Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Kidney Blood Press Res ; 49(1): 385-396, 2024.
Article in English | MEDLINE | ID: mdl-38735279

ABSTRACT

INTRODUCTION: Hyperglycaemia induces the production of a large quantity of reactive oxygen species (ROS) and activates the transforming growth factor ß1 (TGF-ß1)/Smad signalling pathway, which is the main initiating factor in the formation of diabetic nephropathy. Indoxyl sulphate (IS) is a protein-binding gut-derived uraemic toxin that localizes to podocytes, induces oxidative stress, and inflames podocytes. The involvement of podocyte damage in diabetic nephropathy through the TGF-ß1 signalling pathway is still unclear. METHODS: In this study, we cultured differentiated rat podocytes in vitro and measured the expression levels of nephrin, synaptopodin, CD2AP, SRGAP2a, and α-SMA by quantitative real-time PCR (qRT-PCR) and Western blotting after siRNA-mediated TGF-ß1 silencing, TGF-ß1 overexpression, and the presence of the ROS inhibitor acetylcysteine. We detected the expression levels of nephrin, synaptopodin, CD2AP, SRGAP2a, small mother against decapentaplegic (Smad)2/3, phosphorylated-Smad2/3 (p-Smad2/3), Smad7, NADPH oxidase 4 (NOX4), and ROS levels under high glucose (HG) and IS conditions. RESULTS: The results indicated that nephrin, synaptopodin, CD2AP, and SRGAP2a expressions were significantly upregulated, and α-SMA expression was significantly downregulated in the presence of HG under siRNA-mediated TGF-ß1 silencing or after the addition of acetylcysteine. However, in the presence of HG, the expressions of nephrin, synaptopodin, CD2AP, and SRGAP2a were significantly downregulated, and the expression of α-SMA was significantly upregulated with the overexpression of TGF-ß1. IS supplementation under HG conditions further significantly reduced the expressions of nephrin, synaptopodin, CD2AP, and SRGAP2a; altered the expressions of Smad2/3, p-Smad2/3, Smad7, and NOX4; and increased ROS production in podocytes. CONCLUSION: This study suggests that IS may modulate the expression of nephrin, synaptopodin, CD2AP, and SRGAP2a by regulating the ROS and TGF-ß1/Smad signalling pathways, providing new theoretical support for the treatment of diabetic nephropathy.


Subject(s)
Diabetic Nephropathies , Indican , Podocytes , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta1 , Indican/toxicity , Indican/pharmacology , Podocytes/metabolism , Podocytes/pathology , Animals , Rats , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Smad Proteins/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Microfilament Proteins/metabolism , Cells, Cultured , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics
2.
Int J Biometeorol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720050

ABSTRACT

Animal geneticists and breeders have the impending challenge of enhancing the resilience of Indian livestock to heat stress through better selection strategies. Climate change's impact on livestock is more intense in tropical countries like India where dairy cattle crossbreeds are more sensitive to heat stress. The main reason for this study was to find the missing relative changes in transcript levels in thermo-neutral and heat stress conditions in crossbred cattle through whole-transcriptome analysis of RNA-Seq data. Differentially expressed genes (DEGs) identified based on the minimum log twofold change value and false discovery rate 0.05 revealed 468 up-regulated genes and 2273 down-regulated significant genes. Functional annotation and pathway analysis of these significant DEGs were compared based on Gene Ontology (Biological process), Kyoto Encyclopedia of Genes and Genome (KEGG), and Reactome pathways using g: Profiler, ShinyGO v0.76, and iDEP.951 web tools. On finding network visualization, the most over-represented and correlated pathways were neuronal and sensory organ development, calcium signalling pathway, Mitogen-activated protein kinase (MAPK) and Smad signalling pathway, Ras-proximate-1, or Ras-related protein 1 (Rap 1) signalling pathway, apoptosis, and oxidative stress. Similarly, down-regulated genes were most expressed in mRNA processing, immune system, B-cell receptor signalling pathway, Nucleotide oligomerization domain (NOD)-like receptors (NLRs) signalling pathway and nonsense-mediated decay (NMD) pathway. The heat stress-responsive genes identified in this study will facilitate our understanding of the molecular basis for climate resilience and heat tolerance in Indian dairy crossbreeds.

