Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.220
Filter
1.
Cell Biosci ; 14(1): 91, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997783

ABSTRACT

BACKGROUND: Nor1/NR4A3 is a member of the NR4A subfamily of nuclear receptors that play essential roles in regulating gene expression related to development, cell homeostasis and neurological functions. However, Nor1 is still considered an orphan receptor, as its natural ligand remains unclear for mediating transcriptional activation. Yet other activation signals may modulate Nor1 activity, although their precise role in the development and maintenance of the nervous system remains elusive. METHODS: We used transcriptional reporter assays, gene expression profiling, protein turnover measurement, and cell growth assays to assess the functional relevance of Nor1 and SUMO-defective variants in neuronal cells. SUMO1 and SUMO2 conjugation to Nor1 were assessed by immunoprecipitation. Tubulin stability was determined by acetylation and polymerization assays, and live-cell fluorescent microscopy. RESULTS: Here, we demonstrate that Nor1 undergoes SUMO1 conjugation at Lys-89 within a canonical ψKxE SUMOylation motif, contributing to the complex pattern of Nor1 SUMOylation, which also includes Lys-137. Disruption of Lys-89, thereby preventing SUMO1 conjugation, led to reduced Nor1 transcriptional competence and protein stability, as well as the downregulation of genes involved in cell growth and metabolism, such as ENO3, EN1, and CFLAR, and in microtubule cytoskeleton dynamics, including MAP2 and MAPT, which resulted in reduced survival of neuronal cells. Interestingly, Lys-89 SUMOylation was potentiated in response to nocodazole, a microtubule depolymerizing drug, although this was insufficient to rescue cells from microtubule disruption despite enhanced Nor1 gene expression. Instead, Lys-89 deSUMOylation reduced the expression of microtubule-severing genes like KATNA1, SPAST, and FIGN, and enhanced α-tubulin cellular levels, acetylation, and microfilament organization, promoting microtubule stability and resistance to nocodazole. These effects contrasted with Lys-137 SUMOylation, suggesting distinct regulatory mechanisms based on specific Nor1 input SUMOylation signals. CONCLUSIONS: Our study provides novel insights into Nor1 transcriptional signaling competence and identifies a hierarchical mechanism whereby selective Nor1 SUMOylation may govern neuronal cytoskeleton network dynamics and resistance against microtubule disturbances, a condition strongly associated with neurodegenerative diseases.

2.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963422

ABSTRACT

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Subject(s)
Cyclic AMP , Guanine Nucleotide Exchange Factors , Sumoylation , Ubiquitin-Conjugating Enzymes , rap1 GTP-Binding Proteins , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/chemistry , Humans , Cyclic AMP/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , HEK293 Cells , Molecular Dynamics Simulation , Shelterin Complex/metabolism , Signal Transduction , Telomere-Binding Proteins/metabolism , rap GTP-Binding Proteins/metabolism , rap GTP-Binding Proteins/genetics , Heat-Shock Response , Amino Acid Sequence , Protein Binding
3.
Biochem Pharmacol ; 227: 116425, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004233

ABSTRACT

Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.

4.
Adv Exp Med Biol ; 1459: 3-29, 2024.
Article in English | MEDLINE | ID: mdl-39017837

ABSTRACT

MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Proto-Oncogene Proteins c-myb , Humans , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Animals , Protein Processing, Post-Translational , Epigenesis, Genetic , Gene Expression Regulation
5.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000276

ABSTRACT

Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Hippocampus , Neurons , SARS-CoV-2 , Sumoylation , tau Proteins , tau Proteins/metabolism , Animals , Mice , Humans , Hippocampus/metabolism , Hippocampus/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/metabolism , Phosphorylation , Coronavirus Nucleocapsid Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/virology , Small Ubiquitin-Related Modifier Proteins/metabolism , Stress Granules/metabolism , Mice, Inbred C57BL , Phosphoproteins/metabolism , Male , Nucleocapsid Proteins/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/virology
6.
Hum Cell ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856883

