Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
Environ Int ; 190: 108814, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38917625

ABSTRACT

The market for artificial sweeteners as substitutes for conventional sugar (sucrose) is growing, despite potential health risks associated with their intake. Estimating population usage of artificial sweeteners is therefore crucial, and wastewater analysis can serve as a complement to existing methods. This study evaluated spatial and temporal usage of artificial sweeteners in five Swedish communities based on wastewater analysis. We further compared their levels measured in wastewater with the restrictions during the COVID-19 pandemic in Sweden and assessed health risks to the Swedish population. Influent wastewater samples (n = 194) collected in March 2019-February 2022 from communities in central and southern Sweden were analyzed for acesulfame, saccharin, and sucralose using liquid-chromatography coupled with tandem mass spectrometry. Spatial differences in loads for individual artificial sweetener were observed, with sucralose being higher in Kalmar (southern Sweden), and acesulfame and saccharin in Enköping and Östhammar (central Sweden). Based on sucrose equivalent doses, all communities showed a consistent prevalence pattern of sucralose > acesulfame > saccharin. Four communities with relatively short monitoring periods showed no apparent temporal changes in usage, but the four-year monitoring in Uppsala revealed a significant (p < 0.05) annual increase of ∼19 % for sucralose, ∼9 % for acesulfame and ∼8 % for saccharin. This trend showed no instant or delayed effects from COVID-19 restrictions, reflecting positively on the studied population which retained similar exposure to the artificial sweeteners despite potential pandemic stresses. Among the three artificial sweeteners, only acesulfame's levels were at the lower end of the health-related threshold for consumption of artificially sweetened beverages; yet, all were far below the acceptable daily intake, indicating no appreciable health risks. Our study provided valuable, pilot insights into the spatio-temporal usage of artificial sweeteners in Sweden and their associated health risks. This shows the usefulness of wastewater analysis for public health authorities wishing to assess future relevant interventions.

2.
Med Sci (Basel) ; 12(2)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921683

ABSTRACT

BACKGROUND: Insulin exerts a crucial impact on glucose control, cellular growing, function, and metabolism. It is partially modulated by nutrients, especially as a response to the intake of foods, including carbohydrates. Moreover, insulin can exert an anorexigenic effect when inserted into the hypothalamus of the brain, in which a complex network of an appetite/hunger control system occurs. The current literature review aims at thoroughly summarizing and scrutinizing whether insulin release in response to glucose exposure may be a better choice to control body weight gain and related diseases compared to the use of sucrose substitutes (SSs) in combination with a long-term, well-balanced diet. METHODS: This is a comprehensive literature review, which was performed through searching in-depth for the most accurate scientific databases and applying effective and relevant keywords. RESULTS: The insulin action can be inserted into the hypothalamic orexigenic/anorexigenic complex system, activating several anorexigenic peptides, increasing the hedonic aspect of food intake, and effectively controlling the human body weight. In contrast, SSs appear not to affect the orexigenic/anorexigenic complex system, resulting in more cases of uncontrolled body weight maintenance while also increasing the risk of developing related diseases. CONCLUSIONS: Most evidence, mainly derived from in vitro and in vivo animal studies, has reinforced the insulin anorexigenic action in the hypothalamus of the brain. Simultaneously, most available clinical studies showed that SSs during a well-balanced diet either maintain or even increase body weight, which may indirectly be ascribed to the fact that they cannot cover the hedonic aspect of food intake. However, there is a strong demand for long-term longitudinal surveys to effectively specify the impact of SSs on human metabolic health.