3.
ESC Heart Fail ; 11(1): 167-178, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37872863

ABSTRACT

AIMS: Transforming growth factor ß (TGF-ß) signalling is one of the critical pathways in fibroblast activation, and several drugs targeting the TGF-ß/Smad signalling pathway in heart failure with cardiac fibrosis are being tested in clinical trials. Some caveolins and cavins, which are components of caveolae on the plasma membrane, are known for their association with the regulation of TGF-ß signalling. Cavin-2 is particularly abundant in fibroblasts; however, the detailed association between Cavin-2 and cardiac fibrosis is still unclear. We tried to clarify the involvement and role of Cavin-2 in fibroblasts and cardiac fibrosis. METHODS AND RESULTS: To clarify the role of Cavin-2 in cardiac fibrosis, we performed transverse aortic constriction (TAC) operations on four types of mice: wild-type (WT), Cavin-2 null (Cavin-2 KO), Cavin-2flox/flox , and activated fibroblast-specific Cavin-2 conditional knockout (Postn-Cre/Cavin-2flox/flox , Cavin-2 cKO) mice. We collected mouse embryonic fibroblasts (MEFs) from WT and Cavin-2 KO mice and investigated the effect of Cavin-2 in fibroblast trans-differentiation into myofibroblasts and associated TGF-ß signalling. Four weeks after TAC, cardiac fibrotic areas in both the Cavin-2 KO and the Cavin-2 cKO mice were significantly decreased compared with each control group (WT 8.04 ± 1.58% vs. Cavin-2 KO 0.40 ± 0.03%, P < 0.01; Cavin-2flox/flox , 7.19 ± 0.50% vs. Cavin-2 cKO 0.88 ± 0.44%, P < 0.01). Fibrosis-associated mRNA expression (Col1a1, Ctgf, and Col3) was significantly attenuated in the Cavin-2 KO mice after TAC. α1 type I collagen deposition and non-vascular αSMA-positive cells (WT 43.5 ± 2.4% vs. Cavin-2 KO 25.4 ± 3.2%, P < 0.01) were reduced in the heart of the Cavin-2 cKO mice after TAC operation. The levels of αSMA protein (0.36-fold, P < 0.05) and fibrosis-associated mRNA expression (Col1a1, 0.69-fold, P < 0.01; Ctgf, 0.27-fold, P < 0.01; Col3, 0.60-fold, P < 0.01) were decreased in the Cavin-2 KO MEFs compared with the WT MEFs. On the other hand, αSMA protein levels were higher in the Cavin-2 overexpressed MEFs compared with the control MEFs (2.40-fold, P < 0.01). TGF-ß1-induced Smad2 phosphorylation was attenuated in the Cavin-2 KO MEFs compared with WT MEFs (0.60-fold, P < 0.01). Heat shock protein 90 protein levels were significantly reduced in the Cavin-2 KO MEFs compared with the WT MEFs (0.69-fold, P < 0.01). CONCLUSIONS: Cavin-2 loss suppressed fibroblast trans-differentiation into myofibroblasts through the TGF-ß/Smad signalling. The loss of Cavin-2 in cardiac fibroblasts suppresses cardiac fibrosis and may maintain cardiac function.


Subject(s)
Cardiomyopathies , Fibroblasts , Animals , Mice , Myofibroblasts/metabolism , Fibrosis , Cardiomyopathies/pathology , Transforming Growth Factor beta/metabolism , Cell Transdifferentiation , RNA, Messenger/metabolism
4.
Clin Transl Med ; 13(11): e1468, 2023 11.
Article in English | MEDLINE | ID: mdl-37933774

ABSTRACT

BACKGROUND: Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain-containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2-mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis. METHODS: Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel-Lindau (VHL) double-knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis. RESULTS: SETD2 deficiency leads to severe renal fibrosis in VHL-deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor-ß (TGF-ß)/Smad signalling pathway, thereby preventing the activation of the TGF-ß/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF-ß/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL. CONCLUSIONS: Our findings reveal the role of SETD2-mediated H3K36me3 of Smad7 in regulating the TGF-ß/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis.


Subject(s)
Histone-Lysine N-Methyltransferase , Renal Insufficiency, Chronic , Transforming Growth Factor beta , Animals , Humans , Mice , Fibrosis , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/pathology , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
5.
Cell Mol Biol Lett ; 28(1): 48, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268886

