Muscle, Smooth, Vascular , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Adenosine Triphosphate/metabolism , Endothelium, Vascular
9.
Front Physiol ; 13: 834220, 2022.
Article in English | MEDLINE | ID: mdl-35360237

ABSTRACT

In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.

10.
Med Res Rev ; 42(1): 56-82, 2022 01.
Article in English | MEDLINE | ID: mdl-33851452

ABSTRACT

Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium. We provide a comprehensive review of current antiparasitic drugs and the potential of using CCs as new therapeutic targets. Interestingly, previous studies have demonstrated that human CC modulators can kill or sensitize parasites to antiparasitic drugs. Still, none of the parasite CCs, pumps, or transporters has been validated as drug targets. Information for this review draws from extensive data mining of genome sequences, chemical library screenings, and drug design studies. Parasitic resistance to currently approved therapeutics is a serious and emerging threat to both disease control and management efforts. In this article, we suggest that the disruption of calcium homeostasis may be an effective approach to develop new anti-parasite drug candidates and reduce parasite resistance.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Parasites , Animals , Calcium/metabolism , Calcium/pharmacology , Homeostasis , Humans
11.
Medicina (Kaunas) ; 57(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34684111

ABSTRACT

Background and Objectives: Calcium (Ca2+) signaling is critical for the normal functioning of various cellular activities. However, abnormal changes in cellular Ca2+ can contribute to pathological conditions, including various types of cancer. The maintenance of intracellular Ca2+ levels is achieved through tightly regulated processes that help maintain Ca2+ homeostasis. Several types of regulatory proteins are involved in controlling intracellular Ca2+ levels, including the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA), which maintains Ca2+ levels released from the SR/ER. In total, three ATPase SR/ER Ca2+-transporting (ATP2A) 1-3 genes exist, which encode for several isoforms whose expression profiles are tissue-specific. Recently, it has become clear that abnormal SERCA expression and activity are associated with various types of cancer, including breast cancer. Breast carcinomas represent 40% of all cancer types that affect women, with a wide variety of pathological and clinical conditions. Materials and methods: Using cBioPortal breast cancer patient data, Kaplan-Meier plots demonstrated that high ATP2A1 and ATP2A3 expression was associated with reduced patient survival. Results: The present study found significantly different SERCA specific-type expressions in a series of breast cancer cell lines. Moreover, bioinformatics analysis indicated that ATP2A1 and ATP2A3 expression was highly altered in patients with breast cancer. Conclusion: Overall, the present data suggest that SERCA gene-specific expressioncan possibly be considered as a crucial target for the control of breast cancer development and progression.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Calcium , Female , Homeostasis , Humans , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
12.
Life Sci ; 287: 120101, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34715136

ABSTRACT

AIMS: Canagliflozin is an anti-diabetic agent and sodium glucose co-transporter-2 inhibitor. Despite numerous clinical trials demonstrating its beneficial effects on blood pressure, the cellular mechanisms underlying the effects of canagliflozin on vascular reactivity have yet to be clarified. We investigated the vasodilatory effect of canagliflozin on aortic rings isolated from rabbits. MAIN METHODS: We used rabbit thoracic aortic rings and its arterial tone was tested by using wire myography system. KEY FINDINGS: Canagliflozin caused concentration-dependent vasodilation in aortic rings pre-constricted with phenylephrine or high K+. However, the degree of canagliflozin-induced vasodilation of the aortic rings pre-constricted with high K+ was less than that of rings pre-constricted with phenylephrine. Application of 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, reduced canagliflozin-induced vasodilation. However, pre-incubation of an inwardly rectifying K+ channel inhibitor, a large-conductance Ca2+-activated K+ channel inhibitor, and an ATP-sensitive K+ inhibitor did not modulate the vasodilatory effects of canagliflozin. Indeed, canagliflozin increased Kv currents in aortic smooth muscle cells. Pre-treatment with thapsigargin or cyclopiazonic acid, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors, reduced the vasodilatory effects of canagliflozin. Conversely, pre-treatment with a Ca2+ channel inhibitor, adenylyl cyclase/PKA inhibitors, and guanylyl cyclase/PKG inhibitors did not modulate the vasodilatory effects of canagliflozin. Endothelium removal, and pre-treatment with the nitric oxide synthase inhibitor L-NAME, and small- and intermediate-conductance Ca2+-activated K+ channel inhibitor apamin and TRAM-34, did not diminish the vasodilatory effects of canagliflozin. SIGNIFICANCE: Our results indicate that canagliflozin induces vasodilation, which is dependent on the robust SERCA activity and Kv channel activation.