Subject(s)
Appetite , Glucose , Insulin , Humans , Glucose/metabolism , Appetite/drug effects , Animals , Body Weight Maintenance , Sucrose , Satiation
3.
Physiol Behav ; 283: 114596, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815713

ABSTRACT

In addition to its sweet taste, glucose has potent and rapid postoral actions (appetition) that enhance its reward value. This has been demonstrated by the experience-induced preference for glucose over initially preferred nonnutritive sweetener solutions in 24-h choice tests. However, some sweetener solutions (e.g., 0.8% sucralose) have inhibitory postoral actions that may exaggerate glucose appetition whereas others (e.g., 0.1% sucralose + 0.1% saccharin, S+S) do not. Experiment 1 revealed that food-restricted (FR) male C57BL/6J mice displayed similar rapid glucose appetition effects (stimulation of glucose licking within minutes) and conditioned flavor preferences following 1-h experience with flavored 0.8% sucralose or 0.1% S+S and 8% glucose solutions. Thus, the inhibitory effects of 0.8% sucralose observed in 24-h tests were not apparent in 1-h tests. Experiment 2 evaluated the effects of food deprivation state and sweetener concentration on glucose appetition in female mice. Unlike FR mice tested with 0.1% S+S and 8% glucose, ad libitum (AL) fed mice displayed no stimulation of 8% glucose licking in the 1-h tests. A second ad libitum group (AL) tested with 0.2% S+S and 16% glucose solutions displayed stimulation of 16% glucose licking by the third 1-h test. Both AL groups, like the FR group, developed a preference for the glucose-paired flavor over the S+S paired flavor. Thus, food restriction promotes increased glucose licking but is not required for a conditioned preference. The FR male mice (Exp. 1) and FR female mice (Exp. 2) showed similar appetition responses (licking stimulation and flavor preference) to 8% glucose.

4.
Carbohydr Res ; 538: 109101, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574410

ABSTRACT

To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.


Subject(s)
Click Chemistry , Saccharin , Click Chemistry/methods , Glycoconjugates/chemistry , Triazoles/chemistry , Molecular Docking Simulation
5.
Small ; : e2311961, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461546

ABSTRACT

Optimizing the electrode/electrolyte interface structure is the key to realizing high-voltage Li-metal batteries (LMBs). Herein, a functional electrolyte is introduced to synergetically regulate the interface layer structures on the high-voltage cathode and the Li-metal anode. Saccharin sodium (NaSH) as a multifunctional electrolyte additive is employed in fluorinated solvent-based electrolyte (FBE) for robust interphase layer construction. On the one hand, combining the results of ex-situ techniques and in-situ electrochemical dissipative quartz crystal microbalance (EQCM-D) technique, it can be seen that the solid electrolyte interface (SEI) layer constructed by NaSH-coupled fluoroethylene carbonate (FEC) on Li-metal anode significantly inhibits the growth of lithium dendrites and improves the cyclic stability of the anode. On the other hand, the experimental results also confirm that the cathode-electrolyte interface (CEI) layer induced by NaSH-coupled FEC effectively protects the active materials of LiCoO2 and improves their structural stability under high-voltage cycling, thus avoiding the material rupture. Moreover, theoretical calculation results show that the addition of NaSH alters the desolvation behavior of Li+ and enhances the transport kinetics of Li+ at the electrode/electrolyte interface. In this contribution, the LiCoO2 ǁLi full cell containing FBE+NaSH results in a high capacity retention of 80% after 530 cycles with a coulombic efficiency of 99.8%.

6.
Learn Behav ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332437

ABSTRACT

Previous experiments found that acceptance of saccharin by rats was reduced if they had prior experience of sucrose or some other highly palatable solution. This study tested whether such successive negative contrast (SNC) effects involve acquisition of an aversion to the new taste. In three experiments, rats were switched from sucrose exposure in Stage 1 to a less palatable solution containing a new taste in Stage 2. In Experiments 1 and 2, a novel flavor was added to a saccharin solution at the start of Stage 2. In Experiment 1, preference tests revealed a weak aversion to the added vanilla flavor in the Suc-Sacch group, while in Experiment 2 an aversion was found in the Suc-Sacch group to the salty flavor that was used, compared with controls given access either saccharin or water in Stage 1. In Experiment 3, the Suc-Quin group, given quinine solution in Stage 2, displayed a greater aversion to quinine than a Water-Quin control group. These results support the suggestion that taste aversion learning plays a role in the initial suppression of intakes in a qualitative consummatory SNC effect. However, in the light of other evidence, it seems that the unusual persistence of successive negative contrast when rats are switched from sucrose to saccharin is not due to a long-lasting reduction in the value of saccharin.