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a major category of end-stage changes in lung diseases, characterized by lung epithelial cell damage, proliferation of fibroblasts, and accumulation of extracellular matrix. Peroxiredoxin 1 (PRDX1), a member of the peroxiredoxin protein family, participates in the regulation of the levels of reactive oxygen species in cells and various other physiological activities, as well as the occurrence and development of diseases by functioning as a chaperonin. METHODS: Experimental methods including MTT assay, morphological observation of fibrosis, wound healing assay, fluorescence microscopy, flow cytometry, ELISA, western blot, transcriptome sequencing, and histopathological analysis were used in this study. RESULTS: PRDX1 knockdown increased ROS levels in lung epithelial cells and promoted epithelial-mesenchymal transition (EMT) through the PI3K/Akt and JNK/Smad signalling pathways. PRDX1 knockout significantly increased TGF-ß secretion, ROS production, and cell migration in primary lung fibroblasts. PRDX1 deficiency also increased cell proliferation, cell cycle circulation, and fibrosis progression through the PI3K/Akt and JNK/Smad signalling pathways. BLM treatment induced more severe pulmonary fibrosis in PRDX1-knockout mice, mainly through the PI3K/Akt and JNK/Smad signalling pathways. CONCLUSIONS: Our findings strongly suggest that PRDX1 is a key molecule in BLM-induced lung fibrosis progression and acts through modulating EMT and lung fibroblast proliferation; therefore, it may be a therapeutic target for the treatment of BLM-induced lung fibrosis.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Epithelial-Mesenchymal Transition , Proto-Oncogene Proteins c-akt/metabolism , Bleomycin/adverse effects , Reactive Oxygen Species/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Lung/metabolism , Cell Proliferation , Fibroblasts/metabolism , Transforming Growth Factor beta1/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/adverse effects , Peroxiredoxins/metabolism
6.
Stem Cell Res Ther ; 14(1): 130, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37189178

ABSTRACT

BACKGROUND: Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3), a secreted multifunctional glycoprotein whose transcript expression is restricted to the tooth germ epithelium during the development of embryonic mouse teeth, has been demonstrated to play a crucial role in the regulation of tooth development. Based on this, we hypothesized that epithelium-derived SCUBE3 contributes to bio-function in dental mesenchymal cells (Mes) via epithelium-mesenchyme interactions. METHODS: Immunohistochemical staining and a co-culture system were used to reveal the temporospatial expression of the SCUBE3 protein during mouse tooth germ development. In addition, human dental pulp stem cells (hDPSCs) were used as a Mes model to study the proliferation, migration, odontoblastic differentiation capacity, and mechanism of rhSCUBE3. Novel pulp-dentin-like organoid models were constructed to further confirm the odontoblast induction function of SCUBE3. Finally, semi-orthotopic animal experiments were performed to explore the clinical application of rhSCUBE3. Data were analysed using one-way analysis of variance and t-tests. RESULTS: The epithelium-derived SCUBE3 translocated to the mesenchyme via a paracrine pathway during mouse embryonic development, and the differentiating odontoblasts in postnatal tooth germ subsequently secreted the SCUBE3 protein via an autocrine mechanism. In hDPSCs, exogenous SCUBE3 promoted cell proliferation and migration via TGF-ß signalling and accelerated odontoblastic differentiation via BMP2 signalling. In the semi-orthotopic animal experiments, we found that SCUBE3 pre-treatment-induced polarized odontoblast-like cells attached to the dental walls and had better angiogenesis performance. CONCLUSION: SCUBE3 protein expression is transferred from the epithelium to mesenchyme during embryonic development. The function of epithelium-derived SCUBE3 in Mes, including proliferation, migration, and polarized odontoblastic differentiation, and their mechanisms are elaborated for the first time. These findings shed light on exogenous SCUBE3 application in clinic dental pulp regeneration.


Subject(s)
Dental Pulp , Mesenchymal Stem Cells , Animals , Humans , Mice , Embryonic Development , Regeneration , Cell Differentiation , Odontoblasts , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
7.
FEBS Lett ; 597(11): 1503-1516, 2023 06.
Article in English | MEDLINE | ID: mdl-37171232

ABSTRACT

Using a murine model of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD), we found that the expression of the epidermal growth factor receptor (EGFR) significantly decreased in hepatocytes. In vitro, free fatty acid influx decreased EGFR in hepatocytes. In HFD-fed mice, ectopic expression of EGFR alleviated intrahepatic lipid accumulation and reduced serum triglyceride and cholesterol, whereas knockdown of EGFR aggravated hepatic steatosis. Notably, EGFR inhibited the induction of lipogenic genes, including Srebf1, Srebf2, Fasn, Acc1 and Ppara, both in vitro and in vivo. Mechanistically, EGFR potentiates TGF-ß/Smad signalling and augments the inhibitory effects of TGF-ß1 on lipogenic genes in hepatocytes. Our findings suggest a hitherto unknown paradigm in the pathogenesis of NAFLD, thereby providing a rational basis for future therapeutic considerations.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Diet, High-Fat/adverse effects , ErbB Receptors/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
8.
J Mol Endocrinol ; 71(2)2023 08 01.
Article in English | MEDLINE | ID: mdl-37163251

