Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 359
Filter
1.
J Environ Manage ; 365: 121681, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963966

ABSTRACT

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.

2.
Anal Bioanal Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958703

ABSTRACT

The study of glycoproteomics presents a set of unique challenges, primarily due to the low abundance of glycopeptides and their intricate heterogeneity, which is specific to each site. Glycoproteins play a crucial role in numerous biological functions, including cell signaling, adhesion, and intercellular communication, and are increasingly recognized as vital markers in the diagnosis and study of various diseases. Consequently, a quantitative approach to glycopeptide research is essential. One effective strategy to address this need is the use of multiplex glycopeptide labeling. By harnessing the synergies of 15N metabolic labeling via the isotopic detection of amino sugars with glutamine (IDAWG) technique for glycan parts and tandem mass tag (TMT)pro labeling for peptide backbones, we have developed a method that allows for the accurate quantification and comparison of multiple samples simultaneously. The adoption of the liquid chromatography-synchronous precursor selection (LC-SPS-MS3) technique minimizes fragmentation interference, enhancing data reliability, as shown by a 97% TMT labeling efficiency. This method allows for detailed, high-throughput analysis of 32 diverse samples from 231BR cell lines, using both 14N and 15N glycopeptides at a 1:1 ratio. A key component of our methodology was the precise correction for isotope and TMTpro distortions, significantly improving quantification accuracy to less than 5% distortion. This breakthrough enhances the efficiency and accuracy of glycoproteomic studies, increasing our understanding of glycoproteins in health and disease. Its applicability to various cancer cell types sets a new standard in quantitative glycoproteomics, enabling deeper investigation into glycopeptide profiles.

3.
Materials (Basel) ; 17(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894000

ABSTRACT

Novel Nb-Si-based alloys with heterogeneous layers that have the same composition (Nb-16 at.%Si) but different phase morphologies were designed in this work. Heterogeneous layered structure (HLS) was successfully fabricated in Nb-16Si alloys by layering composite powders after various degrees of mechanical alloying (6 h, 12 h, 18 h, and 24 h) alternately and subsequent spark plasma sintering (SPS). The influence of HLS on the fracture behavior at both room and elevated temperature was investigated via single-edge notched bending (SENB) and high-temperature compression, respectively. The results show that the diversified HLS is obtained by combining hard layers containing fine equiaxed crystals and/or soft ones with coarse lamellar niobium solid solution (Nbss). By affecting the crack propagation in SENB, HLS is favorable for improving the fracture toughness and exhibits a significant increase compared with the corresponding homogenous microstructure. Moreover, for the same HLS, a more excellent performance is achieved when the initial crack is located in the soft layer and extended across the interface to the hard one through crack bridging, crack deflection, crack branching, and shielding effect. Fracture starts in the soft layer (from powders of ball-milled for 12 h) of a 12-24 alloy, and a maximum KQ value (14.89 MPa·mm1/2) is consequently obtained, which is 33.8% higher than that of the homogeneous Nb-16Si alloy. Furthermore, the heterogeneous layered alloys display superior high-temperature compression strength, which is attributable to the dislocation multiplication and fine-grained structure. The proposed strategy in this study offers a promising route for fabricating Nb-Si-based alloys with optimized and improved mechanical properties to meet practical applications.

4.
J Hazard Mater ; 474: 134844, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852252

ABSTRACT

With advances in plastic resource utilization technologies, polystyrene (PS) and sulfonated polystyrene (SPS) microplastics continue to be produced and retained in environmental media, potentially posing greater environmental risks. These plastics, due to their different physicochemical properties, may have different environmental impacts when compounded with other pollutants. The objective of this study was to investigate the combined toxic effects of PS and SPS on wheat using cadmium (Cd) as a background contaminant. The results demonstrated that Cd significantly impeded the normal growth of wheat by disrupting root development. Both PS and SPS exhibited hormesis at low concentrations and promoted wheat growth. Under combined toxicity, PS reduced oxidative stress and promoted the uptake of essential metal elements in wheat. Additionally, KEGG pathway analysis revealed that PS facilitated the repair of Cd-induced blockage of the TCA cycle and glutathione metabolism. However, high concentrations of SPS in combined toxicity not only enhanced oxidative stress and interfered with the uptake of essential metal elements, but also exacerbated the blocked TCA cycle and interfered with pyrimidine metabolism. These differences are related to the different stability (Zeta potential, Hydrodynamic particle size) of the two microplastics in the aquatic environment and their ability to carry heavy metal ions, especially Cd. The results of this study provide important insights into understanding the effects of microplastics on crops in the context of Cd contamination and their environmental and food safety implications.