7.
Adv Sci (Weinh) ; 11(6): e2307208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059769

ABSTRACT

The nature of (imide)N-X⋯N(pyridine) halogen-bonded complexes formed by six N-haloimides and sixteen 2-substituted pyridines are studied using X-ray crystallography (68 crystal structures), Density Functional Theory (DFT) (86 complexation energies), and NMR spectroscopy (90 association constants). Strong halogen bond (XB) donors such as N-iodosuccinimide form only 1:1 haloimide:pyridine crystalline complexes, but even stronger N-iodosaccharin forms 1:1 haloimide:pyridine and three other distinct complexes. In 1:1 haloimide:pyridine crystalline complexes, the haloimide's N─X bond exhibits an unusual bond bending feature that is larger for stronger N-haloimides. DFT complexation energies (ΔEXB ) for iodoimide-pyridine complexes range from -44 to -99 kJ mol-1 , while for N-bromoimide-pyridine, they are between -31 and -77 kJ mol-1 . The ΔEXB of I⋯N XBs in 1:1 iodosaccharin:pyridine complexes are the largest of their kind, but they are substantially smaller than those in [bis(saccharinato)iodine(I)]pyridinium salts (-576 kJ mol-1 ), formed by N-iodosaccharin and pyridines. The NMR association constants and ΔEXB energies of 1:1 haloimide:pyridine complexes do not correlate as these complexes in solution are heavily influenced by secondary interactions, which DFT studies do not account for. Association constants follow the σ-hole strengths of N-haloimides, which agree with DFT and crystallography data. The haloimide:2-(N,N-dimethylamino)pyridine complex undergoes a halogenation reaction resulting in 5-iodo-2-dimethylaminopyridine.

8.
Behav Processes ; 214: 104984, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103808

ABSTRACT

Increased reinforcer motivation in rats has been repeatedly demonstrated following intermittent-access (IntA) training, where the reinforcer is only available for brief periods during a session, compared to continuous-access (ContA) training where the reinforcer is available throughout the session. The present study investigated whether different associations learned during training on the two procedures contributes to the effect. Two experiments tested the importance of the stimulus-response (S-R) and stimulus-outcome (S-O) associations between the IntA availability cues and the training response and reinforcer, respectively. In Exp. 1, separate groups of rats were trained to lever press for saccharin on the IntA or ContA procedures. Increased motivation for saccharin was observed in the IntA group on a later progressive ratio test where nosepoking was the operant (but not when lever pressing was the operant). The outcome of the nosepoke test suggests that a potential S-R association formed during IntA training was not critical for the effect. In Exp. 2, increased saccharin motivation (on nosepoke tests) after IntA training (with lever pressing) was observed regardless of the presence or absence of IntA availability cues, indicating that the S-O association formed during training is not critical for the effect either. Overall, these results suggest that the elemental associations learned on IntA procedures may not be what drives increased motivation observed after IntA training.


Subject(s)
Reinforcement, Psychology , Saccharin , Rats , Animals , Saccharin/pharmacology , Motivation , Conditioning, Operant , Learning , Self Administration
9.
Nutrition ; 117: 112237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897982