ABSTRACT

SUMOylation is a dynamic and reversible post-translational modification (PTM) of proteins involved in the regulation of biological processes such as protein homeostasis, DNA repair and cell cycle in normal and tumor cells. In particular, overexpression of SUMOylation components in tumor cells increases the activity of intracellular SUMOylation, protects target proteins against ubiquitination degradation and activation, promoting tumor cell proliferation and metastasis, providing immune evasion and increasing tolerance to chemotherapy and antitumor drugs. However, with the continuous research on SUMOylation and with the continued development of SUMOylation inhibitors, it has been found that tumor initiation and progression can be inhibited by blocking SUMOylation and/or in combination with drugs. SUMOylation is not a bad target when trying to treat tumor. This review introduces SUMOylation cycle pathway and summarizes the role of SUMOylation in tumor initiation and progression and SUMOylation inhibitors and their functions in tumors and provides a prospective view of SUMOylation as a new therapeutic target for tumors.

7.
Front Oncol ; 14: 1325157, 2024.
Article in English | MEDLINE | ID: mdl-38846969

ABSTRACT

Introduction: Urothelial Bladder Cancer (BC) is the ninth most common cancer worldwide. It is classified into Non Muscle Invasive (NMIBC) and Muscle Invasive Bladder Cancer (MIBC), which are characterized by frequent recurrences and progression rate, respectively. The diagnosis and monitoring are obtained through invasive methods as cystoscopy and post-surgery biopsies. Thus, a panel of biomarkers able to discriminate BC based on grading or staging represents a significant step forward in the patients' workup. In this perspective, long non-coding RNAs (lncRNAs) are emerged as reliable candidates as potential biomarker given their specific and regulated expression. In the present work we propose two lncRNAs, the Small Ubiquitin Modifier 1 pseudogene 3 (SUMO1P3), a poorly characterized pseudogene, and the Urothelial Carcinoma Associated 1 (UCA1) as candidates to monitor the BC progression. Methods: This study was a retrospective trial enrolling NMIBC and MIBC patients undergoing surgical intervention: the expression of the lncRNA SUMO1P3 and UCA1 was evaluated in urine from 113 subjects (cases and controls). The receiver operating characteristic curve analysis was used to evaluate the performance of single or combined biomarkers in discriminating cases from controls. Results: SUMO1P3 and UCA1 expression in urine was able to significantly discriminate low grade NMIBC, healthy control and benign prostatic hyperplasia subjects versus high grade NMIBC and MIBC patients. We also demonstrated that miR-320a, which binds SUMO1P3, was reduced in high grade NMIBC and MIBC patients and the SUMO1P3/miR-320a ratio was used to differentiate cases versus controls, showing a statistically significant power. Finally, we provided an automated method of RNA extraction coupled to ddPCR analysis in a perspective of clinical application. Discussion: We have shown that the lncRNA SUMO1P3 is increased in urine from patients with high grade NMIBC and MIBC and that it is likely to be good candidate to predict bladder cancer progression if used alone or in combination with UCA1 or with miRNA320a.

8.
Biomed Pharmacother ; 177: 116898, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878635

ABSTRACT

Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.

9.
Cureus ; 16(5): e61158, 2024 May.
Article in English | MEDLINE | ID: mdl-38933620

ABSTRACT

Background Sumo is a sport that requires wrestlers to develop their physique from childhood for athletic advantage. However, the energy expenditure and energy balance required for the growth of junior Sumo wrestlers remain unclear. This study aimed to determine the energy balance of junior Sumo wrestlers over six months using doubly labeled water (DLW) and bioelectrical impedance analysis (BIA). Methodology A total of 12 male Sumo wrestlers were affiliated with a local Sumo club (average age = 15 ± 1 years). The total energy expenditure (TEE) was measured using DLW, whereas body composition was evaluated using BIA. Daily physical activity was quantified using a tri-accelerometer (Active style Pro HJA-750C). Results The TEE was 4,194 ± 734 kcal/day, while daily physical activity without training was 786 ± 50 minutes. Within six months, the body weight increased by 2.0 ± 3.2 kg, fat-free mass (FFM) was augmented by 2.1 kg, while fat mass did not change significantly. The surplus energy accumulated was 5.6 ± 213 kcal/day. Conclusions The excess energy of junior Sumo wrestlers predominantly increases their FFM. To increase their physical prowess, wrestlers adhere to a lifestyle characterized by high-intensity training and attenuated daily physical activity.