Subject(s)
Cadmium , Oxidative Stress , Polystyrenes , Triticum , Polystyrenes/toxicity , Triticum/drug effects , Triticum/growth & development , Triticum/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Microplastics/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Water Pollutants, Chemical/toxicity , Soil Pollutants/toxicity
5.
Environ Sci Technol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772857

ABSTRACT

Thorium-232 (Th), the most abundant naturally occurring nuclear fuel, has been identified as a sustainable source of energy. In view of its large-scale utilization and human evidence of lung disorders and carcinogenicity, it is imperative to understand the effect of Th exposure on lung cells. The present study investigated the effect of Th-dioxide (1-100 µg/mL, 24-48 h) on expression of surfactant proteins (SPs) (SP-A, SP-B, SP-C, and SP-D, which are essential to maintain lung's surface tension and host-defense) in human lung cells (WI26 and A549), representative of alveolar cell type-I and type-II, respectively. Results demonstrated the inhibitory effect of Th on transcriptional expression of SP-A, SP-B, and SP-C. However, Th promoted the mRNA expression of SP-D in A549 and reduced its expression in WI26. To a significant extent, the effect of Th on SPs was found to be in accordance with their protein levels. Moreover, Th exposure altered the extracellular release of SP-D/A from A549, which remained unaltered in WI26. Our results suggested the differential role of oxidative stress and ATM and HSP90 signaling in Th-induced alterations of SPs. These effects of Th were found to be consistent in lung tissues of mice exposed to Th aerosols, suggesting a potential role of SPs in Th-associated lung disorders.

6.
Materials (Basel) ; 17(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793368

ABSTRACT

The aim of this work is to investigate the bonding properties of the ceramic dispersion-strengthened 316L (CDS-316L) composites with the reference 316L stainless steel (REF-316L) using a Gleeble 3800 physical simulator. In previous works, two different composites, REF-316L and 316L, with 1 wt% Al2O3 composite (CDS-316L) have been prepared by spark plasma sintering (SPS). In the present work, these specimens were diffusion-bonded using the following parameters: a temperature range of 950-1000 °C and a uniaxial pressure of 20-30 MPa. It was observed that the deformation of the CDS-316L during the uniaxial bonding process was higher compared to the 316L steel rods. The addition of alumina particles increased the micro-hardness of the 316L steel. The samples were broken in the CDS-316L zones, not at the diffusion-bonded interfaces. No diffusion zones have been observed within the investigated magnification for all composites, where the interfaces between the different specimens were well defined.

7.
Materials (Basel) ; 17(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38793446

ABSTRACT

The paper presents the influence of the temperature of the sintering process on the microstructure and selected properties of boron carbide/TiB2/SiC composites obtained in situ by spark plasma sintering (SPS). The homogeneous mixture of boron carbide and 5% vol. Ti5Si3 micropowders were used as the initial material. Spark plasma sintering was conducted at 1700 °C, 1800 °C, and 1900 °C for 10 min after the initial pressing at 35 MPa. The heating and cooling rate was 200 °C/min. The obtained boron carbide composites were subjected to density measurement, an analysis of the chemical and phase composition, microstructure examination, and dry friction-wear tests in ball-on-disc geometry using WC as a counterpart material. The phase compositions of the produced composites differed from the composition of the initial powder mixture. Instead of titanium silicide, two new phases appeared: TiB2 and SiC. The complete disappearance of Ti5Si3 was accompanied by a decrease in the boron carbide content of the stoichiometry formula B13C2 and an increase in the content of TiB2, while the SiC content was almost constant. The relative density of the obtained boron carbide composites, as well as their hardness and resistance to wear, increased with the sintering temperature and TiB2 content. Unfortunately, the reactions occurring during sintering did not allow us to obtain composites with high density and hardness. The relative density was 76-85.2% of the theoretical one, while the Vickers hardness was in the range of 4-12 GPa. The mechanism wear of boron carbide composites tested in friction contact with WC was abrasive. The volumetric wear rate (Wv) of composites decreased with increasing sintering temperature and TiB2 content. The average value of coefficient of friction (CoF) was in the range of 0.54-0.61, i.e., it did not differ significantly from the value for B4C sinters.