ABSTRACT

Use of non-nutritive sweeteners (NNSs) has increased worldwide in recent decades. However, evidence from preclinical studies shows that sweetener consumption may induce glucose intolerance through changes in the gut microbiota, which raises public health concerns. As studies conducted on humans are lacking, the aim of this review was to gather and summarize the current evidence on the effects of NNSs on human gut microbiota. Only clinical trials and cross-sectional studies were included in the review. Regarding NNSs (i.e, saccharin, sucralose, aspartame, and stevia), only two of five clinical trials showed significant changes in gut microbiota composition after the intervention protocol. These studies concluded that saccharin and sucralose impair glycemic tolerance. In three of the four cross-sectional studies an association between NNSs and the microbial composition was observed. All three clinical trials on polyols (i.e, xylitol) showed prebiotic effects on gut microbiota, but these studies had multiple limitations (publication date, dosage, duration) that jeopardize their validity. The microbial response to NNSs consumption could be strongly mediated by the gut microbial composition at baseline. Further studies in which the potential personalized microbial response to NNSs consumption is acknowledged, and that include longer intervention protocols, larger cohorts, and more realistic sweetener dosage are needed to broaden these findings.


Subject(s)
Gastrointestinal Microbiome , Non-Nutritive Sweeteners , Humans , Sweetening Agents/pharmacology , Saccharin/pharmacology , Cross-Sectional Studies , Non-Nutritive Sweeteners/adverse effects , Non-Nutritive Sweeteners/analysis
10.
Indian J Otolaryngol Head Neck Surg ; 75(4): 2990-2992, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974723

ABSTRACT

Nasal mucociliary clearance (NMC) plays an important role in removal of inhaled particles. The aim of this study was to assess the normal nasal mucociliary clearance time in Indian adult population in age group 18-60 years. A cross sectional, descriptive, observational study was performed. Two hundred participants in the age group 18-60 years were included in this study. Saccharin transit test was performed in these subjects. Saccharin particle was placed 0.5 cm away from the inferior turbinate from its anterior part. The participants were asked to inform the appearance of sweet taste. Duration between placement of particle and the appearance of taste was noted in minutes. Mean saccharin transit time was 9.44?2.73 minutes. There was no statistically significant difference in saccharin transit time between males & females. Nasal mucociliary clearance time between < 40 years & ≥40 years was compared and there was no significant difference between the 2 groups. The normal mucociliary clearance value in healthy adult Indian population-based on saccharin transit time is 9.44 ± 2.73 min. The earliest change in respiratory defense mechanism is change in nasal mucociliary clearance time and saccharin test is a simple, easy test to detect this. Supplementary Information: The online version contains supplementary material available at 10.1007/s12070-023-03915-x.

11.
Physiol Behav ; 272: 114381, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37866642

ABSTRACT

The main aim of this experiment was to examine the claim that exposure to non-nutritive sweeteners weakens the formation of a sweet-calorie association. Three groups of food-deprived rats received training in which they drank an almond-flavored maltodextrin and saccharin solution. A final test phase assessed their preference for almond. The groups differed in preexposure prior to training. One was pre-exposed to saccharin, one to saccharin plus maltodextrin, and the third, control condition, received only water at this stage. When the rats continued under food deprivation for the test phase, the group exposed to the compound (saccharin plus maltodextrin) showed a weaker preference than the other two groups, while those pre-exposed to saccharin showed as strong a preference as the controls. When the test was conducted with the rats no longer food-deprived, only the water group showed a strong preference. These results support the proposal that rats can form both flavor-flavor and flavor-nutrient associations, expression of which will depend on motivational state. They did not find support for the suggestion that prior exposure to a non-nutritive sweetener can enhance subsequent learning about the nutritive properties of a sweet food.


Subject(s)
Food Preferences , Saccharin , Rats , Animals , Saccharin/pharmacology , Learning , Sweetening Agents/pharmacology , Taste , Water
12.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833894

