Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 269: 116325, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38527378

ABSTRACT

By virtue of the drug repurposing strategy, the anti-osteoporosis drug raloxifene was identified as a novel PPARγ ligand through structure-based virtual high throughput screening (SB-VHTS) of FDA-approved drugs and TR-FRET competitive binding assay. Subsequent structural refinement of raloxifene led to the synthesis of a benzothiophene derivative, YGL-12. This compound exhibited potent PPARγ modulation with partial agonism, uniquely promoting adiponectin expression and inhibiting PPARγ Ser273 phosphorylation by CDK5 without inducing the expression of adipongenesis associated genes, including PPARγ, aP2, CD36, FASN and C/EBPα. This specific activity profile resulted in effective hypoglycemic properties, avoiding major TZD-related adverse effects like weight gain and hepatomegaly, which were demonstrated in db/db mice. Molecular docking studies showed that YGL-12 established additional hydrogen bonds with Ile281 and enhanced hydrogen-bond interaction with Ser289 as well as PPARγ Ser273 phosphorylation-related residues Ser342 and Glu343. These findings suggested YGL-12 as a promising T2DM therapeutic candidate, thereby providing a molecular framework for the development of novel PPARγ modulators with an enhanced therapeutic index.


Subject(s)
PPAR gamma , Raloxifene Hydrochloride , Thiophenes , Mice , Animals , PPAR gamma/metabolism , Molecular Docking Simulation , Drug Repositioning
2.
Parasit Vectors ; 15(1): 308, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042502

ABSTRACT

BACKGROUND: Theileria annulata, a transforming parasite, invades bovine B cells, dendritic cells and macrophages, promoting the uncontrolled proliferation of these cells. This protozoan evolved intricate strategies to subvert host cell signaling pathways related to antiapoptotic signaling to enable survival and proliferation within the host cells. However, the molecular mechanisms of the cell transformation induced by T. annulata remain largely unclear. Although some studies have predicted that the subtelomere-encoded variable secreted protein (SVSP) family plays roles in host-parasite interactions, the evidence for this is limited. METHODS: In the present study, the SVSP455 (TA05545) gene, a member of the SVSP gene family, was used as the target molecule. The expression pattern of SVSP455 in different life-cycle stages of T. annulata infection was explored using a quantitative real-time PCR assay, and the subcellular distribution of SVSP455 was observed using confocal microscopy. The host cell proteins interacting with SVSP455 were screened using the Y2H system, and their interactions were verified in vivo and in vitro using both bimolecular fluorescence complementation and confocal microscopy, and co-immunoprecipitation assays. The role played by SVSP455 in cell transformation was further explored by using overexpression, RNA interference and drug treatment experiments. RESULTS: The highest level of the SVSP455 transcript was detected in the schizont stage of T. annulata, and the protein was located both on the surface of schizonts and in the host cell cytoplasm. In addition, the interaction between SVSP455 and heat shock protein 60 was shown in vitro, and their link may regulate host cell apoptosis in T. annulata-infected cells. CONCLUSION: Our findings are the first to reveal that T. annulata-secreted SVSP455 molecule directly interacts with both exogenous and endogenous bovine HSP60 protein, and that the interaction of SVSP455-HSP60 may manipulate the host cell apoptosis signaling pathway. These results provide insights into cancer-like phenotypes underlying Theilera transformation and therapeutics for protection against other pathogens.


Subject(s)
Theileria annulata , Theileria , Theileriasis , Animals , Cattle , Chaperonin 60 , Host-Parasite Interactions , Immunoprecipitation , Schizonts , Theileria annulata/genetics , Theileria annulata/metabolism , Theileriasis/prevention & control
3.
Toxicon X ; 15: 100131, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35769869

ABSTRACT

The isolation and characterization of individual snake venom components is important for a deeper understanding of the pathophysiology of envenomation and for improving the therapeutic procedures of patients. It also opens possibilities for the discovery of novel toxins that might be useful as tools for understanding cellular and molecular processes. The variable venom composition, toxicological and immunological properties of the common vipers (Vipera berus berus) have been reviewed. The combination of venom gland transcriptomics, bottom-up and top-down proteomics enabled comparison of common viper venom proteomes from multiple individuals. V. b. berus venom contains proteins and peptides belonging to 10-15 toxin families: snake venom metalloproteinase, phospholipases A2 (PLA2), snake venom serine proteinase, aspartic protease, L-amino acid oxidase (LAAO), hyaluronidase, 5'-nucleotidase, glutaminyl-peptide cyclotransferase, disintegrin, C-type lectin (snaclec), nerve growth factor, Kunitz type serine protease inhibitor, snake venom vascular endothelial growth factor, cysteine-rich secretory protein, bradykinin potentiating peptide, natriuretic peptides. PLA2 and LAAO from V. b. berus venom produce more pronounced cytotoxic effects in cancer cells than normal cells, via induction of apoptosis, cell cycle arrest and suppression of proliferation. Proteomic data of V. b. berus venoms from different parts of Russia and Slovakian Republic have been compared with analogous data for Vipera nikolskii venom. Proteomic studies demonstrated quantitative differences in the composition of V. b. berus venom from different geographical regions. Differences in the venom composition of V. berus were mainly driven by the age, sex, habitat and diet of the snakes. The venom variability of V. berus results in a loss of antivenom efficacy against snakebites. The effectiveness of antibodies is discussed. This review presents an overview with a special focus on different toxins that have been isolated and characterized from the venoms of V. b. berus. Their main biochemical properties and toxic actions are described.