ABSTRACT

Neuropeptide Y (NPY) is a widespread hormone in the central and peripheral nervous systems that maintains body homeostasis. Central actions of hypothalamic NPY have been identified in bone metabolism. Osteocytes are the main source of NPY in bone tissue, indicating that osteocytic NPY could be a local alternative pathway for hypothalamic mediated regulation of bone and bone cells. Here, we show that osteocytic NPY induces cell viability and proliferation. Osteocyte-derived factors are also closely associated with changes in cellular NPY mRNA levels. Furthermore, osteoblast mineralization was significantly induced by conditioned medium collected from NPY-overexpressing osteocytes (P < 0.05). Importantly, the NPY-AHNAK interaction was identified for the first time by co-immunoprecipitation, and significant inactivation of p-Smad1/5/9 was found in osteocytes with NPY or AHNAK insufficiency (P < 0.05). The activation of p-Smad1/5/9 reversed NPY insufficiency-caused decreases in the expression of osteocytic proliferating cell nuclear antigen and osteoblast markers including osteocalcin and Runx2 (P < 0.05); these findings showed an additional molecular mechanism by which NPY acts on cells through AHNAK-mediated Smad1/5/9 signalling. Collectively, our findings provide novel insights into the function of NPY in regulating osteocyte phenotype and function and provide new insights for further investigation into osteocytic NPY-mediated therapy.


Subject(s)
Neuropeptide Y , Osteocytes , Bone and Bones/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Osteoblasts/metabolism , Osteocytes/metabolism , Phenotype , Humans , Animals , Mice
9.
Front Med (Lausanne) ; 9: 973964, 2022.
Article in English | MEDLINE | ID: mdl-36250069

ABSTRACT

Endoglin (ENG) is expressed on the surface of endothelial cells (ECs) where it efficiently binds circulating BMP9 and BMP10 ligands to initiate activin A receptor like type 1 (ALK1) protein signalling to protect the vascular architecture. Patients heterozygous for ENG or ALK1 mutations develop the vascular disorder known as hereditary haemorrhagic telangiectasia (HHT). Many patients with this disorder suffer from anaemia, and are also at increased risk of stroke and high output heart failure. Recent work using animal models of HHT has revealed new insights into cellular and molecular mechanisms causing this disease. Loss of the ENG (HHT1) or ALK1 (HHT2) gene in ECs leads to aberrant arteriovenous connections or malformations (AVMs) in developing blood vessels. Similar phenotypes develop following combined EC specific loss of SMAD1 and 5, or EC loss of SMAD4. Taken together these data point to the essential role of the BMP9/10-ENG-ALK1-SMAD1/5-SMAD4 pathway in protecting the vasculature from AVMs. Altered directional migration of ECs in response to shear stress and increased EC proliferation are now recognised as critical factors driving AVM formation. Disruption of the ENG/ALK1 signalling pathway also affects EC responses to vascular endothelial growth factor (VEGF) and crosstalk between ECs and vascular smooth muscle cells. It is striking that the vascular lesions in HHT are both localised and tissue specific. Increasing evidence points to the importance of a second genetic hit to generate biallelic mutations, and the sporadic nature of such somatic mutations would explain the localised formation of vascular lesions. In addition, different pro-angiogenic drivers of AVM formation are likely to be at play during the patient's life course. For example, inflammation is a key driver of vessel remodelling in postnatal life, and may turn out to be an important driver of HHT disease. The current wealth of preclinical models of HHT has led to increased understanding of AVM development and revealed new therapeutic approaches to treat AVMs, and form the topic of this review.

10.
Mediterr J Rheumatol ; 33(2): 176-184, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36128207

ABSTRACT

Glomerulonephritis is a common cause of chronic kidney disease, which has emerged as a major cause of end-stage renal disease. Autoimmune diseases, such as Systemic Lupus Erythematosus (SLE) and ANCA-associated vasculitis (AAV) are often associated with proliferative glomerulonephritis. Transforming growth factor-ß1 (TGF-ß1) is a cytokine with pleiotropic effects in chronic renal diseases, based on in vivo and in vitro studies. The Smad-dependent signalling pathway plays an important role in the regulation of renal fibrosis (excessive production of extracellular matrix [ECM]) and inflammation. However, clinical trials targeting TGF-ß1 have presented disappointing results, suggesting that the downstream signalling is quite complex. The diversity of the effects may associate with the interactions between TGF-ß1 signalling and other downstream signalling, as well as the different cellular responses, which TGF-ß1 promotes. Recently, macrophage chemoattract and epigenetic effects have also been identified as new mechanisms, wherefore TGF-ß1/Smad signalling mediates renal injury. This review provides an overview of the role of TGF-ß1/Smad signalling pathway from in vivo and in vitro studies in the pathogenesis of glomerulonephritis and particularly in proliferative glomerulonephritis, which is associated with autoimmune diseases.