Subject(s)
Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Canagliflozin/pharmacology , Kv Channel-Interacting Proteins/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Vasodilation/drug effects , Animals , Dose-Response Relationship, Drug , Kv Channel-Interacting Proteins/agonists , Male , Organ Culture Techniques , Rabbits , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vasodilation/physiology
13.
Life Sci ; 283: 119868, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34358551

ABSTRACT

AIMS: In this study, we investigated the vasodilatory effects of trelagliptin (a dipeptidyl peptidase-4 inhibitor) and its related mechanisms using rabbit aortic rings. MAIN METHODS: Arterial tone measurement was performed in rabbit thoracic aortic rings. KEY FINDINGS: Trelagliptin induced vasodilation in a dose-dependent manner. Pretreatment with the ATP-sensitive K+ channel inhibitor glibenclamide, large-conductance Ca2+-activated K+ channel inhibitor paxilline, and inwardly rectifying K+ channel inhibitor Ba2+ did not affect the vasodilatory effect of trelagliptin. However, pretreatment with the voltage-dependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly attenuated the vasodilatory effect of trelagliptin, suggesting that the vasodilatory effect of trelagliptin is associated with Kv channel activation. Although pretreatment with Kv1.5 and Kv2.1 subtype inhibitors did not affect the response to trelagliptin, pretreatment with a Kv7.X subtype inhibitor effectively reduced the vasodilatory effect of trelagliptin. Furthermore, sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors also significantly attenuated the vasodilatory effect of trelagliptin. These effects, however, were not affected by pretreatment with Ca2+ channel inhibitors, adenylyl cyclase/PKA inhibitors, guanylyl cyclase/PKG inhibitors, or removal of the endothelium. SIGNIFICANCE: From these results, we concluded that the vasodilatory effect of trelagliptin was associated with the activation of Kv channels (primary the Kv7.X subtype) and SERCA pump regardless of other K+ channels, Ca2+ channels, cAMP/PKA-related or cGMP/PKG-related signaling pathways, and the endothelium. Therefore, caution is required when prescribing trelagliptin to the patients with hypotension and diabetes.


Subject(s)
Aorta/metabolism , Endothelium, Vascular/metabolism , Hypoglycemic Agents/pharmacology , Potassium Channels, Voltage-Gated/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Uracil/analogs & derivatives , Vasodilation/drug effects , Animals , Male , Rabbits , Uracil/pharmacology
14.
Rev. mex. ing. bioméd ; 42(2): 1125, May.-Aug. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1251953

ABSTRACT

ABSTRACT Large conductance calcium-activated potassium (BK) channels carry out many functions in the central nervous system. These channels open in response to increased cytosolic calcium ([Ca2+]cyt) concentration. The influx of calcium ions to the cytosol can occur through voltage-gated calcium channels (VGCCs) on the plasma membrane and/ or through IP3 receptors (IP3-Rs) and ryanodine receptors (RyRs) on the endoplasmic reticulum membrane. The BK channel/IP3-R/RyR interaction has been widely reported in smooth muscle but scarcely investigated in relation to neurons. The aim of this study was to theoretically explore the function of the BK/IP3-R complex by means of a computational model of a neuron that replicates the interaction between the release of Ca2+ from the endoplasmic reticulum (through IP3-Rs) and the opening of the BK channels. The mathematical models are based on the Hodgkin-Huxley formalism and the Goldbeter model. These models were implemented on Visual Basic® and differential equations were solved numerically. Distinct conditions were contemplated for BK conductance and the efflux of endoplasmic Ca2+ to the cytosol. An abrupt rise in [Ca2+]cyt (≥ 5 μM) and short duration (spark) was found to activate BK channels and either pause or stop the action potential train.