8.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38539903

ABSTRACT

Lead (Pb), a heavy metal environmental pollutant, poses a threat to the health of humans and birds. Inflammation is one of the most common pathological phenomena in the case of illness and poisoning. However, the underlying mechanisms of inflammation remain unclear. The cerebellum and the thalamus are important parts of the nervous system. To date, there have been no reports of Pb inducing inflammation in animal cerebellums or thalami. Selenium (Se) can relieve Pb poisoning. Therefore, we aimed to explore the mechanism by which Se alleviates Pb toxicity to the cerebellums and thalami of chickens by establishing a chicken Pb or/and Se treatment model. Our results demonstrated that exposure to Pb caused inflammatory damage in cerebellums and thalami, evidenced by the characteristics of inflammation, the decrease in anti-inflammatory factors (interleukin (IL)-2 and interferon-γ (INF-γ)), and the increase in pro-inflammatory factors (IL-4, IL-6, IL-12ß, IL-17, and nitric oxide (NO)). Moreover, we found that the IL-2/IL-17-NO pathway took part in Pb-caused inflammatory injury. The above findings were reversed by the supplementation of dietary Se, meaning that Se relieved inflammatory damage caused by Pb via the IL-2/IL-17-NO pathway. In addition, an up-regulated oxidative index malondialdehyde (MDA) and two down-regulated antioxidant indices (glutathione (GSH) and total antioxidant capacity (TAC)) were recorded after the chickens received Pb stimulation, indicating that excess Pb caused an oxidant/antioxidant imbalance and oxidative stress, and the oxidative stress mediated inflammatory damage via the GSH-IL-2 axis. Interestingly, exposure to Pb inhibited four glutathione peroxidase (GPx) family members (GPx1, GPx2, GPx3, and GPx4), three deiodinase (Dio) family members (Dio1, Dio2, and Dio3), and fifteen other selenoproteins (selenophosphate synthetase 2 (SPS2), selenoprotein (Sel)H, SelI, SelK, SelM, SelO, SelP1, SelPb, SelS, SelT, SelU, and selenoprotein (Sep)n1, Sepw1, Sepx1, and Sep15), suggesting that Pb reduced antioxidant capacity and resulted in oxidative stress involving the SPS2-GPx1-GSH pathway. Se supplementation, as expected, reversed the changes mentioned above, indicating that Se supplementation improved antioxidant capacity and mitigated oxidative stress in chickens. For the first time, we discovered that the SPS2-GPx1-GSH-IL-2/IL-17-NO pathway is involved in the complex inflammatory damage mechanism caused by Pb in chickens. In conclusion, this study demonstrated that Se relieved Pb-induced oxidative stress and inflammatory damage via the SPS2-GPx1-GSH-IL-2/IL-17-NO pathway in the chicken nervous system. This study offers novel insights into environmental pollutant-caused animal poisoning and provides a novel theoretical basis for the detoxification effect of Se against oxidative stress and inflammation caused by toxic pollutants.

9.
Materials (Basel) ; 17(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38541576

ABSTRACT

The interest in the Spark Plasma Sintering (SPS) technique has continuously increased over the last few years. This article shows the possibility of the development of an SPS device used for material processing and synthesis in both scientific and industrial applications and aims to present manufacturing methods and the versatility of an SPS device, presenting examples of processing Arc-Melted- (half-Heusler, cobalt triantimonide) and Self-propagating High-temperature Synthesis (SHS)-synthesized semiconductor (bismuth telluride) materials. The SPS system functionality development is presented, the purpose of which was to broaden the knowledge of the nature of SPS processes. This approach enabled the precise design of material sintering processes and also contributed to increasing the repeatability and accuracy of sintering conditions.