11.
Clin Transl Med ; 12(8): e995, 2022 08.
Article in English | MEDLINE | ID: mdl-35979621

ABSTRACT

BACKGROUND: Glucuronic acid metabolism participates in cellular detoxification, extracellular matrix remodeling and cell adhesion and migration. Here, we aimed to explore the crosstalk between dysregulated glucuronic acid metabolism and crucial metastatic signalling in glutathione S-transferase zeta 1 (GSTZ1)-deficient hepatocellular carcinoma (HCC). METHODS: Transwell, HCC xenograft and Gstz1-/- mouse models were used to examine the role of GSTZ1 in HCC metastasis. Non-targeted and targeted metabolomics and global transcriptomic analyses were performed to screen significantly altered metabolic and signalling pathways in GSTZ1 overexpressing hepatoma cells. Further, RNA-binding protein immunoprecipitation, Biotin-RNA pull-down, mRNA decay assays and luciferase reporter assays were used to explore the interaction between RNA and RNA-binding proteins. RESULTS: GSTZ1 was universally silenced in both human and murine HCC cells, and its deficiency contributed to HCC metastasis in vitro and in vivo. UDP-glucose 6-dehydrogenase (UGDH)-mediated UDP-glucuronic acid (UDP-GlcUA) accumulation promoted hepatoma cell migration upon GSTZ1 loss. UDP-GlcUA stabilized TGFßR1 mRNA by enhancing its binding to polypyrimidine tract binding protein 3, contributing to the activation of TGFß/Smad signalling. UGDH or TGFßR1 blockade impaired HCC metastasis. In addition, UGDH up-regulation and UDP-GlcUA accumulation correlated with increased metastatic potential and decreased patient survival in GSTZ1-deficient HCC. CONCLUSIONS: GSTZ1 deficiency and subsequent up-regulation of the glucuronic acid metabolic pathway promotes HCC metastasis by increasing the stability of TGFßR1 mRNA and activating TGFß/Smad signalling. UGDH and a key metabolite, UDP-GlcUA, may serve as prognostic markers. Targeting UGDH might be a promising strategy for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Glucuronic Acid , Glutathione Transferase , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , RNA, Messenger/genetics , Transforming Growth Factor beta/genetics , Uridine Diphosphate , Uridine Diphosphate Glucose Dehydrogenase/genetics , Uridine Diphosphate Glucose Dehydrogenase/metabolism
12.
J Biochem ; 171(1): 109-122, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34676394

ABSTRACT

Myostatin (Mstn) and GDF11 are critical factors that are involved in muscle atrophy in the young and sarcopenia in the elderly, respectively. These TGF-ß superfamily proteins activate not only Smad signalling but also non-Smad signalling including the Ras-mediated ERK pathway (Raf-MEK-ERK phosphorylation cascade). Although Mstn and GDF11 have been shown to induce muscle atrophy or sarcopenia by Smad2/3-mediated Akt inhibition, participation of the non-Smad Ras-ERK pathway in atrophy and sarcopenia has not been well determined. We show here that both Mstn and GDF11 prevented skeletal myocyte differentiation but that the MEK inhibitor U0126 or trametinib restored differentiation in Mstn- or GDF11-treated myocytes. These MEK inhibitors induced the expression of DA-Raf1 (DA-Raf), which is a dominant-negative antagonist of the Ras-ERK pathway. Exogenous expression of DA-Raf in Mstn- or GDF11-treated myocytes restored differentiation. Furthermore, administration of trametinib to aged mice resulted in an increase in myofiber size or recovery from muscle atrophy. The trametinib administration downregulated ERK activity in these muscles. These results imply that the Mstn/GDF11-induced Ras-ERK pathway plays critical roles in the inhibition of myocyte differentiation and muscle regeneration, which leads to muscle atrophy. Trametinib and similar approved drugs might be applicable to the treatment of muscle atrophy in sarcopenia or cachexia.


Subject(s)
MAP Kinase Signaling System , Myostatin , Animals , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factors/metabolism , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Myostatin/metabolism , Pyridones , Pyrimidinones
13.
Onco Targets Ther ; 14: 5391-5402, 2021.
Article in English | MEDLINE | ID: mdl-34908844

ABSTRACT

PURPOSE: The increase of both M2-type macrophages and Tregs is closely associated with the development of colorectal cancer. However, the mechanism of their interaction is still unclear. In this study, we investigated the correlation of M2-type macrophages with Tregs and the possible mechanisms between them. METHODS: Using immunohistochemistry, we analysed Smad3 (a key protein in the TGF-ß/Smad signalling pathway) expression in colorectal cells, as well as infiltrating numbers of CD163 (a marker for M2-type macrophages), Foxp3 (a marker for Tregs) in 250 surgically resected colorectal cancer tissues, matched normal and paracancerous tissues. The relation of CD163 and Foxp3 was investigated in CRC with clinicopathological characteristics and preoperative tumour markers. RESULTS: CD163, Foxp3 and Smad3 were upregulated in CRC tissues compared to matched normal and paracancerous tissues. Interestingly, CD163 and Foxp3 were significantly positively correlated in CRC, and both were significantly positively correlated with Smad3. Both CD163 and Foxp3 were upregulated with increasing tumour TNM staging, increasing number of lymph node metastases and increasing vascular invasion. Additionally, CD163 was upregulated with increasing depth of infiltration. The number of M2-type macrophages and the expression levels of preoperative CEA, CA19-9 and CA72-4 were significantly positively correlated. The number of Tregs was significantly positively correlated with the expression levels of preoperative CEA and CA19-9. CONCLUSION: M2-type macrophages may induce Tregs generation through activation of the TGF-ß/Smad signalling pathway, which can promote the development of colorectal cancer.