ABSTRACT

The purpose of this study was to confirm the antiproliferative and apoptotic induction potential of a saccharin and caffeine combination in ovarian cancer cells. The cell line used was Ovcar-3, and the cell viability was measured through a WST-8 assay, while a Chou-Talalay assay was used to confirm the synergistic effect of saccharin and caffeine on the ovarian cancer cells. A clonogenic assay, annexin V-FITC/PI-PE double-staining, and RT-PCR were performed to confirm the expression of genes that induce colony formation, cell viability, and apoptosis in ovarian cancer cells treated with the saccharin-caffeine combination. It was demonstrated that both saccharin and caffeine decreased the viability of Ovcar-3 cells, and the cell viability decreased even more significantly when the cells were treated with the combination of saccharin and caffeine. The clonogenic assay results showed that the number of colonies decreased the most when saccharin and caffeine were combined, and the number of colonies also significantly decreased compared to the single-treatment groups. Based on flow cytometry analysis using annexin V-FITC/PI-PE double-staining, it was confirmed that the decrease in cell viability caused by the combination of saccharin and caffeine was correlated with the induction of apoptosis. The results of the RT-PCR confirmed that the combined treatment of saccharin and caffeine promoted cell apoptosis by regulating the expression of apoptosis-inducing genes. These results demonstrate that the combination of saccharin and caffeine more efficiently inhibits the proliferation of Ovcar-3 cells and induces apoptosis in vitro.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Caffeine/pharmacology , Apoptosis , Saccharin/pharmacology , Cell Proliferation , Cell Line, Tumor , Carcinoma, Ovarian Epithelial
13.
Nutrients ; 15(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37686707

ABSTRACT

Worldwide, the demand for natural and synthetic sweeteners in the food industry as an alternative to refined sugar is increasing. This has prompted more research to be conducted to estimate its safety and effects on health. The gut microbiome is critical in metabolizing selected sweeteners which might affect overall health. Recently, more studies have evaluated the relationship between sweeteners and the gut microbiome. This review summarizes the current knowledge regarding the role played by the gut microbiome in metabolizing selected sweeteners. It also addresses the influence of the five selected sweeteners and their metabolites on GI cancer-related pathways. Overall, the observed positive effects of sweetener consumption on GI cancer pathways, such as apoptosis and cell cycle arrest, require further investigation in order to understand the underlying mechanism.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Neoplasms , Humans , Apoptosis , Excipients , Sweetening Agents/adverse effects
14.
Indian J Otolaryngol Head Neck Surg ; 75(3): 1937-1942, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37636726

ABSTRACT

In India, Chronic suppurative otitis media (CSOM) is a general public health issue leading to hearing loss which can be corrected surgically by Tympanoplasty. By applying predictors for a successful surgery the effectiveness of the surgery can be improved. In this study we aim to determine the usefulness of prognostic factors in predicting outcome of surgery for better patient compliance. 1. To compare MERI scores and saccharin test time in predicting graft uptake and hearing outcomes in Tympanoplasty surgery. A prospective study included all cases of mucosal type of CSOM of either sex according to the inclusion and exclusion criteria. Saccharin clearance time was used to assess Eustachian tube function and Pure Tone Audiometry has been done Pre-operatively to assess Hearing. Risk categories were assigned using MERI scoring chart and severity of disease assessed by otomicroscopy during surgery. Patients were post-operatively followed up to 6 months. Outcomes were assessed using Graft uptake, Hearing improvement and for recurrence of infection, compared with different categories of MERI and Saccharin time. The overall graft uptake was 96.6%. 100% successful graft uptake was seen among normal eustachian tube function. Hearing improvement after surgery may be predicted by saccharin and MERI test. Abnormal Saccharin test shows guarded prognosis in predicting the success of middle ear surgeries. Based on the MERI score and saccharin clearance time, hearing benefit and Surgical success can be assessed and patients can be counselled prior surgery regarding the expected outcome.