10.
Front Psychol ; 15: 1357808, 2024.
Article in English | MEDLINE | ID: mdl-38505360

ABSTRACT

Introduction: As captured by the individual trait of Sensory Processing Sensitivity (SPS), highly sensitive children perceive, process, and responds more strongly to stimuli. This increased sensitivity may make more demanding the process of regulating and managing emotions. Yet, developmental psychology literature also showed that other variables, as those related to the rearing environment, are likely to contribute to the process of regulating emotions. With the current contribution, we aim to bridge two lines of research, that of attachment studies and that of SPS, by investigating the additive and interactive contribution of SPS and internal working models of attachment representations on emotion regulation competencies in school-aged children. Method: Participants were N = 118 Italian children (mean age: 6.5, SD = 0.58 years, and 51.8% female) with their mothers. Children's positive attachment representations were rated observationally through the Manchester Child Attachment Story Task procedure during an individual session at school. Mothers reported on children SPS trait and emotion regulation competencies completing the Highly Sensitive Child Scale-parent report and the Emotion Regulation Checklist. We performed and compared a series of main and interaction effect models. Results: SPS was not directly associated with emotion regulation but it was significantly associated with positive attachment representations in predicting emotion regulation. Highly sensitive children showed poorer emotion regulation when the internalized representations were low in maternal warmth and responsiveness. When driven by sensitive and empathic attachment representation, highly sensitive children showed better emotion regulation than less-sensitive peers, suggesting a for better and for worse effect. Discussion: Highly sensitive children are not only more vulnerable to adversities but also show better emotion regulation competencies when supported by positive internal working models of attachment relationships. Overall, findings shed light on the link between SPS and attachment and suggest that working for promoting secure attachment relationships in parent-child dyads may promote better emotion regulation competences, particularly in highly sensitive children.

11.
Biol Sex Differ ; 15(1): 20, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409102

ABSTRACT

BACKGROUND: Following exposure to traumatic stress, women are twice as likely as men to develop mood disorders. Yet, individual responses to such stress vary, with some people developing stress-induced psychopathologies while others exhibit resilience. The factors influencing sex-related disparities in affective disorders as well as variations in resilience remain unclear; however, emerging evidence suggests differences in the gut microbiota play a role. In this study, using the single prolonged stress (SPS) model of post-traumatic stress disorder, we investigated pre- and post-existing differences in microbial composition, functionality, and metabolites that affect stress susceptibility or resilience in each sex. METHODS: Male and female Sprague-Dawley rats were randomly assigned to control or SPS groups. Two weeks following SPS, the animals were exposed to a battery of behavioral tests and decapitated a day later. Based on their anxiety index, they were further categorized as SPS-resilient (SPS-R) or SPS-susceptible (SPS-S). On the day of dissection, cecum, and selected brain tissues were isolated. Stool samples were collected before and after SPS, whereas urine samples were taken before and 30 min into the SPS. RESULTS: Before SPS exposure, the sympathoadrenal axis exhibited alterations within male subgroups only. Expression of tight junction protein claudin-5 was lower in brain of SPS-S males, but higher in SPS-R females following SPS. Across the study, alpha diversity remained consistently lower in males compared to females. Beta diversity revealed distinct separations between male and female susceptible groups before SPS, with this separation becoming evident in the resilient groups following SPS. At the genus level, Lactobacillus, Lachnospiraceae_Incertae_Sedis, and Barnesiella exhibited sex-specific alterations, displaying opposing abundances in each sex. Additionally, sex-specific changes were observed in microbial predictive functionality and targeted functional modules both before and after SPS. Alterations in the microbial short-chain fatty acids (SCFAs), were also observed, with major and minor SCFAs being lower in SPS-susceptible males whereas branched-chain SCFAs being higher in SPS-susceptible females. CONCLUSION: This study highlights distinct pre- and post-trauma differences in microbial composition, functionality, and metabolites, associated with stress resilience in male and female rats. The findings underscore the importance of developing sex-specific therapeutic strategies to effectively address stress-related disorders. Highlights SPS model induces divergent anxiety and social behavioral responses to traumatic stress in both male and female rodents. SPS-resilient females displayed less anxiety-like behavior and initiated more interactions towards a juvenile rat than SPS-resilient males. Sex-specific pre-existing and SPS-induced differences in the gut microbial composition and predictive functionality were observed in susceptible and resilient rats. SPS-resilient males displayed elevated cecal acetate levels, whereas SPS-susceptible females exhibited heightened branched-chain SCFAs.