RESUMEN Los canales de potasio activados por calcio de gran conductancia (canales BK) cumplen múltiples funciones en el sistema nervioso central. Estos canales se abren en respuesta al incremento de la concentración de calcio citosólico ([Ca2+]cyt). La entrada de Ca2+ puede ocurrir a través de canales de calcio dependientes de voltaje (VGCCs) localizados en la membrana plasmática y por eflujo de Ca2+ del retículo endoplásmico (ER) causado por 1,4,5-Trifosfato (IP3) o rianodina (RyR). La interacción BK/IP3/RyR ha sido ampliamente estudiada en músculo liso, pero escasamente en neuronas. El objetivo de este estudio fue explorar teóricamente la función del complejo BK/IP3-R mediante un modelo computacional de una neurona que replica la interacción entre la liberación de Ca2+ del retículo endoplásmico (a través de IP3-Rs) y la apertura de los canales BK. Los modelos matemáticos se basan en el formalismo de Hodgkin-Huxley y el modelo de Goldbeter. Estos modelos fueron implementados en Visual Basic® y las ecuaciones diferenciales fueron resueltas por métodos numéricos. Se contemplaron distintas condiciones para la conductancia del canal BK y la salida de Ca2+ endoplásmico al citosol. Los resultados muestran que un incremento abrupto de [Ca2+] cyt (≥ 5 μM) y de corta duración (spark) activa los canales BK y producen una pausa o detiene el tren de potenciales de acción.

15.
Eur J Pharmacol ; 898: 173991, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33684451

ABSTRACT

In the present study, we investigated the vasorelaxant effects of alogliptin, an oral antidiabetic drug in the dipeptidyl peptidase-4 (DPP-4) inhibitor class, using phenylephrine (Phe)-induced pre-contracted aortic rings. Alogliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) significantly decreased the vasorelaxant effect of alogliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not alter the effects of alogliptin. Although pre-treatment with the Ca2+ channel inhibitor nifedipine did not affect the vasorelaxant effect of alogliptin, pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid effectively attenuated the vasorelaxant response of alogliptin. Neither cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) nor cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) reduced the vasorelaxant effect of alogliptin. Similarly, the vasorelaxant effect of alogliptin was not changed by endothelium removal or pre-treatment with the nitric oxide (NO) synthase inhibitor L-NAME or the small- and intermediate-conductance Ca2+-activated K+ (SKCa and IKCa) channel inhibitors apamin and TRAM-34. Based on these results, we suggest that alogliptin induced vasorelaxation in rabbit aortic smooth muscle by activating Kv channels and the SERCA pump independent of other K+ channels, cGMP/PKG-related or cAMP/PKA-related signaling pathways, and the endothelium.


Subject(s)
Muscle, Smooth, Vascular/drug effects , Piperidines/pharmacology , Potassium Channels, Voltage-Gated/agonists , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Uracil/analogs & derivatives , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/enzymology , Enzyme Activation , Male , Muscle, Smooth, Vascular/enzymology , Potassium Channels, Voltage-Gated/metabolism , Rabbits , Signal Transduction , Uracil/pharmacology
16.
Eur J Pharmacol ; 882: 173243, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32535099

ABSTRACT

This study investigated the vasodilatory effects and acting mechanism of gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor. Tests were conducted in aortic rings pre-contracted with phenylephrine. Gemigliptin induced dose-dependent vasodilation of the aortic smooth muscle. Several pre-treatment groups were used to investigate the mechanism of action. While pre-treatment with paxilline, a large-conductance Ca2+-activated K+ channel inhibitor, glibenclamide, an ATP-sensitive K+ channel inhibitor, and Ba2+, an inwardly rectifying K+ channel inhibitor, had no impact on the vasodilatory effect of gemigliptin, pre-treatment with 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, effectively attenuated the vasodilatory action of gemigliptin. In addition, pre-treatment with sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid significantly reduced the vasodilatory effect of gemigliptin. cAMP/PKA-related or cGMP/PKG-related signaling pathway inhibitors, including adenylyl cyclase inhibitor SQ 22536, PKA inhibitor KT 5720, guanylyl cyclase inhibitor ODQ, and PKG inhibitor KT 5823 did not alter the vasodilatory effect of gemigliptin. Similarly, elimination of the endothelium and pre-treatment with a nitric oxide (NO) synthase inhibitor (L-NAME) or small- and intermediate-conductance Ca2+-activated K+ channels (apamin and TRAM-34, respectively) did not change the gemigliptin effect. These findings suggested that gemigliptin induces vasodilation through the activation of Kv channels and SERCA pumps independent of cAMP/PKA-related or cGMP/PKG-related signaling pathways and the endothelium. Therefore, caution is required when prescribing gemigliptin to the patients with hypotension and diabetes.