4.
Biomed Pharmacother ; 154: 113653, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36942599

ABSTRACT

PPARγ is well-known as the target receptor of TZD anti-diabetic drugs. However, recently the therapeutic benefits of these TZD drugs have been compromised by many severe side effects because of their full PPARγ agonistic action to lock the AF-2 helix. Herein, we conducted a virtual screening in the combination with structure-based design, synthesis and biological evaluation both in vitro and in vivo, leading to the identification of a potent candidate YG-C-20 as the SPPARγM with improved and safer anti-diabetic therapeutics. Mechanistically, this compound presented such desired pharmacological profiles (e.g., preferable anti-diabetic efficiencies and minimized side effects) mainly via selectively inhibiting the CDK5-mediated phosphorylation of PPARγ-Ser273 and up-regulating the expression of insulin-sensitive genes Adiponectin and Glut4, yet lacking the classical full agonism to induce the adipogenesis and the expression of key adipogenic genes including PPARγ, aP2, CD36, LPL, C/EBPα and FASN. Further validation led to the final recognition of its (R)-configured isomer as the potential conformational form. Subsequent molecular docking studies revealed a unique hydrogen-bonding network of (R)-YG-C-20 with three full PPARγ agonism-unrelated residues, especially with PPARγ-Ser273 phosphorylation-associated site Ser342, which not only gives a clear verification for our structure-based design but also provides a proof of concept for the abovementioned molecular mechanism.


Subject(s)
PPAR gamma , PPAR gamma/metabolism , Molecular Docking Simulation
5.
Pharmacol Res ; 173: 105860, 2021 11.
Article in English | MEDLINE | ID: mdl-34461220

ABSTRACT

In this study, SB-VHTS of the old drug library was conducted to seek for novel PPARγ ligand. In the end, an antifungal drug, FN, was identified in vitro and in vivo as a new and potent PPARγ-modulating ligand to demonstrate significantly anti-diabetic and anti-NAFLD efficacies with minimized side effects induced by PPARγ full agonists TZDs drugs. Further mechanistic investigations revealed that FN showed such desired pharmacological properties mainly through selectively activating the expressions of Adiponectin and GLUT4, effectively promoting the Akt Ser473 phosphorylation, inhibiting the expressions of proinflammatory genes including TNF-α, IL-1ß and IL-6 and blocking the PPARγ Ser273 phosphorylation mediated by CDK5 without leading to adipogenesis and increasing the expressions of key adipogenic genes CD36, AP2, LPL, C/EBPα, FASN and PPARγ. Subsequently, a molecular docking study revealed an interesting binding mode between FN and PPARγ LBD including the hydrogen-bonding network among oxygen atom, sulfur atom and nitrogen atom in FN respectively with the PPARγ residues Cys285, Tyr327 and Ser342, which gave proof of concept for the above anti-diabetic action mechanism. Taken together, our findings not only suggest that FN can serve as the new, safe and highly efficacious anti-diabetic and anti-NAFLD agents for clinical use, they can also provide a molecular basis for the future development of PPARγ modulators with a high therapeutic index and the possibility to explore new uses of old drugs for immediate drug discovery.