After experiencing traumatic stress, women are more likely than men to develop mood disorders like anxiety and depression. However, people's responses to trauma vary­some develop mental health issues while others remain resilient. Recent research suggests that the bacteria in the gut might play a role in these differences. In this study, using a rat model of post-traumatic stress disorder (PTSD), we investigated whether there are differences in gut bacteria between male and female rats before and after stress exposure. The study involved two groups of rats­one not exposed to stress (control) and the other exposed to a traumatic event (stressed). The rats' behavior was evaluated using different tests to determine who among the males and females were vulnerable to stress and who were resilient. We found that even before the stress, there were differences in the types of bacteria and their functions in the guts of male and female rats. These differences were also linked to how they responded to stress. Interestingly, the bacteria that were more abundant in resilient males were found to be more abundant in vulnerable females. Additionally, the traumatic stress affected these bacteria and the substances they produce differently in males and females. In essence, our study demonstrates that the types of gut bacteria, their functions, and their products contribute to stress resilience in different ways for male and female rats. This insight suggests that tailored treatments specifically targeting these differences could be specially effective in treating stress-related issues.


Subject(s)
Resilience, Psychological , Stress Disorders, Post-Traumatic , Humans , Male , Rats , Female , Animals , Rats, Sprague-Dawley , Anxiety , Brain/metabolism
12.
J Mass Spectrom ; 59(2): e5000, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38263874

ABSTRACT

This study describes a novel application for sandpaper spray ionization mass spectrometry (SPS-MS), to examine the surface of maple tree (Acer sp.) leaves. By comparing mass spectrometry fingerprints, healthy leaves from those infected with powdery mildew and Rhytisma acerinum were distinguished. Leaves were grated with sandpaper, cut into triangles, and placed before the mass spectrometer, with the addition of a methanol-formic acid solution. Multivariate statistical analysis categorized the samples into three groups. Overall, SPS-MS effectively analyzed leaves with infectious microorganisms, potentially aiding in the creation of fungal identification databanks.


Subject(s)
Acer , Fungi , Databases, Factual , Mass Spectrometry , Methanol
13.
Adv Simul (Lond) ; 9(1): 4, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212828

ABSTRACT

INTRODUCTION: Simulated patients (SPs) play an instrumental role in teaching communication skills and enhancing learning outcomes. Prior research mostly focused on the SP's contribution to students' learning outcomes by providing feedback afterwards. A detailed understanding of the contribution of the SP during SP-student encounters is currently lacking although the majority of the interaction between SPs and students occurs during the SP-student encounter. Therefore, this study focuses on how SPs see their contribution to meaningful student learning experiences during SP-student encounters. METHODS: We interviewed fifteen simulated patients from one institution. We explored their perspectives on meaningful learning experiences during SP-student encounters through in-depth, semi-structured interviews and analyzed using thematic analysis. RESULTS: SPs view their contribution to meaningful student learning during SP-student encounters from two perspectives. A collective perspective as a member of the community of SPs and an individual perspective. From the collective perspective, SPs believe that the fact that students deal with multiple varied SP-student encounters over time is of value for meaningful learning. From the individual perspective, we noticed that SPs think, act, and react from three different positions. First, as the patient in the role description, second, as a teaching aid and third, as an individual with personal experiences, beliefs, and values. SPs mentioned that the ratio between these different positions can vary within and between encounters. CONCLUSIONS: According to SPs, we should value the variation between SPs, thereby creating meaningful variation in authentic interactions in SP-student encounters. SPs should be allowed to act and react from different positions during SP-student encounters, including their role description, as teaching aid, and based on their own experiences. In this way, SP-student encounters are optimized to contribute to meaningful student learning through authenticity.