Subject(s)
Aorta, Thoracic/drug effects , Muscle, Smooth, Vascular/drug effects , Piperidones/pharmacology , Potassium Channels, Voltage-Gated/physiology , Pyrimidines/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology , Vasodilator Agents/pharmacology , Animals , Aorta, Thoracic/physiology , Male , Muscle, Smooth, Vascular/physiology , Rabbits
17.
Adv Exp Med Biol ; 1131: 337-370, 2020.
Article in English | MEDLINE | ID: mdl-31646517

ABSTRACT

The sarcoplasmic/endoplasmic reticulum (SR/ER) is the main intracellular calcium (Ca2+) pool in muscle and non-muscle eukaryotic cells, respectively. The reticulum accumulates Ca2+ against its electrochemical gradient by the action of sarco/endoplasmic reticulum calcium ATPases (SERCA pumps), and the capacity of this Ca2+ store is increased by the presence of Ca2+ binding proteins in the lumen of the reticulum. A diversity of physical and chemical signals, activate the main Ca2+ release channels, i.e. ryanodine receptors (RyRs) and inositol (1, 4, 5) trisphosphate receptors (IP3Rs), to produce transient elevations of the cytoplasmic calcium concentration ([Ca2+]i) while the reticulum is being depleted of Ca2+. This picture is incomplete because it implies that the elements involved in the Ca2+ release process are acting alone and independently of each other. However, it appears that the Ca2+ released by RyRs and IP3Rs is trapped in luminal Ca2+ binding proteins (Ca2+ lattice), which are associated with these release channels, and the activation of these channels appears to facilitate that the trapped Ca2+ ions become available for release. This situation makes the initial stage of the Ca2+ release process a highly efficient one; accordingly, there is a large increase in the [Ca2+]i with minimal reductions in the bulk of the free luminal SR/ER [Ca2+] ([Ca2+]SR/ER). Additionally, it has been shown that active SERCA pumps are required for attaining this highly efficient Ca2+ release process. All these data indicate that Ca2+ release by the SR/ER is a highly regulated event and not just Ca2+ coming down its electrochemical gradient via the open release channels. One obvious advantage of this sophisticated Ca2+ release process is to avoid depletion of the ER Ca2+ store and accordingly, to prevent the activation of ER stress during each Ca2+ release event.


Subject(s)
Calcium , Endoplasmic Reticulum , Sarcoplasmic Reticulum , Animals , Calcium/metabolism , Calcium Signaling , Endoplasmic Reticulum/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
18.
Am J Physiol Heart Circ Physiol ; 317(5): H1105-H1115, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31347915

ABSTRACT

Human pluripotent stem cell (hPSCs)-derived ventricular (V) cardiomyocytes (CMs) display immature Ca2+-handing properties with smaller transient amplitudes and slower kinetics due to such differences in crucial Ca2+-handling proteins as the poor sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump but robust Na+-Ca2+ exchanger (NCX) activities in human embryonic stem cell (ESC)-derived VCMs compared with adult. Despite their fundamental importance in excitation-contraction coupling, the relative contribution of SERCA and NCX to Ca2+-handling of hPSC-VCMs remains unexplored. We systematically altered the activities of SERCA and NCX in human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) and their engineered microtissues, followed by examining the resultant phenotypic consequences. SERCA overexpression in hESC-VCMs shortened the decay of Ca2+ transient at low frequencies (0.5 Hz) without affecting the amplitude, SR Ca2+ content and Ca2+ baseline. Interestingly, short hairpin RNA-based NCX suppression did not prolong the transient decay, indicating a compensatory response for Ca2+ removal. Although hESC-VCMs and their derived microtissues exhibited negative frequency-transient/force responses, SERCA overexpression rendered them less negative at high frequencies (>2 Hz) by accelerating Ca2+ sequestration. We conclude that for hESC-VCMs and their microtissues, SERCA, rather than NCX, is the main Ca2+ remover during diastole; poor SERCA expression is the leading cause for immature negative-frequency/force responses, which can be partially reverted by forced expression. Combinatorial approach to mature calcium handling in hESC-VCMs may help shed further mechanistic insights.NEW & NOTEWORTHY In this study of human pluripotent stem cell-derived cardiomyocytes, we studied the role of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) in Ca2+ handling. Our data support the notion that SERCA is more effective in cytosolic calcium removal than the NCX.


