Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 618
Filter
1.
Plant J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976445

ABSTRACT

Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti-herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one-step anthranilate methyltransferase (AAMT), grapes have been thought to use a two-step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs in Vitis vinifera (wine grape), as well as one ortholog in "Concord" grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant-to-plant communication molecule. Because the Citrus sinensis (sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of the Vitis AAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageria sp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one-step enzymes by which grapes synthesize MeAA.

2.
Acta Crystallogr C Struct Chem ; 80(Pt 7): 302-310, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38899750

ABSTRACT

The salts bis(2-amino-3-methylpyridinium) fumarate dihydrate, 2C6H9N2+·C4H2O22-·2H2O (I), and 2-amino-3-methylpyridinium 5-chlorosalicylate, C6H9N2+·C7H4ClO3- (II), were synthesized from 2-amino-3-methylpyridine with fumaric acid and 5-chlorosalicylic acid, respectively. The crystal structures of these salts were characterized by single-crystal X-ray diffraction, revealing protonation in I and II by the transfer of a H atom from the acid to the pyridine base. In the crystals of both I and II, N-H...O interactions form an R22(8) ring motif. Hirshfeld surface analysis distinguishes the interactions present in the crystal structures of I and II, and the two-dimensional (2D) fingerprint plot analysis shows the percentage contribution of each type of interaction in the crystal packing. The volumes of the crystal voids of I (39.65 Å3) and II (118.10 Å3) have been calculated and reveal that the crystal of I is more mechanically stable than II. Frontier molecular orbital (FMO) analysis predicts that the band gap energy of II (2.6577 eV) is lower compared to I (4.0035 eV). The Quantum Theory of Atoms In Molecules (QTAIM) analysis shows that the pyridinium-carboxylate N-H...O interaction present in I is stronger than the other interactions, whereas in II, the hydroxy-carboxylate O-H...O interaction is stronger than the pyridinium-carboxylate N-H...O interaction; the bond dissociation energies also confirm these results. The positive Laplacian [∇2ρ(r) > 0] of these interactions shows that the interactions are of the closed shell type. An in-silico ADME (Absorption, Distribution, Metabolism and Excretion) study predicts that both salts will exhibit good pharmacokinetic properties and druglikeness.

3.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930798

ABSTRACT

An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.


Subject(s)
Capsaicin , Diclofenac , Salicylates , Skin , Capsaicin/analysis , Capsaicin/analogs & derivatives , Diclofenac/analysis , Chromatography, High Pressure Liquid/methods , Salicylates/analysis , Skin/chemistry , Animals , Rabbits , Chromatography, Reverse-Phase/methods , Diethylamines/chemistry
4.
Int J Pharm ; 660: 124318, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852750

ABSTRACT

Avian influenza virus subtype H9N2 has the ability to infect birds and humans, further causing significant losses to the poultry industry and even posing a great threat to human health. Oral vaccine received particular interest for preventing majority infection due to its ability to elicit both mucosal and systemic immune responses, but their development is limited by the bad gastrointestinal (GI) environment, compact epithelium and mucus barrier, and the lack of effective mucosal adjuvants. Herein, we developed the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) as an adjuvant for H9N2 vaccine. Encouragingly, CDP-DFNS facilitated the proliferation of T and B cells, and further induced the activation of T lymphocytes in vitro. Moreover, CDP-DFNS/H9N2 significantly promoted the antigen-specific antibodies levels in serum and intestinal mucosal of chickens, indicating the good ability to elicit both systemic and mucosal immunity. Additional, CDP-DFNS facilitate the activation of CD4 + and CD8 + T cells both in spleen and intestinal mucosal, and the indexes of immune organs. This study suggested that CDP-DFNS may be a new avenue for development of oral vaccine against pathogens that are transmitted via mucosal route.

5.
Korean J Pain ; 37(3): 211-217, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881281

ABSTRACT

Background: Tolerance to the analgesic effects of opioids and non-steroidal anti-inflammatory drugs (NSAIDs) is a major concern for relieving pain. Thus, it is highly valuable to find new pharmacological strategies for prolonged therapeutic procedures. Biguanide-type drugs such as metformin (MET) are effective for neuroprotection and can be beneficial for addressing opioid tolerance in the treatment of chronic pain. It has been proposed that analgesic tolerance to NSAIDs is mediated by the endogenous opioid system. According to the cross-tolerance between NSAIDs, especially sodium salicylate (SS), and opiates, especially morphine, the objective of this study was to investigate whether MET administration can reduce tolerance to the anti-nociceptive effects of SS. Methods: Fifty-six male Wistar rats were used in this research (weight 200-250 g). For induction of tolerance, SS (300 mg/kg) was injected intraperitoneally for 7 days. During the examination period, animals received MET at doses of 50, 75, or 100 mg/kg for 7 days to evaluate the development of tolerance to the analgesic effect of SS. The hot plate test was used to evaluate the drugs' anti-nociceptive properties. Results: Salicylate injection significantly increased hot plate latency as compared to the control group, but the total analgesic effect of co-treatment with SS + Met50 was stronger than the SS group. Furthermore, the effect of this combination undergoes less analgesic tolerance over time. Conclusions: It can be concluded that MET can reduce the analgesic tolerance that is induced by repeated intraperitoneal injections of SS in Wister rats.