14.
Pharmacol Res ; 174: 105923, 2021 12.
Article in English | MEDLINE | ID: mdl-34607006

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) induces significant morbidity and mortality, for which there are limited therapeutic options available. Here, we found that tetraethylthiuram disulphide (disulfiram, DSF), a derivative of thiuram, used in the treatment of alcohol abuse, has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis via the attenuation of the fibroblast-to-myofibroblast transition, migration, and proliferation of fibroblasts. Furthermore, DSF inhibited the activation of primary pulmonary fibroblasts and fibroblast cell line under transforming growth factor-ß 1 (TGF-ß1) challenge. Mechanistically, the anti-fibrotic effect of DSF on fibroblasts depends on the inhibition of TGF-ß signalling. We further determined that DSF interrupts the interaction between SMAD3 and TGF-ß receptor Ι (TBR Ι), and identified that DSF directly binds with SMAD3, in which Trp326, Thr330, and Cys332 of SMAD3 are critical binding sites for DSF. Collectively, our results reveal a powerful anti-fibrotic function of DSF in pulmonary fibrosis through the inhibition of TGF-ß/SMAD signalling in pulmonary fibroblasts, indicating that DSF is a promising therapeutic candidate for IPF.


Subject(s)
Alcohol Deterrents/therapeutic use , Disulfiram/therapeutic use , Pulmonary Fibrosis/drug therapy , Actins/metabolism , Alcohol Deterrents/pharmacology , Animals , Bleomycin , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Disulfiram/pharmacology , Fibronectins/genetics , Fibronectins/metabolism , HEK293 Cells , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
15.
Basic Clin Pharmacol Toxicol ; 129(6): 462-469, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34571584

ABSTRACT

Keloid is a type of unusually raised scar. Botulinum toxin A (BTX-A) has a great application potential in keloids treatment. Here, we investigated the functional role of BTX-A in keloids. We separated keloid tissues and normal skin tissues from keloid patients and found that the expression of myofibroblast markers, α-SMA, Collagen I, and Collagen III was increased in the keloid tissues as compared with normal skin tissues. Keloid fibroblasts derived from keloid tissues were treated with TGF-ß1 to induce the differentiation of fibroblasts into myofibroblasts. The keloid myofibroblasts displayed a significant up-regulation of α-SMA. BTX-A enhanced the expression of adipocyte markers, PPARγ and C/EBPα, and increased the accumulation of lipid droplets, and reduced the expression of α-SMA, Collagen I, and Collagen III in the keloid myofibroblasts. Moreover, BTX-A enhanced the expression of BMP4 and p-smad1/5/8. Noggin (BMP4 antagonist) treatment reversed BTX-A-mediated increase of PPARγ and C/EBPα expression and lipid droplets, and down-regulation of α-SMA, Collagen I, and Collagen III in primary keloid myofibroblasts. In conclusion, BTX-A promoted the transdifferentiation of primary keloid myofibroblasts into adipocyte-like cells, which may attribute to activate BMP4/Smad signalling pathway. Thus, this study provides new insights into the mechanism of BTX-A in keloid.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Keloid/drug therapy , Myofibroblasts/drug effects , Neuromuscular Agents/pharmacology , Adipocytes/cytology , Adipocytes/drug effects , Bone Morphogenetic Protein 4/metabolism , Cell Transdifferentiation/drug effects , Cells, Cultured , Collagen Type I/metabolism , Collagen Type III/metabolism , Fibroblasts/cytology , Humans , Keloid/pathology , Myofibroblasts/cytology , Signal Transduction/drug effects , Smad Proteins/metabolism
16.
J Cell Mol Med ; 25(20): 9805-9813, 2021 10.
Article in English | MEDLINE | ID: mdl-34514726