15.
Chem Senses ; 482023 01 01.
Article in English | MEDLINE | ID: mdl-37387468

ABSTRACT

The Occidental High- and Low-Saccharin rats (respectively, HiS and LoS lines) were selectively bred for decades to examine mechanisms and correlates of a saccharin intake phenotype. Observed line differences ranged from taste and eating to drug self-administration and defensive behavior, paralleling human research on relationships between gustation, personality, and psychopathology. The original lines were terminated in 2019, and replicate lines (HiS-R and LoS-R) were selectively bred for 5 generations to test for reproducible, rapid selection for the phenotype and its correlates. The line differences chosen for replication included intake of tastants (saccharin, sugars, quinine-adulterated sucrose, sodium chloride, and ethanol) and foods (cheese, peas, Spam, and chocolate) and several noningestive behaviors (deprivation-induced hyperactivity, acoustic startle, and open field behavior). The HiS-R and LoS-R lines diverged on intake of saccharin, disaccharides, quinine-adulterated sucrose, sodium chloride, and complex foods, and open field behavior. Differences from the original lines also were observed. Reasons for and implications of the pattern of replication and lack thereof in 5 generations are discussed.


Subject(s)
Quinine , Saccharin , Humans , Rats , Animals , Saccharin/pharmacology , Quinine/pharmacology , Sodium Chloride , Phenotype , Sucrose/pharmacology , Taste
16.
Biology (Basel) ; 12(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37237451

ABSTRACT

Frequent use of various food processing chemical agents sometimes causes damage to our bodies by inducing cytotoxicity, genotoxicity, and mutagenesis. In Bangladesh, among various chemical agents, formalin, saccharin, and urea are vastly used for processing foodstuffs by industry and local people. This study is focused to assess the toxic effects of formalin, saccharin, and urea on the popularly used eukaryotic test model, Allium cepa L. The assay was carried out by exposing different concentrations of test samples to A. cepa at 24, 48, and 72 h, where distilled water and CuSO4·5H2O (0.6 µg/mL) were utilized as the vehicle and positive control, respectively. The root length of the onions was measured in mm, and the results propose that all the chemical agents demonstrated toxicity in onions in a concentration- and exposure-time-dependent manner. The highest root length was examined at the lower concentrations, and with the increase in the concentration of the test sample and exposure time, the RG (root growth) was inhibited due to the deposition of chemicals and hampering of cell division in the root meristematic region of A. cepa. All the chemical agents also revealed a concentration- and time-dependent adaptive effect up to 72 h inspection of 24 h and a depletion of % root growth at 72 h inspection of 48 h. Our study suggests that sufficient precautions should be confirmed during its industrial and traditional usage as a toxicological response to the chemical agents observed in the A. cepa assay.

17.
J Agric Food Chem ; 71(20): 7791-7802, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37186581

ABSTRACT

Taste receptor type 1 subunit 3 (T1R3) is initially expressed in mammal tongue for recognition and response of sweet/umami tastants and is critical to nutrient absorption, even endocrine. In this study, down-regulation of related steroidogenic enzymes such as StAR, 3ß-HSD, CYP17A1, and 17ß-HSD with the decrease of T1R3 expression was found in Leydig cells treated by a T1R3 inhibitor (lactisole). The abundances of progesterone, 17a-hydroxyprogesterone, androstenedione, testosterone, and deoxycorticosterone were down-regulated by 2.3, 3.5, 1.4, 1.6, and 2.2 times, respectively, after T1R3 inhibition. In addition, opposite results were found in saccharin sodium treatment. T1R3 activation contributed to intracellular cyclic adenosine monophosphate (cAMP) accumulation (14.41 ± 0.58 vs 20.21 ± 0.65) and increased testosterone (20.31 ± 3.49 vs 50.01 ± 7.44) and steroidogenic metabolite levels. Coadministration of human chorionic gonadotropin and saccharin sodium resulted in elevating the testosterone and cAMP levels and enhancing the expression levels of steroidogenic-related factors. Similarly, intratesticular injection of lactisole and saccharin sodium further confirmed that T1R3 inhibition/activation affected the expression of related steroidogenic enzymes and the testosterone levels in mice. The above findings suggest that T1R3 plays a role in testicular steroidogenesis.


Subject(s)
Leydig Cells , Taste , Male , Mice , Humans , Animals , Saccharin/metabolism , Testosterone/metabolism , Homeostasis , Mammals
18.
Physiol Behav ; 267: 114221, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37146897

ABSTRACT

Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 mice were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.