10.
J Cancer ; 15(12): 3841-3856, 2024.
Article in English | MEDLINE | ID: mdl-38911380

ABSTRACT

Background: Bladder cancer is a prevalent malignancy with significant clinical implications. Small Ubiquitin-like Modifier (SUMO) pathway related genes (SPRG) have been implicated in the development and progression of cancer. Methods: In this study, we conducted a comprehensive analysis of SPRG in bladder cancer. We analyzed gene expression and prognostic value of SPRG and developed a SPRG signature (SPRGS) prognostic model based on four genes (HDAC4, TRIM27, EGR2, and UBE2I) in bladder cancer. Furthermore, we investigated the relationship between SPRGS and genomic alterations, tumor microenvironment, chemotherapy response, and immunotherapy. Additionally, we identified EGR2 as a key SPRG in bladder cancer. The expression of EGR2 in bladder cancer was detected by immunohistochemistry, and the cell function experiment clarified the effect of knocking down EGR2 on the proliferation, invasion, and migration of bladder cancer cells. Results: Our findings suggest that SPRGS hold promise as prognostic markers and predictive biomarkers for chemotherapy response and immunotherapy efficacy in bladder cancer. The SPRGS prognostic model exhibited high predictive accuracy for bladder cancer patient survival. We also observed correlations between SPRG and genomic alterations, tumor microenvironment, and response to chemotherapy. Immunohistochemical results showed that EGR2 was highly expressed in bladder cancer tissues, and its overexpression was associated with poor prognosis. Knockdown of EGR2 inhibited bladder cancer cell proliferation, invasion, and migration. Conclusion: This study provides valuable insights into the landscape of SPRGS in bladder cancer and their potential implications for personalized treatment strategies. The identification of EGR2 as a key SPRG and its functional impact on bladder cancer cells further highlights its significance in bladder cancer development and progression. Overall, SPRGS may serve as important prognostic markers and predictive biomarkers for bladder cancer patients, guiding treatment decisions and improving patient outcomes.

11.
Front Mol Neurosci ; 17: 1352782, 2024.
Article in English | MEDLINE | ID: mdl-38932933

ABSTRACT

Introduction: The Anaphase Promoting Complex (APC/C), an E3 ubiquitin ligase, plays a key role in cell cycle control, but it is also thought to operate in postmitotic neurons. Most studies linking APC/C function to neuron biology employed perturbations of the APC/C activators, cell division cycle protein 20 (Cdc20) and Cdc20 homologue 1 (Cdh1). However, multiple lines of evidence indicate that Cdh1 and Cdc20 can function in APC/C-independent contexts, so that the effects of their perturbation cannot strictly be linked to APC/C function. Methods: We therefore deleted the gene encoding Anaphase Promoting Complex 4 (APC4), a core APC/C component, in neurons cultured from conditional knockout (cKO) mice. Results: Our data indicate that several previously published substrates are actually not APC/C substrates, whereas ubiquitin specific peptidase 1 (USP1) protein levels are altered in APC4 knockout (KO) neurons. We propose a model where the APC/C ubiquitylates USP1 early in development, but later ubiquitylates a substrate that directly or indirectly stabilizes USP1. We further discovered a novel role of the APC/C in regulating the number of neurites exiting somata, but we were unable to confirm prior data indicating that the APC/C regulates neurite length, neurite complexity, and synaptogenesis. Finally, we show that APC4 SUMOylation does not impact the ability of the APC/C to control the number of primary neurites or USP1 protein levels. Discussion: Our data indicate that perturbation studies aimed at dissecting APC/C biology must focus on core APC/C components rather than the APC/C activators, Cdh20 and Cdh1.