ABSTRACT

Cancer cells are high in heterogeneity and versatility, which can easily adapt to the external stresses via both primary and secondary resistance. Targeting of tumour microenvironment (TME) is a new approach and an ideal therapeutic strategy especially for the multidrug resistant cancer. Recently, we invented AANG, a natural compound formula containing traditional Chinese medicine (TCM) derived Smad3 inhibitor Naringenin (NG) and Smad7 activator Asiatic Acid (AA), for rebalancing TGF-ß/Smad signalling in the TME, and its implication on the multidrug resistance is still unexplored. Here, we observed that an equilibrium shift of the Smad signalling in patients with hepatocellular carcinoma (HCC), which was dramatically enhanced in the recurrent cases showing p-glycoprotein overexpression. We optimized the formula ratio and dosage of AANG that effectively inhibit the proliferation of our unique human multidrug resistant subclone R-HepG2. Mechanistically, we found that AANG not only inhibits Smad3 at post-transcriptional level, but also upregulates Smad7 at transcriptional level in a synergistic manner in vitro. More importantly, AANG markedly suppressed the growth and p-glycoprotein expression of R-HepG2 xenografts in vivo. Thus, AANG may represent a novel and safe TCM-derived natural compound formula for overcoming HCC with p-glycoprotein-mediated multidrug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Drug Resistance, Neoplasm/drug effects , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Aged , Animals , Carcinoma, Hepatocellular , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Humans , Immunohistochemistry , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Middle Aged , Xenograft Model Antitumor Assays
17.
Mol Neurobiol ; 58(7): 3405-3416, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33713017

ABSTRACT

Parkinson's disease is a neurodegenerative disorder characterised by nigrostriatal dopaminergic degeneration, and intracellular α-synuclein aggregation. Current pharmacological treatments are solely symptomatic so there is a need to identify agents that can slow or stop dopaminergic degeneration. One proposed class of therapeutics are neurotrophic factors which promote the survival of nigrostriatal dopaminergic neurons. However, neurotrophic factors need to be delivered directly to the brain. An alternative approach may be to identify pharmacological agents which can reach the brain to stimulate neurotrophic factor expression and/or their signalling pathways in dopaminergic neurons. BMP2 is a neurotrophic factor that is expressed in the human substantia nigra; exogenous BMP2 administration protects against dopaminergic degeneration in in vitro models of PD. In this study, we investigated the neurotrophic potential of two FDA-approved drugs, quinacrine and niclosamide, that are modulators of BMP2 signalling. We report that quinacrine and niclosamide, like BMP2, significantly increased neurite length, as a readout of neurotrophic action, in SH-SY5Y cells and dopaminergic neurons in primary cultures of rat ventral mesencephalon. We also show that these effects of quinacrine and niclosamide require the activation of BMP-Smad signalling. Finally, we demonstrate that quinacrine and niclosamide are neuroprotective against degeneration induced by the neurotoxins, MPP+ and 6-OHDA, and by viral-mediated overexpression of α-synuclein in vitro. Collectively, this study identifies two drugs, that are safe for use in patients' to 'are approved for human use, that exert neurotrophic effects on dopaminergic neurons through modulation of BMP-Smad signalling. This rationalises the further study of drugs that target the BMP-Smad pathway as potential neuroprotective pharmacotherapy for Parkinson's disease.


Subject(s)
Dopaminergic Neurons/drug effects , Neurites/drug effects , Neuroprotection/drug effects , Niclosamide/pharmacology , Quinacrine/pharmacology , alpha-Synuclein/toxicity , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Line, Tumor , Cells, Cultured , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Humans , Mesencephalon/drug effects , Mesencephalon/metabolism , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Nerve Degeneration/prevention & control , Neurites/metabolism , Neuroprotection/physiology , Neurotoxins/toxicity , Niclosamide/therapeutic use , Quinacrine/therapeutic use , Rats , Smad Proteins/metabolism
18.
Photodiagnosis Photodyn Ther ; 34: 102202, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33556618

ABSTRACT

Keloids are characterized by abnormal proliferation of fibroblasts and continuous deposition of extracellular matrix (ECM) components. In the field of dermopathy, photodynamic therapy (PDT) with visible light has been increasingly investigated. The natural photosensitizer Hypocrellin A (HA) was shown to have excellent light induced anticancer, antimicrobial and antiviral activities. In this experiment, we investigated the impacts of HA united light-emitting diode (LED) red light irradiation on human keloid fibroblast cells (KFs). Our results showed that HA combined with red light irradiation treatment (HA-R-PDT) decreased KF viability, reduced KF collagen production and ECM accumulation, inhibited cell proliferation, suppressed cell invasion and induced cell apoptosis. Moreover, our observations demonstrated that the TGF-ß/Smad signalling pathway and autophagy were restrained by HA-R-PDT. TGF-ß1 could promote autophagy in KFs through both the Smad and ERK pathways, while inhibition of autophagy altered the TGF-ß1 levels through negative feedback. Therefore, HA-R-PDT suppressed cell hyperproliferation, collagen synthesis and ECM accumulation of KFs by regulating the TGF-ß1-ERK-autophagy-apoptosis signalling pathway. HA-R-PDT deserves systematic investigation as a potential therapeutic strategy for keloids, and autophagy might be a promising candidate in the treatment of KFs.