Subject(s)
Fructose , Sugars , Humans , Mice , Female , Animals , Male , Sugars/pharmacology , Mice, Inbred C57BL , Fructose/pharmacology , Carbohydrates/pharmacology , Sucrose/pharmacology , Mice, Inbred Strains , Food Preferences , Taste
19.
Medicina (Kaunas) ; 59(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37109657

ABSTRACT

BACKGROUND: Previous studies on saccharin and cyclamate were either limited to experimental animals or lacked evaluation of their long-term consumption effects in humans. OBJECTIVES: This study evaluated the effect of chronic consumption of saccharin and cyclamate on biochemical parameters in healthy individuals and patients with type 2 diabetes mellitus. MATERIAL AND METHODS: Healthy and diabetic individuals were classified into two groups based on whether they consumed sweeteners or not. The participants were classified according to the amount of sweetener consumed per day and duration of consumption. Serum catalase activity, peroxynitrite, ceruloplasmin, and malondialdehyde concentrations were determined. Glycated hemoglobin, fasting glucose, creatinine, alanine transaminase, and lipid profile were also evaluated. The results suggest that saccharin and cyclamate increased HbA1C (+11.16%), MDA (+52.38%), TG (+16.74%), LDL (+13.39%), and TC/HDL (+13.11%) in healthy volunteers. Diabetic patients consuming sweeteners showed increased FSG (+17.51%), ceruloplasmin (+13.17%), and MDA (+8.92%). Diabetic patients showed a positive correlation between the number of tablets consumed per day with FSG and serum creatinine. A positive correlation was found between the duration of sweetener consumption and FSG as well as TG. CONCLUSION: Consumption of saccharin and cyclamate affected biochemical parameters related to metabolic functions in a time and dose-dependent manner and appear to increase oxidative stress in healthy and diabetic type 2 patients.


Subject(s)
Diabetes Mellitus, Type 2 , Saccharin , Animals , Humans , Cyclamates , Ceruloplasmin , Sweetening Agents
20.
Nutrients ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111090

ABSTRACT

The human gut microbiota, a complex community of microorganisms living in the digestive tract, consists of more than 1500 species distributed in more than 50 different phyla, with 99% of bacteria coming from about 30-40 species. The colon alone, which contains the largest population of the diverse human microbiota, can harbor up to 100 trillion bacteria. The gut microbiota is essential in maintaining normal gut physiology and health. Therefore, its disruption in humans is often associated with various pathological conditions. Different factors can influence the composition and function of the gut microbiota, including host genetics, age, antibiotic treatments, environment, and diet. The diet has a marked effect, impacting the gut microbiota composition, beneficially or detrimentally, by altering some bacterial species and adjusting the metabolites produced in the gut environment. With the widespread use of non-nutritive sweeteners (NNS) in the diet, recent investigations have focused on their effect on the gut microbiota as a mediator of the potential impact generated by gastrointestinal-related disturbances, such as insulin resistance, obesity, and inflammation. We summarized the results from pre-clinical and clinical studies published over the last ten years that examined the single effects of the most consumed NNS: aspartame, acesulfame-K, sucralose, and saccharin. Pre-clinical studies have given conflicting results for various reasons, including the administration method and the differences in metabolism of the same NNS among the different animal species. A dysbiotic effect of NNS was observed in some human trials, but many other randomized controlled trials reported a lack of significant impacts on gut microbiota composition. These studies differed in the number of subjects involved, their dietary habits, and their lifestyle; all factors related to the baseline composition of gut microbiota and their response to NNS. The scientific community still has no unanimous consensus on the appropriate outcomes and biomarkers that can accurately define the effects of NNS on the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Non-Nutritive Sweeteners , Animals , Humans , Non-Nutritive Sweeteners/analysis , Saccharin/pharmacology , Diet , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...