6.
J Neurol Surg B Skull Base ; 85(3): 227-233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721364

ABSTRACT

Purpose Tinnitus is a phantom perception of sound in the absence of acoustic source. Previous evidence has indicated that miR-375-3p is downregulated in rats with tinnitus in comparison to the controls. Nevertheless, its molecular mechanism underlying tinnitus pathogenesis is unclarified. Methods SH-SY5Y cells were differentiated into neuronlike cells and stimulated with salicylate to mimic tinnitus in vitro. Immunofluorescence staining was utilized for measuring expression of NR2B (glutamate ionotropic receptor NMDA type subunit 2B). Intracellular reactive oxygen species (ROS) level was determined using DCFH-DA assay kit. Real-time quantitative polymerase chain reaction as well as western blotting was utilized for examining RNA and protein levels. Luciferase reporter assay was implemented for verifying the interaction between miR-375-3p and ELAVL4 (ELAV-like RNA-binding protein 4). Results Salicylate treatment enhanced levels of NR2B and the early immediate gene ARC as well as ROS production. miR-375-3p was downregulated in salicylate-treated group. Overexpressing miR-375-3p attenuated the effects induced by salicylate in SH-SY5Y cells. miR-375-3p targeted ELAVL4 and upregulating ELAVL4 reversed miR-375-3p upregulation-triggered effects on SH-SY5Y cells under salicylate treatment. Conclusion miR-375-3p mitigates salicylate-triggered neuronal injury in SH-SY5Y cells by regulating ELAVL4 expression.

7.
J Am Acad Dermatol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777185

ABSTRACT

The second part of this CME article discusses sunscreen regulation and safety considerations for humans and the environment. First, we provide an overview of the history of the United States Food and Drug Administration's regulation of sunscreen. Recent Food and Drug Administration studies clearly demonstrate that organic ultraviolet filters are systemically absorbed during routine sunscreen use, but to date there is no evidence of associated negative health effects. We also review the current evidence of sunscreen's association with vitamin D levels and frontal fibrosing alopecia, and recent concerns regarding benzene contamination. Finally, we review the possible environmental effects of ultraviolet filters, particularly coral bleaching. While climate change has been shown to be the primary driver of coral bleaching, laboratory-based studies suggest that organic ultraviolet filters represent an additional contributing factor, which led several localities to ban certain organic filters.

8.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791472

ABSTRACT

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Subject(s)
Acetates , Cactaceae , Carotenoids , Cyclopentanes , Food Storage , Fruit , Oxylipins , Salicylic Acid , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Fruit/growth & development , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Acetates/pharmacology , Carotenoids/metabolism , Food Storage/methods , Cactaceae/chemistry , Cactaceae/growth & development , Cactaceae/metabolism , Salicylic Acid/pharmacology , Salicylates/pharmacology , Salicylates/metabolism , Phenols/analysis , Oxalic Acid/metabolism
9.
Cureus ; 16(5): e60241, 2024 May.
Article in English | MEDLINE | ID: mdl-38746490

ABSTRACT

Salicylate exposure and toxicity are associated with a myriad of symptoms and signs, and a comprehensive knowledge of diagnosing and treating salicylate poisoning is needed. Here, we present a case of a 29-year-old female with a past medical history of schizoaffective disorder and bipolar disorder with multiple suicide attempts brought to our hospital, Nassau University Medical Center, East Meadow, by the Emergency Medical Service (EMS) due to an intentional overdose of 300 pills of acetylsalicylic acid. She had mixed acid-base disturbance with respiratory alkalosis and metabolic acidosis. She was started on bicarbonate infusion in the emergency department to maintain a blood pH of 7.5 and to maintain a urine pH of more than 7.5. As her salicylate levels were 98.2 at admission with altered mental status, she was started on slow, low-efficiency hemodialysis. A few hours later, she developed a rebound increase in salicylate levels to 129, associated with a change in mental status and the patient was more confused. She was started on regular hemodialysis with improvement in mental status and elimination of salicylate steadily. Given the extensive nature of toxic effects, a patient with severe salicylate toxicity can deteriorate rapidly and can be challenging to manage. As there is no specific antidote for aspirin, the goals of therapy depend primarily on limiting the absorption of salicylate, enhancing elimination, and providing supportive care. Monitoring the acid-base status and serum salicylate levels closely and monitoring for rebound increase in salicylate levels is of paramount importance. Aggressive hydration to maintain euvolemia, alkalinization, aggressive replenishment of potassium and magnesium, activated charcoal to decrease absorption, and hemodialysis remain the cornerstones of treatment.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124358, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38723462