Subject(s)
Antifungal Agents/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Imidazoles/therapeutic use , PPAR gamma/metabolism , 3T3-L1 Cells , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Blood Glucose/drug effects , COS Cells , Chlorocebus aethiops , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Gene Expression/drug effects , Hypoglycemic Agents/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Transgenic , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
6.
Parasit Vectors ; 14(1): 319, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116718

ABSTRACT

BACKGROUND: Theileria annulata is a protozoan parasite that can infect and transform bovine B cells, macrophages, and dendritic cells. The mechanism of the transformation is still not well understood, and some parasite molecules have been identified, which contribute to cell proliferation by regulating host signaling pathways. Subtelomeric variable secreted proteins (SVSPs) of Theileria might affect the host cell phenotype, but its function is still not clear. Therefore, in the present study, we explored the interactions of SVSP454 with host cell proteins to investigate the molecular mechanism of T. annulata interaction with host cells. METHODS: The transcription level of an SVSP protein from T. annulata, SVSP454, was analyzed between different life stages and transformed cell passages using qRT-PCR. Then, SVSP454 was used as a bait to screen its interacting proteins from the bovine B cell cDNA library using a yeast two-hybrid (Y2H) system. The potential interacting proteins of host cells with SVSP454 were further identified by using a coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays. RESULTS: SVSP454 was transcribed in all three life stages of T. annulata but had the highest transcription during the schizont stage. However, the transcription level of SVSP454 continuously decreased as the cultures passaged. Two proteins, Bos Taurus coiled-coil domain 181 (CCDC181) and Bos Taurus mitochondrial ribosomal protein L30 (MRPL30), were screened. The proteins CCDC181 and MRPL30 of the host were further identified to directly interact with SVSP454. CONCLUSION: In the present study, SVSP454 was used as a bait plasmid, and its prey proteins CCDC181 and MRPL30 were screened out by using a Y2H system. Then, we demonstrated that SVSP454 directly interacted with both CCDC181 and MRPL30 by Co-IP and BiFC assays. Therefore, we speculate that SVSP454-CCDC181/SVSP454MRPL30 is an interacting axis that regulates the microtubule network and translation process of the host by some vital signaling molecules. Identification of the interaction of SVSP454 with CCDC181 and MRPL30 will help illustrate the transformation mechanisms induced by T. annulata.


Subject(s)
B-Lymphocytes/parasitology , Host-Parasite Interactions/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Theileria annulata/chemistry , Theileria annulata/genetics , Animals , Cattle , Cell Line , Microtubule Proteins/metabolism , Protein Transport , Transcription, Genetic
7.
Acta Pharm Sin B ; 10(10): 1835-1845, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163338

ABSTRACT

Repurposing small molecule drugs and drug candidates is considered as a promising approach to revolutionise the treatment of snakebite envenoming. In this study, we investigated the inhibiting effects of the small molecules varespladib (nonspecific phospholipase A2 inhibitor), marimastat (broad spectrum matrix metalloprotease inhibitor) and dimercaprol (metal ion chelator) against coagulopathic toxins found in Crotalinae (pit vipers) snake venoms. Venoms from Bothrops asper, Bothrops jararaca, Calloselasma rhodostoma and Deinagkistrodon acutus were separated by liquid chromatography, followed by nanofractionation and mass spectrometry identification undertaken in parallel. Nanofractions of the venom toxins were then subjected to a high-throughput coagulation assay in the presence of different concentrations of the small molecules under study. Anticoagulant venom toxins were mostly identified as phospholipases A2, while procoagulant venom activities were mainly associated with snake venom metalloproteinases and snake venom serine proteases. Varespladib was found to effectively inhibit most anticoagulant venom effects, and also showed some inhibition against procoagulant toxins. Contrastingly, marimastat and dimercaprol were both effective inhibitors of procoagulant venom activities but showed little inhibitory capability against anticoagulant toxins. The information obtained from this study aids our understanding of the mechanisms of action of toxin inhibitor drug candidates, and highlights their potential as future snakebite treatments.

8.
Acta Trop ; 202: 105245, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31676457

ABSTRACT

Tropical theileriosis is a tick-borne lymphoproliferative disease of cattle caused by the apicomplexan parasite Theileria annulata, and leads to substantial economic losses to the livestock industry worldwide. Although various enzyme-linked immunosorbent assays (ELISAs) have been established to detect antibodies against T. annulata infection, a specific, rapid and reliable diagnostic assay is urgently needed for prevention and control of the disease. In the present study, a chemiluminescence immunoassay (CLIA) was developed based on the subtelomeric variable secreted protein (SVSP) of T. annulata as a sero-diagnostic antigen. Following optimization of the CLIA working parameters, the working time of the method was less than 4.5 h. The sensitivity and specificity of the established CLIA was 98.8% and 97.5%, respectively, when the cut-off value of the percent positive (PP) was 26.1% for detecting serum samples (n = 242 T. annulata positive sera, n = 158 T. annulata negative sera). After comparing 180 serum samples from Gansu province, China, the concordance rate between the CLIA and a published rSpm2 ELISA method was 72.8%. In addition, 565 serum samples of cattle collected between 2017 and 2018 from four provinces in China were detected by the CLIA, and the seroprevalence for T. annulata ranged from 53.3% to 67.3% in these regions. Our findings demonstrated that the CLIA has high specificity, sensitivity and reliability, and could be used as a rapid detection assay for epidemiological investigations of T. annulata infection.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Theileriasis/diagnosis , Theileriasis/prevention & control , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/parasitology , China/epidemiology , Luminescent Measurements/methods , Prevalence , Seroepidemiologic Studies , Theileria annulata , Theileriasis/parasitology , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/parasitology
9.
Article in English | MEDLINE | ID: mdl-31131000

