Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Biol Chem ; 300(4): 107170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492777

ABSTRACT

Intercellular miRNA exchange acts as a key mechanism to control gene expression post-transcriptionally in mammalian cells. Regulated export of repressive miRNAs allows the expression of inflammatory cytokines in activated macrophages. Intracellular trafficking of miRNAs from the endoplasmic reticulum to endosomes is a rate-determining step in the miRNA export process and plays an important role in controlling cellular miRNA levels and inflammatory processes in macrophages. We have identified the SNARE protein Syntaxin 5 (STX5) to show a synchronized expression pattern with miRNA activity loss in activated mammalian macrophage cells. STX5 is both necessary and sufficient for macrophage activation and clearance of the intracellular pathogen Leishmania donovani from infected macrophages. Exploring the mechanism of how STX5 acts as an immunostimulant, we have identified the de novo RNA-binding property of this SNARE protein that binds specific miRNAs and facilitates their accumulation in endosomes in a cooperative manner with human ELAVL1 protein, Human antigen R. This activity ensures the export of miRNAs and allows the expression of miRNA-repressed cytokines. Conversely, in its dual role in miRNA export, this SNARE protein prevents lysosomal targeting of endosomes by enhancing the fusion of miRNA-loaded endosomes with the plasma membrane to ensure accelerated release of extracellular vesicles and associated miRNAs.


Subject(s)
ELAV-Like Protein 1 , Macrophages , MicroRNAs , Qa-SNARE Proteins , Animals , Humans , Mice , Endosomes/metabolism , Leishmania donovani/metabolism , Leishmania donovani/genetics , Macrophage Activation , Macrophages/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , RNA Transport , ELAV-Like Protein 1/metabolism
2.
Genes (Basel) ; 14(12)2023 12 05.
Article in English | MEDLINE | ID: mdl-38137001

ABSTRACT

In recent years, the affordability and availability of genetic testing have led to its increased use in clinical care. The increased frequency of testing has led to STXBP1 variants being identified as one of the more common variants associated with neurological disorders. In this review, we aim to summarize the common clinical phenotypes associated with STXBP1 pathogenic variants, provide an overview of their known natural history, and discuss current research into the genotype to phenotype correlation. We will also provide an overview of the suspected normal function of the STXBP1-encoded Munc18-1 protein, animal models, and experimental techniques that have been developed to study its function and use this information to try to explain the diverse phenotypes associated with STXBP1-related disorders. Finally, we will explore current therapies for STXBP1 disorders, including an overview of treatment goals for STXBP1-related disorders, a discussion of the current evidence for therapies, and future directions of personalized medications for STXBP1-related disorders.


Subject(s)
Epilepsy , Intellectual Disability , Animals , Epilepsy/genetics , Genetic Testing , Intellectual Disability/genetics , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Mutation , Humans
3.
Protein Sci ; 33(3): e4870, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38109275

ABSTRACT

Neurotransmitters are released from synaptic vesicles, the membrane of which fuses with the plasma membrane upon calcium influx. This membrane fusion reaction is driven by the formation of a tight complex comprising the plasma membrane N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins syntaxin-1a and SNAP-25 with the vesicle SNARE protein synaptobrevin. The neuronal protein Munc18-1 forms a stable complex with syntaxin-1a. Biochemically, syntaxin-1a cannot escape the tight grip of Munc18-1, so formation of the SNARE complex is inhibited. However, Munc18-1 is essential for the release of neurotransmitters in vivo. It has therefore been assumed that Munc18-1 makes the bound syntaxin-1a available for SNARE complex formation. Exactly how this occurs is still unclear, but it is assumed that structural rearrangements occur. Here, we used a series of mutations to specifically weaken the complex at different positions in order to induce these rearrangements biochemically. Our approach was guided through sequence and structural analysis and supported by molecular dynamics simulations. Subsequently, we created a homology model showing the complex in an altered conformation. This conformation presumably represents a more open arrangement of syntaxin-1a that permits the formation of a SNARE complex to be initiated while still bound to Munc18-1. In the future, research should investigate how this central reaction for neuronal communication is controlled by other proteins.

4.
Proc Natl Acad Sci U S A ; 120(34): e2309516120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37590407

ABSTRACT

Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca2+. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca2+-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca2+-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of docked, release-ready vesicles. Dynamic single-molecule imaging of Complexin binding to release-ready vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by chaperones, Munc13 and Munc18. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 "template" complex is a functional intermediate in the production of primed, release-ready vesicles, which requires the coordinated action of Munc13 and Munc18.


Subject(s)
Diglycerides , Synaptic Vesicles , Humans , Exocytosis , Synaptic Transmission , Synaptotagmins , Blister
5.
Front Cell Dev Biol ; 11: 1138571, 2023.
Article in English | MEDLINE | ID: mdl-36936692

ABSTRACT

Antigen cross-presentation is a vital mechanism of dendritic cells and other antigen presenting cells to orchestrate the priming of cytotoxic responses towards killing of infected or cancer cells. In this process, exogenous antigens are internalized by dendritic cells, processed, loaded onto MHC class I molecules and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi Intermediate Compartment resident SNARE protein that, in partnership with sintaxin4, coordinates the recruitment of the transporter associated with antigen processing protein and the peptide loading complex to phagosomes, where antigenic peptides that have been proteolyzed in the cytosol are loaded in MHC class I molecules and transported to the cell membrane. The silencing of Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects other antigen presentation routes nor cytokine production and secretion. Mice with Sec22b conditionally silenced in dendritic cells (Sec22b-/-) show deficient priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to anti-checkpoint immunotherapy. In this work, we show that Sec22b-/- mice elicit a deficient specific CD8+ T cell response when challenged with sublethal doses of Trypanosoma cruzi trypomastigotes that is associated with increased blood parasitemia and diminished survival.

6.
J Lipid Res ; 64(3): 100342, 2023 03.
Article in English | MEDLINE | ID: mdl-36764525

ABSTRACT

Lipid accumulation in hepatocytes is the distinctive characteristic of nonalcoholic fatty liver disease. Serine/arginine-rich splicing factor 3 (SRSF3) is highly expressed in the liver and expression decreases in high-fat conditions. However, the role of SRSF3 in hepatic lipid metabolism needs to be clarified. Here, we showed that loss of SRSF3 was associated with lipid accumulation. We determined that SRSF3 regulated lipophagy, the process of selective degradation of lipid droplets by autophagy. Mechanistically, loss of SRSF3 impaired the fusion of the autophagosome and lysosome by promoting the proteasomal degradation of syntaxin 17 (STX17), a key autophagosomal SNARE protein. We found that ubiquitination of STX17 was increased and upregulation of seven in absentia homolog 1 was responsible for the increased posttranslational modification of STX17. Taken together, our data primarily demonstrate that loss of SRSF3 weakens the clearance of fatty acids by impairing lipophagy in the progression of nonalcoholic fatty liver disease, indicating a novel potential therapeutic target for fatty liver disease treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Autophagy/genetics , Fatty Acids/metabolism , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , RNA Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Ubiquitination , Qa-SNARE Proteins/metabolism
7.
J Fungi (Basel) ; 9(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36675896

ABSTRACT

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotes and play a vital role in fungal growth, development, and pathogenicity. However, the functions of SNAREs are still largely unknown in nematode-trapping fungi. Arthrobotrys oligospora is a representative species of nematode-trapping fungi that can produce adhesive networks (traps) for nematode predation. In this study, we characterized AoSec22 in A. oligospora, a homolog of the yeast SNARE protein Sec22. Deletion of Aosec22 resulted in remarkable reductions in mycelial growth, the number of nuclei, conidia yield, and trap formation, especially for traps that failed to develop mature three-dimensional networks. Further, absence of Aosec22 impaired fatty acid utilization, autophagy, and stress tolerance; in addition, the vacuoles became small and fragmented in the hyphal cells of the ∆Aosec22 mutant, and large vacuoles failed to form. The reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes, and the impaired accumulation of lipid droplets is in line with the transcriptional repression of several genes involved in fatty acid oxidation. Moreover, absence of Aosec22 remarkably impaired secondary metabolism, resulting in 4717 and 1230 compounds upregulated and downregulated in the ∆Aosec22 mutant, respectively. Collectively, our data highlighted that the SNARE protein AoSec22 plays a pleiotropic role in mycelial growth and development, vacuole assembly, lipid metabolism, stress response, and secondary metabolism; in particular, it is required for the proper development of traps in A. oligospora.

8.
FEBS J ; 290(9): 2320-2337, 2023 05.
Article in English | MEDLINE | ID: mdl-36047592

ABSTRACT

Signal peptide peptidase (SPP) and SPP-like (SPPL) aspartyl intramembrane proteases are known to contribute to sequential processing of type II-oriented membrane proteins referred to as regulated intramembrane proteolysis. The ER-resident family members SPP and SPPL2c were shown to also cleave tail-anchored proteins, including selected SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins facilitating membrane fusion events. Here, we analysed whether the related SPPL2a and SPPL2b proteases, which localise to the endocytic or late secretory pathway, are also able to process SNARE proteins. Therefore, we screened 18 SNARE proteins for cleavage by SPPL2a and SPPL2b based on cellular co-expression assays, of which the proteins VAMP1, VAMP2, VAMP3 and VAMP4 were processed by SPPL2a/b demonstrating the capability of these two proteases to proteolyse tail-anchored proteins. Cleavage of the four SNARE proteins was scrutinised at the endogenous level upon SPPL2a/b inhibition in different cell lines as well as by analysing VAMP1-4 levels in tissues and primary cells of SPPL2a/b double-deficient (dKO) mice. Loss of SPPL2a/b activity resulted in an accumulation of VAMP1-4 in a cell type- and tissue-dependent manner, identifying these proteins as SPPL2a/b substrates validated in vivo. Therefore, we propose that SPPL2a/b control cellular levels of VAMP1-4 by initiating the degradation of these proteins, which might impact cellular trafficking.


Subject(s)
Aspartic Acid Endopeptidases , Membrane Proteins , Animals , Mice , Aspartic Acid Endopeptidases/metabolism , Homeostasis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peptide Hydrolases/metabolism , Proteolysis , Vesicle-Associated Membrane Protein 1/metabolism
9.
Biomolecules ; 12(12)2022 11 29.
Article in English | MEDLINE | ID: mdl-36551207

ABSTRACT

The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.


Subject(s)
Membrane Fusion , SNARE Proteins , SNARE Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Protein Binding , Peptides/chemistry
10.
Biol Pharm Bull ; 45(11): 1609-1615, 2022.
Article in English | MEDLINE | ID: mdl-36328496

ABSTRACT

Autophagy is a highly conserved intracellular degrading system and its dysfunction is considered related to the cause of neurodegenerative disorders. A previous study showed that the inhibition of endocytosis transport attenuates soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein transport to lysosomes and block autophagy. The other studies demonstrated oxidative stress, one of the inducers of neurodegenerative diseases inhibits endocytosis transport. Thus, we hypothesized that oxidative stress-induced endocytosis inhibition causes alteration of SNARE protein transport to lysosomes and impairs autophagy. Here, we demonstrated that oxidative stress inhibits endocytosis and decreased the lysosomal localization of VAMP8, one of the autophagy-related SNARE proteins in a human neuroblastoma cell line. Moreover, this oxidative stress induction blocked the autophagosome-lysosome fusion step. Since we also observed decreased lysosomal localization of VAMP8 and inhibition of autophagosome-lysosome fusion in endocytosis inhibitor-treated cells, oxidative stress may inhibit VAMP8 trafficking by suppressing endocytosis and impair autophagy. Our findings suggest that oxidative stress-induced inhibition of VAMP8 trafficking to lysosomes is associated with the development of neurodegenerative diseases due to the blocked autophagosome-lysosome fusion, and may provide a new therapeutic target for restoring the autophagic activity.


Subject(s)
Autophagy , Lysosomes , Humans , Autophagy/physiology , Lysosomes/metabolism , Membrane Fusion , Oxidative Stress , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Biological Transport
11.
Front Endocrinol (Lausanne) ; 13: 915509, 2022.
Article in English | MEDLINE | ID: mdl-35774142

ABSTRACT

Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Diabetes Mellitus, Type 2/metabolism , Exocytosis , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Insulin/metabolism , Monosaccharide Transport Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , SNARE Proteins/metabolism
12.
J Nanobiotechnology ; 20(1): 292, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729633

ABSTRACT

BACKGROUND: Increasing evidence suggests that platelets play a central role in cancer progression, with altered storage and selective release from platelets of specific tumor-promoting proteins as a major mechanism. Fluorescence-based super-resolution microscopy (SRM) can resolve nanoscale spatial distribution patterns of such proteins, and how they are altered in platelets upon different activations. Analysing such alterations by SRM thus represents a promising, minimally invasive strategy for platelet-based diagnosis and monitoring of cancer progression. However, broader applicability beyond specialized research labs will require objective, more automated imaging procedures. Moreover, for statistically significant analyses many SRM platelet images are needed, of several different platelet proteins. Such proteins, showing alterations in their distributions upon cancer progression additionally need to be identified. RESULTS: A fast, streamlined and objective procedure for SRM platelet image acquisition, analysis and classification was developed to overcome these limitations. By stimulated emission depletion SRM we imaged nanoscale patterns of six different platelet proteins; four different SNAREs (soluble N-ethylmaleimide factor attachment protein receptors) mediating protein secretion by membrane fusion of storage granules, and two angiogenesis regulating proteins, representing cargo proteins within these granules coupled to tumor progression. By a streamlined procedure, we recorded about 100 SRM images of platelets, for each of these six proteins, and for five different categories of platelets; incubated with cancer cells (MCF-7, MDA-MB-231, EFO-21), non-cancer cells (MCF-10A), or no cells at all. From these images, structural similarity and protein cluster parameters were determined, and probability functions of these parameters were generated for the different platelet categories. By comparing these probability functions between the categories, we could identify nanoscale alterations in the protein distributions, allowing us to classify the platelets into their correct categories, if they were co-incubated with cancer cells, non-cancer cells, or no cells at all. CONCLUSIONS: The fast, streamlined and objective acquisition and analysis procedure established in this work confirms the role of SNAREs and angiogenesis-regulating proteins in platelet-mediated cancer progression, provides additional fundamental knowledge on the interplay between tumor cells and platelets, and represent an important step towards using tumor-platelet interactions and redistribution of nanoscale protein patterns in platelets as a basis for cancer diagnostics.


Subject(s)
Neoplasms , SNARE Proteins , Blood Platelets/metabolism , Membrane Fusion , Microscopy, Fluorescence/methods , Neoplasms/metabolism , SNARE Proteins/metabolism
13.
Mol Plant ; 15(6): 1008-1023, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35488430

ABSTRACT

Tip growth is an extreme form of polarized cell expansion that occurs in all eukaryotic kingdoms to generate highly elongated tubular cells with specialized functions, including fungal hyphae, animal neurons, plant pollen tubes, and root hairs (RHs). RHs are tubular structures that protrude from the root epidermis to facilitate water and nutrient uptake, microbial interactions, and plant anchorage. RH tip growth requires polarized vesicle targeting and active exocytosis at apical growth sites. However, how apical exocytosis is spatially and temporally controlled during tip growth remains elusive. Here, we report that the Qa-Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) SYP121 acts as an effector of Rho of Plants 2 (ROP2), mediating the regulation of RH tip growth. We show that active ROP2 promotes SYP121 targeting to the apical plasma membrane. Moreover, ROP2 directly interacts with SYP121 and promotes the interaction between SYP121 and the R-SNARE VAMP722 to form a SNARE complex, probably by facilitating the release of the Sec1/Munc18 protein SEC11, which suppresses the function of SYP121. Thus, the ROP2-SYP121 pathway facilitates exocytic trafficking during RH tip growth. Our study uncovers a direct link between an ROP GTPase and vesicular trafficking and a new mechanism for the control of apical exocytosis, whereby ROP GTPase signaling spatially regulates SNARE complex assembly and the polar distribution of a Q-SNARE.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Plants, Genetically Modified/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism
14.
New Phytol ; 235(2): 786-800, 2022 07.
Article in English | MEDLINE | ID: mdl-35396742

ABSTRACT

Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.


Subject(s)
Marchantia , Cell Membrane/metabolism , Marchantia/genetics , Marchantia/metabolism , SNARE Proteins/metabolism
15.
Molecules ; 27(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268661

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory dermal disease with symptoms that include inflammation, itching, and dry skin. 1-Iodohexadecane is known as a component of Chrysanthemum boreale essential oil that has an inhibitory effect on AD-like lesions. However, its effects on AD-related pathological events have not been investigated. Here, we explored the effects of 1-iodohexadecane on AD lesion-related in vitro and in vivo responses and the mechanism involved using human keratinocytes (HaCaT cells), mast cells (RBL-2H3 cells), and a 2,4-dinitrochlorobenzene (DNCB)-induced mouse model (male BALB/c) of AD. Protein analyses were performed by immunoblotting or immunohistochemistry. In RBL-2H3 cells, 1-iodohexadecane inhibited immunoglobulin E-induced releases of histamine and ß-hexosaminidase and the expression of VAMP8 protein (vesicle-associated membrane proteins 8; a soluble N-ethylmaleimide-sensitive factor attachment protein receptor [SNARE] protein). In HaCaT cells, 1-iodohexadecane enhanced filaggrin and loricrin expressions; in DNCB-treated mice, it improved AD-like skin lesions, reduced epidermal thickness, mast cell infiltration, and increased filaggrin and loricrin expressions (skin barrier proteins). In addition, 1-iodohexadecane reduced the ß-hexosaminidase level in the serum of DNCB-applied mice. These results suggest that 1-iodohexadecane may ameliorate AD lesion severity by disrupting SNARE protein-linked degranulation and/or by enhancing the expressions of skin barrier-related proteins, and that 1-iodohexadecane has therapeutic potential for the treatment of AD.


Subject(s)
Dinitrochlorobenzene
16.
Histochem Cell Biol ; 157(1): 51-63, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34613496

ABSTRACT

To elucidate the efferent functions of sensory nerve endings, the distribution of calretinin and vesicular glutamate transporter 1 (VGLUT1) in laryngeal laminar nerve endings and the immunohistochemical distribution of proteins associated with synaptic vesicle release, i.e., t-SNARE (SNAP25 and syntaxin 1), v-SNARE (VAMP1 and VAMP2), synaptotagmin 1 (Syt1), bassoon, and piccolo, were examined. Subepithelial laminar nerve endings immunoreactive for Na+-K+-ATPase α3-subunit (NKAα3) were largely distributed in the whole-mount preparation of the epiglottic mucosa, and several endings were also immunoreactive for calretinin. VGLUT1 immunoreactivity was observed within terminal part near the outline of the small processes of NKAα3-immunoreactive nerve ending. SNAP25, syntaxin 1, and VAMP1 immunoreactivities were detected in terminal parts of calretinin-immunoreactive endings, whereas VAMP2 immunoreactivity was only observed in a few terminals. Terminal parts immunoreactive for calretinin and/or VGLUT1 also exhibited immunoreactivities for Syt1, Ca2+ sensor for membrane trafficking, and for bassoon and piccolo, presynaptic scaffold proteins. The presence of vesicular release-related proteins, including SNARE proteins, in the terminals of laryngeal laminar endings indicate that intrinsic glutamate modulates their afferent activity in an autocrine-like manner.


Subject(s)
Epiglottis , Glutamic Acid , Animals , Epiglottis/metabolism , Glutamic Acid/metabolism , Nerve Endings/metabolism , Rats , Sensory Receptor Cells/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
17.
Front Microbiol ; 12: 736066, 2021.
Article in English | MEDLINE | ID: mdl-34721333

ABSTRACT

The tea-oil tree Camellia oleifera is native to China and is cultivated in many parts of southern China. This plant has been grown for over 2,000 years, mainly for its high-quality cooking oil. Anthracnose is the main disease of tea-oil tree and results in a huge loss annually. Colletotrichum fructicola is a major pathogen causing anthracnose on tea-oil tree. In a previous study, we characterized that the bZIP transcription factor CfHac1 controlled the development and pathogenicity of C. fructicola. Here, we identified and characterized the function of CfVAM7 gene, which was significantly downregulated at the transcriptional level in the ΔCfhac1 strain under dithiothreitol stress. Targeted gene deletion revealed that CfVam7 is important in growth, pathogenicity, and responses to endoplasmic reticulum-related stresses. Further analysis revealed that CfVam7 is required for appressorium formation and homotypic vacuole fusion, which are important for fungal pathogen invasion. Cytological examinations revealed that CfVam7 is localized to vacuole membranes in the hyphal stage. The Phox homology (PX) and SNARE domains of CfVam7 were indispensable for normal cellular localization and biological function. Taken together, our results suggested that CfVam7-mediated vacuole membrane fusion promotes growth, stress response, and pathogenicity of C. fructicola.

18.
Front Cell Dev Biol ; 9: 607188, 2021.
Article in English | MEDLINE | ID: mdl-33644045

ABSTRACT

Biofilm formation of Candida species is considered to be a pathogenic factor of host infection. Since biofilm formation of Candida glabrata has not been as well studied as that of Candida albicans, we performed genetic screening of C. glabrata, and three candidate genes associated with biofilm formation were identified. Candida glabrata SYN8 (CAGL0H06325g) was selected as the most induced gene in biofilm cells for further research. Our results indicated that the syn8Δ mutant was defective not only in biofilm metabolic activity but also in biofilm morphological structure and biomass. Deletion of SYN8 seemed to have no effect on extracellular matrix production, but it led to a notable decrease in adhesion ability during biofilm formation, which may be linked to the repression of two adhesin genes, EPA10 and EPA22. Furthermore, hypersensitivity to hygromycin B and various ions in addition to the abnormal vacuolar morphology in the syn8Δ mutant suggested that active vacuolar function is required for biofilm formation of C. glabrata. These findings enhance our understanding of biofilm formation in this fungus and provide information for the development of future clinical treatments.

19.
Front Cell Dev Biol ; 9: 637565, 2021.
Article in English | MEDLINE | ID: mdl-33718375

ABSTRACT

Snap29 is a conserved regulator of membrane fusion essential to complete autophagy and to support other cellular processes, including cell division. In humans, inactivating SNAP29 mutations causes CEDNIK syndrome, a rare multi-systemic disorder characterized by congenital neuro-cutaneous alterations. The fibroblasts of CEDNIK patients show alterations of the Golgi apparatus (GA). However, whether and how Snap29 acts at the GA is unclear. Here we investigate SNAP29 function at the GA and endoplasmic reticulum (ER). As part of the elongated structures in proximity to these membrane compartments, a pool of SNAP29 forms a complex with Syntaxin18, or with Syntaxin5, which we find is required to engage SEC22B-loaded vesicles. Consistent with this, in HeLa cells, in neuroepithelial stem cells, and in vivo, decreased SNAP29 activity alters GA architecture and reduces ER to GA trafficking. Our data reveal a new regulatory function of Snap29 in promoting secretory trafficking.

20.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33468631

ABSTRACT

Controlled release of neurotransmitters stored in synaptic vesicles (SVs) is a fundamental process that is central to all information processing in the brain. This relies on tight coupling of the SV fusion to action potential-evoked presynaptic Ca2+ influx. This Ca2+-evoked release occurs from a readily releasable pool (RRP) of SVs docked to the plasma membrane (PM). The protein components involved in initial SV docking/tethering and the subsequent priming reactions which make the SV release ready are known. Yet, the supramolecular architecture and sequence of molecular events underlying SV release are unclear. Here, we use cryoelectron tomography analysis in cultured hippocampal neurons to delineate the arrangement of the exocytosis machinery under docked SVs. Under native conditions, we find that vesicles are initially "tethered" to the PM by a variable number of protein densities (∼10 to 20 nm long) with no discernible organization. In contrast, we observe exactly six protein masses, each likely consisting of a single SNAREpin with its bound Synaptotagmins and Complexin, arranged symmetrically connecting the "primed" vesicles to the PM. Our data indicate that the fusion machinery is likely organized into a highly cooperative framework during the priming process which enables rapid SV fusion and neurotransmitter release following Ca2+ influx.


Subject(s)
Nerve Tissue Proteins/metabolism , Presynaptic Terminals/metabolism , Synaptic Vesicles/metabolism , Animals , Cells, Cultured , Cryoelectron Microscopy , Hippocampus/cytology , Imaging, Three-Dimensional , Mice, Inbred C57BL , Neurons/metabolism , Neurons/ultrastructure , Presynaptic Terminals/ultrastructure , Synaptic Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...