12.
Mol Cancer ; 23(1): 116, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822351

ABSTRACT

BACKGROUND: Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS: We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS: SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS: Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.


Subject(s)
Adenosine , Cell Proliferation , Cysteine Endopeptidases , Histone Deacetylase 2 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Sumoylation , Animals , Female , Humans , Male , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Disease Progression , Gene Expression Regulation, Leukemic , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Xenograft Model Antitumor Assays
13.
Protein Expr Purif ; 221: 106507, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38777308

ABSTRACT

Recombinant human interleukin-2 (rhIL-2) represents one of the most difficult-to-produce cytokines in E. coli due to its extreme hydrophobicity and high tendency to formation of inclusion bodies. Refolding of rhIL-2 inclusion bodies always represents cumbersome downstream processes and low production efficiency. Herein, we disclosed a fusion strategy for efficiently soluble expression and facile production of rhIL-2 in E. coli Origami B (DE3) host. A two-tandem SUMO fusion partner (His-2SUMO) with a unique SUMO protease cleavage site at C-terminus was devised to fuse with the N-terminus of rhIL-2 and the fusion protein (His-2SUMO-rhIL-2) was almost completely expressed in a soluble from. The fusion partner could be efficiently removed by Ulp1 cleavage and the rhIL-2 was simply produced by a two-step Ni-NTA affinity chromatography with a considerable purity and whole recovery. The eventually obtained rhIL-2 was well-characterized and the results showed that the purified rhIL-2 exhibits a compact and ordered structure. Although the finally obtained rhIL-2 exists in a soluble aggregates form and the aggregation probably has been occurred during expression stage, the soluble rhIL-2 aggregates remain exhibit comparable bioactivity with the commercially available rhIL-2 drug formulation.


Subject(s)
Escherichia coli , Interleukin-2 , Recombinant Fusion Proteins , Solubility , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Interleukin-2/genetics , Interleukin-2/biosynthesis , Interleukin-2/chemistry , Interleukin-2/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Gene Expression , Chromatography, Affinity , Cloning, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism
14.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760575

ABSTRACT

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , Decitabine , Ubiquitin-Protein Ligases , Decitabine/pharmacology , Humans , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , DNA Methylation/drug effects , Antimetabolites, Antineoplastic/pharmacology , Animals , Sumoylation/drug effects
15.
Environ Toxicol ; 39(8): 4207-4220, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38727079

ABSTRACT

The discovery of ferroptosis has unveiled new perspectives for cervical cancer (CC) management. We elucidated the functional mechanism of hypoxia-like conditions in CC cell ferroptosis resistance. CC cells were subjected to normoxia or hypoxia-like conditions, followed by erastin treatment to induce ferroptosis. The assessment of cell viability/ferroptosis resistance was performed by MTT assay/Fe2+, MDA, and glutathione measurement by colorimetry. KDM4A/SUMO1/Ubc9/SENP1 protein levels were determined by Western blot. Interaction and binding sites between KDM4A and SUMO1 were analyzed and predicted by immunofluorescence/co-immunoprecipitation and GPS-SUMO 1.0 software, with the target relationship verified by mutation experiment. SLC7A11/GPX4/H3K9me3 protein levels, and H3K9me3 level in the SLC7A11 gene promoter region were determined by RT-qPCR and Western blot/chromatin immunoprecipitation. H3H9me3/SLC7A11/GPX4 level alterations, and ferroptosis resistance after KDM4A silencing or KDM4A K471 mutation were assessed. Hypoxia-like conditions increased CC cell ferroptosis resistance and KDM4A, SUMO1, and Ubc9 protein levels, while it decreased SENP1 protein level. KDM4A and SUMO1 were co-localized in the nucleus, and hypoxia-like conditions promoted their interaction. Specifically, the K471 locus of KDM4A was the main locus for SUMO1ylation. Hypoxia-like conditions up-regulated SLC7A11 and GPX4 expression levels and decreased H3K9me3 protein level and H3K9me3 abundance in the SLC7A11 promoter region. KDM4A silencing or K471 locus mutation resulted in weakened interaction between KDM4A and SUMO1, elevated H3K9me3 levels, decreased SLC7A11 expression, ultimately, a reduced CC cell ferroptosis resistance. CoCl2-stimulated hypoxia-like conditions enhanced SUMO1 modification of KDM4A at the K471 locus specifically, repressed H3K9me3 levels, and up-regulated SLC7A11/GPX4 to enhance CC cell ferroptosis resistance.