Subject(s)
Calcium Signaling , Calcium/metabolism , Human Embryonic Stem Cells/enzymology , Myocardial Contraction , Myocytes, Cardiac/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Humans , Phenotype , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sodium-Calcium Exchanger/genetics , Time Factors
19.
Front Physiol ; 10: 520, 2019.
Article in English | MEDLINE | ID: mdl-31114513

ABSTRACT

Metabolic syndrome (MetS) has become a global epidemic. MetS is a serious health problem because of its related cardiovascular complications, which include hypertension and delayed heart rate recovery after exercise. The molecular bases of cardiac dysfunction in MetS are still under scrutiny and may be related to anomalies in the activity and expression of key proteins involved in the cardiac excitation-contraction coupling (ECC). The cardiac Ca2+ channel/ryanodine receptor (RyR2) participates in releasing Ca2+ from internal stores and plays a key role in the modulation of ECC. We examined alterations in expression, phosphorylation status, Ca2+ sensitivity, and in situ function (by measuring Ca2+ sparks and Ca2+ transients) of RyR2; alterations in these characteristics could help to explain the Ca2+ handling disturbances in MetS cardiomyocytes. MetS was induced in rats by adding commercially refined sugar (30% sucrose) to their drinking water for 24 weeks. Cardiomyocytes of MetS rats displayed decreased Ca2+ transient amplitude and cell contractility at all stimulation frequencies. Quiescent MetS cardiomyocytes showed a decrease in Ca2+ spark frequency, amplitude, and spark-mediated Ca2+ leak. The [3H]-ryanodine binding data showed that functionally active RyRs are significantly diminished in MetS heart microsomes; and exhibited rapid Ca2+-induced inactivation. The phosphorylation of corresponding Ser2814 (a preferential target for CaMKII) of the hRyR2 was significantly diminished. RyR2 protein expression and Ser2808 phosphorylation level were both unchanged. Further, we demonstrated that cardiomyocyte Ca2+ mishandling was associated with reduced SERCA pump activity due to decreased Thr17-PLN phosphorylation, suggesting a downregulation of CaMKII in MetS hearts, though the SR Ca2+ load remained unchanged. The reduction in the phosphorylation level of RyR2 at Ser2814 decreases RyR2 availability for activation during ECC. In conclusion, the impaired in situ activity of RyR2 may also account for the poor overall cardiac outcome reported in MetS patients; hence, the SERCA pump and RyR2 are both attractive potential targets for future therapies.

20.
Cardiovasc Toxicol ; 19(3): 244-254, 2019 06.
Article in English | MEDLINE | ID: mdl-30519910

ABSTRACT

This study investigated vildagliptin-induced vasodilation and its related mechanisms using phenylephrine induced precontracted rabbit aortic rings. Vildagliptin induced vasodilation in a concentration-dependent manner. Pretreatment with the large-conductance Ca2+-activated K+ channel blocker paxilline, ATP-sensitive K+ channel blocker glibenclamide, and inwardly rectifying K+ channel blocker Ba2+ did not affect the vasodilatory effects of vildagliptin. However, application of the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine significantly reduced the vasodilatory effects of vildagliptin. In addition, application of either of two sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, thapsigargin or cyclopiazonic acid, effectively inhibited the vasodilatory effects of vildagliptin. These vasodilatory effects were not affected by pretreatment with adenylyl cyclase, protein kinase A (PKA), guanylyl cyclase, or protein kinase G (PKG) inhibitors, or by removal of the endothelium. From these results, we concluded that vildagliptin induced vasodilation via activation of Kv channels and the SERCA pump. However, other K+ channels, PKA/PKG-related signaling cascades associated with vascular dilation, and the endothelium were not involved in vildagliptin-induced vasodilation.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Muscle, Smooth, Vascular/drug effects , Potassium Channels, Voltage-Gated/agonists , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Vildagliptin/pharmacology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/enzymology , Enzyme Activation , Male , Muscle, Smooth, Vascular/enzymology , Potassium Channels, Voltage-Gated/metabolism , Rabbits , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL