Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
Apoptosis ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008196

ABSTRACT

Cuprotosis related genes (CRGs) have been proved to be potential therapeutic targets for coronavirus disease 2019 (COVID-19) and cancer, but their immune and molecular mechanisms in COVID-19 infection in Diffuse Large B-cell Lymphoma (DLBC/DLBCL) patients are rarely reported. Our research goal is first to screen the key CRGs in COVID-19 through univariate analysis, machine learning and clinical samples. Secondly, we determined the expression and prognostic role of key CRGs in DLBCL through pan-cancer analysis. We validated the expression levels and prognosis using multiple datasets and independent clinical samples and validated the functional role of key CRGs in DLBCL through cell experiments. Finally, we validated the expression levels of CRGs in COVID-19 infected DLBCL patients samples and analyzed their common pathways in COVID-19 and DLBCL. The results show that synuclein-alpha (SNCA) is the common key differential gene of COVID-19 and DLBCL. DLBCL cells confirm that high expression of SNCA can significantly promote cell apoptosis and significantly inhibit the cycle progression of DLBCL. High expression of SNCA can regulate the binding of major histocompatibility complexes (MHCs) and T cell receptor (TCR) by regulating immune infiltration of Dendritic cells, effectively enhancing T cell-mediated anti-tumor immunity and clearing cancer cells. In conclusion, SNCA may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our study provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL patients.

2.
Mol Biol Rep ; 51(1): 797, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001947

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by a multifaceted genetic foundation. Genome-Wide Association Studies (GWAS) have played a crucial role in pinpointing genetic variants linked to PD susceptibility. Current study aims to delve into the mechanistic aspects through which the PD-associated Single Nucleotide Polymorphism (SNP) rs329648, identified in prior GWAS, influences the pathogenesis of PD. METHODS AND RESULTS: Employing the CRISPR/Cas9-mediated genome editing mechanism, we demonstrated the association of the disease-associated allele of rs329648 with increased expression of miR-4697-3p in differentiated SH-SY5Y cells. We revealed that miR-4697-3p contributes to the formation of high molecular weight complexes of α-Synuclein (α-Syn), indicative of α-Syn aggregate formation, as evidenced by Western blot analysis. Furthermore, our study unveiled that miR-4697-3p elevates SNCA112 mRNA levels. The resultant protein product, α-Syn 112, a variant of α-Syn with 112 amino acids, is recognized for augmenting α-Syn aggregation. Notably, this regulatory effect minimally impacts the levels of full-length SNCA140 mRNA, as evidenced by qRT-PCR. Additionally, we observed a correlation between the disease-associated allele and miR-4697-3p with increased cell death, substantiated by assessments including cell viability assays, alterations in cell morphology, and TUNEL assays. CONCLUSION: Our research reveals that the disease-associated allele of rs329648 is linked to higher levels of miR-4697-3p. This increase in miR-4697-3p leads to elevated SNCA112 mRNA levels, consequently promoting the formation of α-Syn aggregates. Furthermore, miR-4697-3p appears to play a role in increased cell death, potentially contributing to the pathogenesis of PD.


Subject(s)
MicroRNAs , Parkinson Disease , Polymorphism, Single Nucleotide , RNA, Messenger , alpha-Synuclein , Humans , Alleles , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cell Line, Tumor , CRISPR-Cas Systems/genetics , Gene Editing/methods , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , MicroRNAs/genetics , MicroRNAs/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839023

ABSTRACT

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Nerve Tissue Proteins , Oligodendroglia , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/genetics , Aged , Female , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Aged, 80 and over
4.
Neurología (Barc., Ed. impr.) ; 39(4): 321-328, May. 2024. graf
Article in English | IBECS | ID: ibc-232514

ABSTRACT

Introduction: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. Methods: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100 nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn.Results: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. Conclusions: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.(AU)


Introducción: El objetivo de este estudio fue comparar el efecto de cinco tipos de nanoliposomas PEGlados (PNL) sobre la fibrilización de la α-sinucleína (α-syn), la atenuación de la activación microglial y el silencio del gen synuclein alpha (SNCA), que codifica α-syn. Métodos: Para evaluar la inhibición de la fibrilización α-syn, utilizamos un ensayo in vitro estándar basado en la fluorescencia de la tioflavina T (ThT). A continuación, para evaluar la atenuación de la activación microglial, se cuantificó la concentración de factor de necrosis tumoral alpha (TNF-a) e interleucina 6 (IL-6)mediante ensayo ELISA en células de microglía BV2 tratadas con 100 nM de α-syn de A53T y PNL. Para determinar el silenciamiento del SNCA, se utilizó reacción en cadena de la polimerasa (PCR) en tiempo real y análisis de Western blot. Finalmente, la eficacia de las PNL se confirmó en un modelo de ratón transgénico que expresa α-syn humana. Resultados: El ensayo ThT mostró que tanto PNL1 como PNL2 inhibieron significativamente la fibrilización de α-syn. La prueba enzyme-linked immunosorbent assay (ELISA) también mostró que la producción de TNF-a e IL-6 se atenuó significativamente cuando las células microgliales se trataron con PNL1 o PNL2. También encontramos que el gen SNCA, tanto a nivel de ARN mensajero (ARNm) como de proteína, se silenciaba significativamente cuando las células de microglía BV2 se trataban con PNL1 o PNL2. Es importante destacar que la eficacia de PNL1 y PNL2 finalmente se confirmó in vivo en un modelo de ratón transgénico.Conclusiones: Los nuevos nanoliposomas multifuncionales probados en nuestro estudio inhiben la fibrilización α-syn, atenúan la activación microglial y silencian el gen SNCA. Nuestros hallazgos sugieren el potencial terapéutico de PNL1 y PNL2 para el tratamiento de sinucleinopatías.(AU)


Subject(s)
Humans , Synucleins , Liposomes , alpha-Synuclein/genetics , Microglia , Disease Models, Animal
6.
Neurologia (Engl Ed) ; 39(4): 321-328, 2024 May.
Article in English | MEDLINE | ID: mdl-38616059

ABSTRACT

INTRODUCTION: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. METHODS: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn. RESULTS: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. CONCLUSIONS: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.


Subject(s)
Microglia , alpha-Synuclein , Humans , Animals , Mice , alpha-Synuclein/genetics , Interleukin-6 , Disease Models, Animal , Mice, Transgenic
8.
Mol Neurobiol ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429622

ABSTRACT

Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson's disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2.

9.
Mol Brain ; 17(1): 14, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444039

ABSTRACT

Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.


Subject(s)
Synucleinopathies , alpha-Synuclein , Humans , MAP Kinase Signaling System , Neurons , Neurites
10.
ACS Nano ; 18(11): 7837-7851, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437635

ABSTRACT

Currently, there is a lack of effective treatment for Parkinson's disease (PD). In PD patients, aberrant methylation of SNCA (α-synuclein gene) has been reported and may be a potential therapeutic target. In this study, we established an epigenetic regulation platform based on an exosomal CRISPR intervention system. With the assist of focused ultrasound (FUS) opening the blood-brain barrier, engineered exosomes carrying RVG (rabies viral glycoprotein) targeting peptide, sgRNA (single guide RNA), and dCas9-DNMT3A (named RVG-CRISPRi-Exo) were efficiently delivered into the brain lesions and induced specific methylation of SNCA. In vivo, FUS combined with RVG-CRISPRi-Exo significantly improved motor performance, balance coordination, and neurosensitivity in PD mice, greatly down-regulated the elevation of α-synuclein (α-syn) caused by modeling, rescued cell apoptosis, and alleviated the progression of PD in mice. [18F]-FP-DTBZ imaging suggested that the synaptic function of the nigrostriatal pathway could be restored, which was conducive to the control of motor behavior in PD mice. Pyrosequencing results showed that RVG-CRISPRi-Exo could methylate CpG at specific sites of SNCA, and this fine-tuned editing achieved good therapeutic effects in PD model mice. In vitro, RVG-CRISPRi-Exo down-regulated SNCA transcripts and α-syn expression and relieved neuronal cell damage. Collectively, our findings provide a proof-of-principle for the development of targeted brain nanodelivery based on engineered exosomes and provide insights into epigenetic regulation of brain diseases.


Subject(s)
Exosomes , Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Epigenesis, Genetic/genetics , RNA, Guide, CRISPR-Cas Systems , Exosomes/metabolism
11.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542193

ABSTRACT

Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme ß-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.


Subject(s)
Depressive Disorder, Major , Glucosyltransferases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Depression , Depressive Disorder, Major/genetics , Gene Expression , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Mutation , Parkinson Disease/metabolism , Up-Regulation
12.
Mov Disord ; 39(6): 1060-1065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436488

ABSTRACT

BACKGROUND: SNCA p.V15A was reported in five families. In vitro models showed increased aggregation and seeding activity, mitochondrial damage, and apoptosis. Mutant flies had reduced flying ability and survival. OBJECTIVES: To clinically and functionally evaluate SNCA p.V15A in a large Italian family with Parkinson's disease (PD). METHODS: Genetic diagnosis was reached through next-generation sequencing. Pathogenicity was assessed by molecular dynamics simulation and biochemical studies on peripheral blood mononuclear cells (PBMCs). RESULTS: Five siblings carried SNCA p.V15A; three developed bradykinetic-rigid PD in their 50s with rapid motor progression and variable cognitive impairment. A fourth sibling had isolated mood disturbance, whereas the fifth was still unaffected at age 47. The mutant protein showed decreased stability and an unstable folded structure. Proband's PBMCs showed elevated total and phosphorylated α-synuclein (α-syn) levels and significantly reduced glucocerebrosidase activity. CONCLUSION: This study demonstrates accumulation of α-synV15A in PBMCs and strengthens the link between α-syn pathophysiology and glucocerebrosidase dysfunction. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Glucosylceramidase , Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Glucosylceramidase/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Male , Middle Aged , Female , Leukocytes, Mononuclear/metabolism , Pedigree , Mutation/genetics , Aged
13.
Alzheimers Dement ; 20(4): 3080-3087, 2024 04.
Article in English | MEDLINE | ID: mdl-38343132

ABSTRACT

INTRODUCTION: Genetic studies conducted over the past four decades have provided us with a detailed catalog of genes that play critical roles in the etiology of Alzheimer's disease (AD) and related dementias (ADRDs). Despite this progress, as a field we have had only limited success in incorporating this rich complexity of human AD/ADRD genetics findings into our animal models of these diseases. Our primary goal for the gene replacement (GR)-AD project is to develop mouse lines that model the genetics of AD/ADRD as closely as possible. METHODS: To do this, we are generating mouse lines in which the genes of interest are precisely and completely replaced in the mouse genome by their full human orthologs. RESULTS: Each model set consists of a control line with a wild-type human allele and variant lines that precisely match the human genomic sequence in the control line except for a high-impact pathogenic mutation or risk variant.


Subject(s)
Alzheimer Disease , Humans , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , tau Proteins/genetics , Mutation , Presenilin-1/genetics , Amyloid beta-Protein Precursor/genetics
14.
Biol Res ; 57(1): 2, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191441

ABSTRACT

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Subject(s)
COVID-19 , Interferon Type I , SARS-CoV-2 , alpha-Synuclein , Endothelial Cells , Humans , Cell Line , Virus Replication
15.
Behav Brain Res ; 460: 114781, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38043677

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative movement disorder, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of aggregated alpha synuclein (aSyn). The disease often presents with early prodromal non-motor symptoms and later motor symptoms. Diagnosing PD based purely on motor symptoms is often too late for successful intervention, as a significant neuronal loss has already occurred. Furthermore, the lower prevalence of PD in females is not well understood, highlighting the need for a better understanding of the interaction between sex and aSyn, the crucial protein for PD pathogenesis. Here, we conducted a comprehensive phenotyping study in 1- to 5-month-old mice overexpressing human aSyn gene (SNCA) in a bacterial artificial chromosome (BAC-SNCA). We demonstrate a SNCA gene-dose-dependent increase of human aSyn and phosphorylated aSyn, as well as a decrease in tyrosine hydroxylase expression in BAC-SNCA mice, with more pronounced effects in male mice. Phosphorylated aSyn was already found in the dorsal motor nucleus of the vagus nerve of 2-month-old mice. This was time-wise associated with significant gait altrations in BAC-SNCA mice as early as 1 and 3 months of age using CatWalk gait analysis. Furthermore, anxiety-related behavioral tests revealed an increase in anxiety levels in male BAC-SNCA mice. Finally, 5-month-old male BAC-SNCA mice exhibited a SNCA gene-dose-dependent elevation in energy expenditure in automated home-cage monitoring. For the first time, these findings describe early-onset, sex- and gene-dose-dependent, aSyn-mediated disturbances in BAC-SNCA mice, providing a model for sex-differences, early-onset neuropathology, and prodromal symptoms of PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , alpha-Synuclein , Animals , Female , Humans , Male , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Chromosomes, Artificial, Bacterial/metabolism , Dopaminergic Neurons/metabolism , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Vagus Nerve/metabolism
16.
Mov Disord ; 39(2): 339-349, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014556

ABSTRACT

BACKGROUND: Recent studies have advanced our understanding of the genetic drivers of Parkinson's disease (PD). Rare variants in more than 20 genes are considered causal for PD, and the latest PD genome-wide association study (GWAS) identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused. OBJECTIVE: The aim was to identify genetic risk factors for PD in a South Asian population. METHODS: A total of 674 PD subjects predominantly with age of onset (AoO) ≤50 years (encompassing juvenile, young, or early-onset PD) were recruited from 10 specialty movement disorder centers across India over a 2-year period; 1376 control subjects were selected from the reference population GenomeAsia, Phase 2. We performed various case-only and case-control genetic analyses for PD diagnosis and AoO. RESULTS: A genome-wide significant signal for PD diagnosis was identified in the SNCA region, strongly colocalizing with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. Gene burden studies of rare, predicted deleterious variants identified BSN, encoding the presynaptic protein Bassoon that has been previously associated with neurodegenerative disease. CONCLUSIONS: This study constitutes the largest genetic investigation of PD in a South Asian population to date. Future work should seek to expand sample numbers in this population to enable improved statistical power to detect PD genes in this understudied group. © 2023 Denali Therapeutics and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Middle Aged , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Parkinson Disease/diagnosis , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Mutation
17.
Biol. Res ; 57: 2-2, 2024. ilus, graf
Article in English | LILACS | ID: biblio-1550057

ABSTRACT

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Subject(s)
Humans , Interferon Type I , alpha-Synuclein , SARS-CoV-2 , COVID-19 , Virus Replication , Cell Line , Endothelial Cells
18.
Mol Ther Nucleic Acids ; 35(1): 102084, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38130373