Subject(s)
Amino Acid Transport System y+ , Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Sumoylation , Uterine Cervical Neoplasms , Humans , Ferroptosis/drug effects , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Sumoylation/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Female , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Cell Line, Tumor , Cell Hypoxia , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics
16.
Proc Natl Acad Sci U S A ; 121(22): e2314619121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776375

ABSTRACT

Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.


Subject(s)
B-Lymphocytes , Cysteine Endopeptidases , Germinal Center , PAX5 Transcription Factor , Sumoylation , Germinal Center/immunology , Germinal Center/metabolism , PAX5 Transcription Factor/metabolism , PAX5 Transcription Factor/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Mice , Immunoglobulin Class Switching , Humans , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Immunity, Humoral , Mice, Inbred C57BL
17.
J Appl Genet ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709457

ABSTRACT

RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His8-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σD, σE, σS, and σN. Final step modification was required for σF, while for σH and σFecI, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.

18.
World J Microbiol Biotechnol ; 40(6): 183, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722449

ABSTRACT

Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.


Subject(s)
Enzyme Stability , Escherichia coli , Pyrococcus abyssi , Recombinant Fusion Proteins , Temperature , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Pyrococcus abyssi/genetics , Pyrococcus abyssi/enzymology , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Genetic Vectors/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , SUMO-1 Protein/chemistry , Cloning, Molecular , Solubility
19.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38567974

ABSTRACT

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Subject(s)
Arsenic Trioxide , Cell Nucleus , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatitis B , Sumoylation , Virus Replication , Arsenic Trioxide/pharmacology , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Virus Replication/drug effects , Hepatitis B/virology , Hepatitis B/drug therapy , Hepatitis B/metabolism , Sumoylation/drug effects , DNA, Circular/genetics , DNA, Circular/metabolism , Cell Nucleus/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Antiviral Agents/pharmacology , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Hep G2 Cells
20.
Chembiochem ; 25(11): e202400045, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38593270

ABSTRACT

SUMO (Small Ubiquitin-like Modifiers) proteins are involved in a crucial post-translational modification commonly termed as SUMOylation. In this work, we have investigated the native-state conformational flexibility of human SUMO2 and its interaction with Cu2+ and Zn2+ ions using 15N-1H based 2D NMR spectroscopy. After SUMO1, SUMO2 is the most studied SUMO isoform in humans which shares 45 % and ~80 % similarity with SUMO1 in terms of sequence and structure, respectively. In this manuscript, we demonstrate that compared to SUMO1, several amino acids around the α1-helix region of SUMO2 access energetically similar near-native conformations. These conformations could play a crucial role in SUMO2's non-covalent interactions with SUMO interaction motifs (SIMs) on other proteins. The C-terminal of SUMO2 was found to bind strongly with Cu2+ ions resulting in a trimeric structure as observed by gel electrophoresis. This interaction seems to interfere in its non-covalent interaction with a V/I-x-V/I-V/I based SIM in Daxx protein.


Subject(s)
Copper , Small Ubiquitin-Related Modifier Proteins , Zinc , Humans , Copper/chemistry , Copper/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/chemistry , Zinc/chemistry , Zinc/metabolism , Protein Conformation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...