ABSTRACT

BACKGROUND: Lachesis muta rhombeata is one of the venomous snakes of medical importance in Brazil whose envenoming is characterized by local and systemic effects which may produce even shock and death. Its venom is mainly comprised of serine and metalloproteinases, phospholipases A2 and bradykinin-potentiating peptides. Based on a previously reported fractionation of L. m. rhombeata venom (LmrV), we decided to perform a subproteome analysis of its major fraction and investigated a novel component present in this venom. METHODS: LmrV was fractionated through molecular exclusion chromatography and the main fraction (S5) was submitted to fibrinogenolytic activity assay and fractionated by reversed-phase chromatography. The N-terminal sequences of the subfractions eluted from reversed-phase chromatography were determined by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated upon chromogenic substrates for thrombin (S-2238), plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the presence or absence of possible inhibitors. The fluorescence resonance energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was determined by MALDI-TOF and digested peptides after trypsin and Glu-C treatments were analyzed by high resolution MS/MS using different fragmentation modes. RESULTS: Fraction S5 showed strong proteolytic activity upon fibrinogen. Its fractionation by reversed-phase chromatography gave rise to 6 main fractions (S5C1-S5C6). S5C1-S5C5 fractions correspond to serine proteinases whereas S5C6 represents a C-type lectin. S5C4 (named LmrSP-4) had its N-terminal determined by Edman degradation up to the 53rd amino acid residue and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic serine proteinase with high activity against S-2302, being inhibited by PMSF and benzamidine, but not by 1,10-phenantroline. In addition, this enzyme exhibited maximum activity within the pH range from neutral to basic and between 40 and 50 °C. About 68% of the LmrSP-4 primary structure was covered, and its molecular mass is 28,190 Da. CONCLUSIONS: Novel serine proteinase isoforms and a lectin were identified in LmrV. Additionally, a kallikrein-like serine proteinase that might be useful as molecular tool for investigating bradykinin-involving process was isolated and partially characterized.

10.
J. venom. anim. toxins incl. trop. dis ; 25: e147018, 2019. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1002495

ABSTRACT

Lachesis muta rhombeata is one of the venomous snakes of medical importance in Brazil whose envenoming is characterized by local and systemic effects which may produce even shock and death. Its venom is mainly comprised of serine and metalloproteinases, phospholipases A2 and bradykinin-potentiating peptides. Based on a previously reported fractionation of L. m. rhombeata venom (LmrV), we decided to perform a subproteome analysis of its major fraction and investigated a novel component present in this venom. Methods: LmrV was fractionated through molecular exclusion chromatography and the main fraction (S5) was submitted to fibrinogenolytic activity assay and fractionated by reversed-phase chromatography. The N-terminal sequences of the subfractions eluted from reversed-phase chromatography were determined by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated upon chromogenic substrates for thrombin (S-2238), plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the presence or absence of possible inhibitors. The fluorescence resonance energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was determined by MALDI-TOF and digested peptides after trypsin and Glu-C treatments were analyzed by high resolution MS/MS using different fragmentation modes. Results: Fraction S5 showed strong proteolytic activity upon fibrinogen. Its fractionation by reversed-phase chromatography gave rise to 6 main fractions (S5C1-S5C6). S5C1-S5C5 fractions correspond to serine proteinases whereas S5C6 represents a C-type lectin. S5C4 (named LmrSP-4) had its N-terminal determined by Edman degradation up to the 53rd amino acid residue and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic serine proteinase with high activity against S-2302, being inhibited by PMSF and benzamidine, but not by 1,10-phenantroline. In addition, this enzyme exhibited maximum activity within the pH range from neutral to basic and between 40 and 50 °C. About 68% of the LmrSP-4 primary structure was covered, and its molecular mass is 28,190 Da. Conclusions: Novel serine proteinase isoforms and a lectin were identified in LmrV. Additionally, a kallikrein-like serine proteinase that might be useful as molecular tool for investigating bradykinin-involving process was isolated and partially characterized.(AU)


Subject(s)
Plasminogen , Snake Venoms , Lachesis muta , Serine Proteases , Kallikreins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Phospholipases A2
SELECTION OF CITATIONS
SEARCH DETAIL
...