14.
J Neurol ; 271(1): 254-262, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37682316

ABSTRACT

Stiff-person syndrome (SPS) is a rare autoimmune neurological disorder characterized by high titers of antibodies against glutamic acid decarboxylase (GAD) causing impaired GABAergic inhibitory neurotransmission. To date, there is not a defined therapy for such condition, but immunomodulating therapies, such as plasma exchange, intravenous immunoglobulins, and rituximab, have been widely used in clinical practice. However, the efficacy and tolerability of these treatments is not well established. Efgartigimod, a new neonatal Fc receptor (FcRn) blocker, is a human IgG1 antibody Fc fragment engineered with increased affinity for FcRn binding, leading to a reduction in IgGs levels, including pathogenic IgG autoantibody showing promising results in neurological autoimmune disorders and has been approved for the treatment of AChR-seropositive generalized myasthenia gravis (MG). In this study, we report and describe the first data on treatment with efgartigimod in three patients affected by both AChR-seropositive generalized MG and anti-GAD-seropositive SPS. Patients were followed since the start of efgartigimod and for the whole treatment period (12 weeks). MG symptoms were assessed with the "MG activity of daily living score" and the Quantitative Myasthenia Gravis score, while SPS ones were assessed with the "SPS activity of daily living score"; muscle strength was assessed with the Medical Research Council Sum score; the overall disability from MG and SPS was assessed by the modified Rankin Scale. All patients showed an improvement in symptoms of both SPS and MG after 2 cycles of treatment. Our data suggest that efgartigimod may be considered as a candidate drug for SPS and other autoantibody-mediated neurological disorders.


Subject(s)
Myasthenia Gravis , Nervous System Diseases , Stiff-Person Syndrome , Infant, Newborn , Humans , Receptors, Fc , Myasthenia Gravis/drug therapy , Immunoglobulin Fc Fragments/therapeutic use , Autoantibodies
15.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37881876

ABSTRACT

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Subject(s)
Protein Serine-Threonine Kinases , Pseudohypoaldosteronism , Animals , Mice , Furosemide , Mice, Inbred C57BL , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , Thiazides
16.
Materials (Basel) ; 16(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38068138

ABSTRACT

Al-Si-Mg alloy has excellent casting performance due to its high silicon content, but the coarse eutectic silicon phase can lead to a decrease in its mechanical properties. Samples of AlSi10Mg alloy were prepared by using a spark plasma sintering method, and it was found that sintering temperature has a significant impact on the grain size, eutectic silicon size and wear and corrosion properties after heat treatment. At a sintering temperature of 525 °C, the alloy exhibits the best wear performance with an average friction coefficient of 0.29. This is attributed to the uniform precipitation of fine eutectic silicon phases, significantly improving wear resistance and establishing adhesive wear as the wear mechanism of AlSi10Mg alloy at room temperature. The electrochemical performance of AlSi10Mg sintered at 500 °C is the best, with Icorr and Ecorr being 1.33 × 10-6 A·cm-2 and -0.57 V, respectively. This is attributed to the refinement of grain size and eutectic silicon size, as well as the appropriate Si volume fraction. Therefore, optimizing the sintering temperature can effectively improve the performance of AlSi10Mg alloy.

17.
Materials (Basel) ; 16(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068198

ABSTRACT

Copper matrix composites with zirconium diboride (ZrB2) were synthesised by ball milling and consolidated by Spark Plasma Sintering (SPS). Characterisations of the ball-milled composite powders were performed by scanning electron microscopy (SEM), X-ray diffraction, and measurement of the particle size distribution. The effect of the sintering temperature (1123 K, 1173 K, and 1223 K) and pressure (20 MPa and 35 MPa) on the density, porosity, and Young's modulus was investigated. The relationship between the change of Orb content and physical, mechanical, and electrical properties was studied. Experimental data showed that the properties of Cu-Orb composites depended significantly on the SPS sintering conditions. The optimal sintering temperature was 1223 K with a pressure of 35 MPa. Composites exhibited a high degree of consolidation. For these materials, the apparent density was in the range of 93-97%. The results showed that the higher content of Orb in the copper matrix was responsible for the improvement in Young's modulus and hardness with the reduction of the conductivity of sintered composites. The results showed that Young's modulus and the hardness of the Cu 20% Orb composites were the highest, and were 165 GPa and 174 HV0.3, respectively. These composites had the lowest relative electrical conductivity of 17%.