Subject(s)
Keloid , Photochemotherapy , Apoptosis , Autophagy , Cell Proliferation , Cells, Cultured , Fibroblasts/pathology , Humans , Keloid/radiotherapy , Light , Perylene/analogs & derivatives , Phenol , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Quinones
19.
Int Arch Allergy Immunol ; 182(6): 479-488, 2021.
Article in English | MEDLINE | ID: mdl-33631753

ABSTRACT

INTRODUCTION: The homeodomain transcription factor sine oculis homeobox homolog 1 (Six1) plays a crucial role in embryogenesis and is not expressed in normal adult tissue but is expressed in many pathological processes, including airway remodelling in asthma. The current study aimed to reveal the effects of Six1 in regulating the airway remodelling and its possible mechanism. METHODS: A mouse model of ovalbumin-induced asthma-associated airway wall remodelling and a bronchial epithelial cell (16HBE) model of transforming growth factor ß1 (TGFß1)-induced epithelial-mesenchymal transition (EMT) were used to investigate the role of Six1. Then, 16HBE cells were transformed with Six1 expression vectors and treated with a TGFß1 pathway inhibitor to determine the role of Six1 in EMT. The effect of Six1 and its possible mechanism were assessed by immunohistochemistry, RT-PCR, and Western blot. RESULTS: Six1 expression was elevated in the lungs in an OVA mouse model of allergic asthma and in 16HBE cells treated with TGFß1. Six1 overexpression promoted an EMT-like phenotype with a decreased protein expression of E-cadherin and increased protein expression of α-smooth muscle actin (α-SMA) as well as fibronectin in 16HBE cells; these effects appeared to promote TGFß1 and phospho-Smad2 (pSmad2) production, which are the main products of the TGFß1/Smad signalling pathway, which could be reduced by a TGFß1 inhibitor. CONCLUSION: These data reveal that Six1 and TGFß1 are potentially a part of an autocrine feedback loop that induces EMT, and these factors can be reduced by blocking the TGFß1/Smad signalling pathway. As such, these factors may represent a promising novel therapeutic target for airway remodelling in asthma.


Subject(s)
Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Homeodomain Proteins/genetics , Respiratory Mucosa/metabolism , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Airway Remodeling , Animals , Asthma/etiology , Asthma/metabolism , Cell Line , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Homeodomain Proteins/metabolism , Male , Mice , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology
20.
Metabolism ; 112: 154347, 2020 11.
Article in English | MEDLINE | ID: mdl-32853647

ABSTRACT

BACKGROUND: Long-term testosterone replacement therapy (TRT) increases muscle mass in elderly men with subnormal testosterone levels. However, the molecular mechanisms underlying this effect of TRT on protein balance in human skeletal muscle in vivo remain to be established. METHODS: Here, we examined skeletal muscle biopsies obtained before and 24-h after the last dose of treatment with either testosterone gel (n = 12) or placebo (n = 13) for 6 months in aging men with subnormal bioavailable testosterone levels. The placebo-controlled, testosterone-induced changes (ß-coefficients) in mRNA levels, protein expression and phosphorylation were examined by quantitative real-time PCR and western blotting. RESULTS: Long-term TRT increased muscle mass by ß = 1.6 kg (p = 0.01) but had no significant effect on mRNA levels of genes involved in myostatin/activin/SMAD or IGF1/FOXO3 signalling, muscle-specific E3-ubiquitin ligases, upstream transcription factors (MEF2C, PPARGC1A-4) or myogenic factors. However, TRT caused a sustained decrease in protein expression of SMAD2 (ß = -36%, p = 0.004) and SMAD3 (ß = -32%, p = 0.001), which was accompanied by reduced protein expression of the muscle-specific E3-ubiquitin ligases, MuRF1 (ß = -26%, p = 0.004) and Atrogin-1/MAFbx (ß = -20%, p = 0.04), but with no changes in FOXO3 signalling. Importantly, TRT did not affect muscle fibre type distribution between slow-oxidative (type 1), fast-oxidative (type 2a) and fast-glycolytic (type 2×) muscle fibres. CONCLUSIONS: Our results indicate that long-term TRT of elderly men with subnormal testosterone levels increases muscle mass, at least in part, by decreasing protein breakdown through the ubiquitin proteasome pathway mediated by a sustained suppression of SMAD-signalling and muscle-specific E3-ubiquitin ligases.


Subject(s)
Hormone Replacement Therapy , Muscle, Skeletal/drug effects , Testosterone/administration & dosage , Aged , Aging , Body Composition/drug effects , Humans , Male , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Sex Hormone-Binding Globulin/metabolism , Testosterone/blood , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...