ABSTRACT

Overexpression of SNCA has been implicated in the pathogenesis of synucleinopathies, particularly Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While PD and DLB share some clinical and pathological similarities, each disease presents distinct characteristics, including the primary affected brain region and neuronal type. We aimed to develop neuronal-type-specific SNCA-targeted epigenome therapies for synucleinopathies. The system is based on an all-in-one lentiviral vector comprised of CRISPR-dSaCas9 and guide RNA (gRNA) targeted at SNCA intron 1 fused with a synthetic repressor molecule of Krüppel-associated box (KRAB)/ methyl CpG binding protein 2 (MeCp2) transcription repression domain (TRD). To achieve neuronal-type specificity for dopaminergic and cholinergic neurons, the system was driven by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) promoters, respectively. Delivering the system into human induced pluripotent stem cell (hiPSC)-derived dopaminergic and cholinergic neurons from a patient with the SNCA triplication resulted in efficient and neuronal-type-specific downregulation of SNCA-mRNA and protein. Furthermore, the reduction in SNCA levels by the gRNA-dSaCas9-repressor system rescued disease-related cellular phenotypes including Ser129-phophorylated α-synuclein, neuronal viability, and mitochondrial dysfunction. We established a novel neuronal-type-specific SNCA-targeted epigenome therapy and provided in vitro proof of concept using human-based disease models. Our results support the therapeutic potential of our system for PD and DLB and provide the foundation for further preclinical studies in animal models toward investigational new drug (IND) enablement and clinical trials.

19.
Article in English | MEDLINE | ID: mdl-38145277

ABSTRACT

Background: Deep brain stimulation (DBS) has shown some efficacy in monogenic Parkinson's disease; however, data about its long-term benefit in SNCA mutations remain scarce. Case report: Subthalamic nucleus DBS was implanted in a 60-year-old female patient with Parkinson's disease due to SNCA duplication. One year later, the patient walked unassisted and was independent for most activities of daily living, without requiring any anti-Parkinson's medication. Discussion: To our knowledge, four cases of bilateral subthalamic DBS have been reported previously. This case report adds an additional body of evidence of improved one-year outcome after DBS surgery in a patient with SNCA mutation. Highlights: This is a case report of a patient with genetic parkinsonism due to SNCA duplication undergoing bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) surgery. The outcome was favorable one year after implantation, with the patient coming off all anti-Parkinson's medications. This further clarifies DBS outcome in monogenic Parkinson's disease.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Female , Humans , Middle Aged , Activities of Daily Living , alpha-Synuclein/therapeutic use , Follow-Up Studies , Mutation/genetics , Parkinson Disease/therapy , Parkinson Disease/drug therapy , Treatment Outcome
20.
Heliyon ; 9(12): e21125, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125428

ABSTRACT

Intraneuronal inclusions of alpha-synuclein (α-synuclein, α-syn) are commonly found in the brain of patients with Parkinson's disease (PD). The pathogenesis of the abundant α-syn protein in the blood has been extensively studied to understand its properties better. In recent years, peptidome analysis has received increasing attention. In this study, we identified and analyzed serum peptides from wild-type (WT) and the (Thy-1)-h[A30P] alpha-synuclein transgenic mice (SNCA-A30P mice) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). One thousand eight hundred fifty-six peptides from 771 proteins were analyzed. Among them, 151 peptides from 107 proteins were significantly differentially expressed. The glycoprotein VI platelet pathway (GP6) was the pathway's most significant differentially expressed signaling pathway. Cleavage sites of the differentially expressed peptides may reflect protease distribution and activity. We selected the most significantly differentially expressed peptide, VGGDPI, and found that it contained cathepsin K (Ctsk) and trypsin-1 cleavage sites, suggesting that Ctsk and trypsin-1 may be key peptidases in PD. α-syn is a protein associated with the pathogenesis of PD. mutations in several genes, including SNCA, which encodes α-syn, are associated with the development of PD. Bioinformatics analysis of the physiological pathways related to SNCA genes and apoptosis genes found the five most markedly up-regulated proteins: formin homology 2 domain-containing 1 (FHOD1), insulin receptor substrate 1(IRS1), TRPM8 channel-associated factor 1 (TCAF1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and interleukin-16 (IL-16). Therefore, the differentially expressed peptides in the five precursor protein domains may be potential bioactive peptides associated with α-syn and apoptosis. This study provides a validated peptidomics profile of SNCA-A30P mice and identifies potentially bioactive peptides linked to α-syn and apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...