18.
Mol Biotechnol ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102344

ABSTRACT

The melon (Cucumis melo L.), a fruit crop of significant economic importance, is prized for its sweet and succulent fruits. Among variations of soluble sugars, sucrose, a disaccharide composed of glucose and fructose, is a key carbohydrate present in melon fruits. The sucrose content also determines the quality and value of melon fruits. However, the accumulation of sucrose is a complex process involving the coordinated actions of multiple enzymes and pathways. In melon species, there are two types of fruit ripening modes including climacteric and non-climacteric. Due to this biological characteristic, melon is emerging as a good model for studying the ripening process. Ethylene is a well-known phytohormone regulating the ripening of climacteric fruits. Recently, a few studies have elucidated a primary ethylene-dependent signaling pathway of sucrose accumulation in melon fruits. This review aims to provide a careful overview of the sucrose biosynthesis pathways in melon. It is essential to understand the molecular mechanisms of sucrose metabolism as well as its regulation mode. The information will be useful for developing molecular marker-assisted breeding as well as genetic engineering strategies aiming to improve the sucrose content and quality of melon fruits. In addition, even though limited, the impacts of genetic background and environmental factors on sucrose accumulation in melon fruits are also discussed. These are useful for practical applications in melon cultivation and quality management.

19.
J Proteome Res ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962907

ABSTRACT

Sample multiplexing-based proteomic strategies rely on fractionation to improve proteome coverage. Tandem mass tag (TMT) experiments, for example, can currently accommodate up to 18 samples with proteins spanning several orders of magnitude, thus necessitating fractionation to achieve reasonable proteome coverage. Here, we present a simple yet effective peptide fractionation strategy that partitions a pooled TMT sample with a two-step elution using a strong anion-exchange (SAX) spin column prior to gradient-based basic pH reversed-phase (BPRP) fractionation. We highlight our strategy with a TMTpro18-plex experiment using nine diverse human cell lines in biological duplicate. We collected three data sets, one using only BPRP fractionation and two others of each SAX-partition followed by BPRP. The three data sets quantified a similar number of proteins and peptides, and the data highlight noticeable differences in the distribution of peptide charge and isoelectric point between the SAX partitions. The combined SAX partition data set contributed 10% more proteins and 20% more unique peptides that were not quantified by BPRP fractionation alone. In addition to this improved fractionation strategy, we provide an online resource of relative abundance profiles for over 11,000 proteins across the nine human cell lines, as well as two additional experiments using ovarian and pancreatic cancer cell lines.

20.
Front Neurol ; 14: 1209302, 2023.
Article in English | MEDLINE | ID: mdl-37859648

ABSTRACT

Stiff person syndrome (SPS) is a rare central nervous system disorder associated with malignancies. In this review, we retrieved information from PubMed, up until August 2023, using various search terms and their combinations, including SPS, stiff person syndrome spectrum disorders (SPSSDs), paraneoplastic, cancer, and malignant tumor. Data from peer-reviewed journals printed in English were organized to explain the possible relationships between different carcinomas and SPSSD subtypes, as well as related autoantigens. From literature searching, it was revealed that breast cancer was the most prevalent carcinoma linked to SPSSDs, followed by lung cancer and lymphoma. Furthermore, classic SPS was the most common SPSSD subtype, followed by stiff limb syndrome and progressive encephalomyelitis with rigidity and myoclonus. GAD65 was the most common autoantigen in patients with cancer and SPSSDs, followed by amphiphysin and GlyR. Patients with cancer subtypes might have multiple SPSSD subtypes, and conversely, patients with SPSSD subtypes might have multiple carcinoma subtypes. The first aim of this review was to highlight the complex nature of the relationships among cancers, autoantigens, and SPSSDs as new information in this field continues to be generated globally. The adoption of an open-minded approach to updating information on new cancer subtypes, autoantigens, and SPSSDs is recommended to renew our database. The second aim of this review was to discuss SPS animal models, which will help us to understand the mechanisms underlying the pathogenesis of SPS. In future, elucidating the relationship among cancers, autoantigens, and SPSSDs is critical for the early prediction of cancer and discovery of new therapeutic modalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...