ABSTRACT

A fluorescent probe based on salicylate modified layered double hydroxide (LDH-SA) is presented, enabling the swift sequential detection of Al3+, fosetyl-Al and glyphosate in aqueous environment. The probe was synthesized using a simple co-precipitation procedure, and its properties and synthesis conditions were thoroughly characterized and optimized. A unique "off-on-off" fluorescent response was observed when the probe sequentially interacted with Al3+ and glyphosate, and the detection method based on this phenomenon was established. The limits of detection for Al3+ and glyphosate were determined as 0.03 µmol/L and 0.03 mg/L, respectively, with rapid detection periods of one minute and four minutes. The LDH-SA/Al3+ complex requires Al3+ to generate a chelation-gathered fluorescence effect, which is the mechanism by which it quenches LDH-SA. This is possible due to the inhibition of excited-state intramolecular proton transfer and photoinduced electron transfer processes within LDH-SA after incorporating Al3+. Upon interaction with glyphosate, competitive complexation between glyphosate and Al3+ is initiated, which leads to a recovery of the fluorescence spectrum of LDH-SA and demonstrating the "off-on-off" behavior. An "INHIBIT" logic gate system was devised utilizing the response, indicating potential applications in fluorescence-based devices. Such a rapid, sequential detection capacity is impressive. It attests to the utility of LDH-SA as a probe for Al3+ or glyphosate, and suggests promise for applications in pollutant analysis or environmental monitoring applications.

11.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717972

ABSTRACT

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Subject(s)
Botrytis , Fragaria , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Salicylates , Fragaria/genetics , Fragaria/immunology , Fragaria/microbiology , Fragaria/enzymology , Fragaria/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Salicylates/metabolism , Salicylates/pharmacology , Disease Resistance/genetics , Multigene Family , Molecular Docking Simulation , Fruit/genetics , Fruit/immunology , Fruit/microbiology , Fruit/chemistry , Fruit/enzymology , Fruit/metabolism
12.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733408

ABSTRACT

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Subject(s)
Glycine max , Plant Diseases , Salicylates , Tylenchoidea , Animals , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Glycine max/genetics , Glycine max/parasitology , Plant Diseases/parasitology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Salicylates/metabolism , Tylenchoidea/physiology , Tylenchoidea/pathogenicity
13.
Talanta ; 276: 126223, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38728806

ABSTRACT

2-ethylhexyl salicylate (EHS) is used as a UV filter in personal-care products, such as sunscreen, to prevent skin damage through UV radiation. The application of EHS-containing products leads to systemic EHS absorption, metabolization and excretion. To measure EHS and its corresponding metabolite levels in urine, a comprehensive analytical procedure based on an extended enzymatic hydrolysis, on-line-SPE, and UPLC-MS/MS was developed. The method covers a large profile of seven metabolites (including isomeric structures) as well as EHS itself in a run time only of 18 min. Easy sample preparation, consisting of a 2-h hydrolysis step, followed by on-line enrichment and purification, add to the efficiency of the method. An update, compared to a previous method for the determination of EHS and metabolites in urine, is that, during hydrolysis, both glucuronide and sulfate conjugates are considered. The method was furthermore applied to urine samples after a real-life exposure scenario to EHS-containing sunscreen. The method is highly sensitive with limits of detection ranging from 6 to 65 ng/L. Moreover, it is characterized by good precision data, accuracy, and robustness to matrix influences. Application of the method to urine samples following dermal exposure to an EHS-containing sunscreen revealed EHS as the main biomarker after dermal exposure, followed by the major biomarkers 5OH-EHS, 5cx-EPS, 4OH-EHS and 5oxo-EHS. The expansion and optimization of this method decisively contributes to the research on the dermal metabolism of EHS and can be applied in exposure studies and for human biomonitoring.


Subject(s)
Salicylates , Solid Phase Extraction , Sunscreening Agents , Humans , Chromatography, High Pressure Liquid/methods , Hydrolysis , Liquid Chromatography-Mass Spectrometry , Salicylates/urine , Salicylates/metabolism , Sunscreening Agents/metabolism , Sunscreening Agents/chemistry , Ultraviolet Rays
14.
Eur J Pharm Biopharm ; 199: 114282, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614434

ABSTRACT

A film-forming system (FFS) represents a convenient topical dosage form for drug delivery. In this study, a non-commercial poly(lactic-co-glycolic acid) (PLGA) was chosen to formulate an FFS containing salicylic acid (SA) and methyl salicylate (MS). This unique combination is advantageous from a therapeutic point of view, as it enabled modified salicylate release. It is beneficial from a technological perspective too, because it improved thermal, rheological, and adhesive properties of the in situ film. DSC revealed complete dissolution of SA and good miscibility of MS with the polymer. MS also ensures optimal viscoelastic and adhesive properties of the film, leading to prolonged and sustained drug release. The hydrolysis of MS to active SA was very slow at skin pH 5.5, but it apparently occurred at physiological pH 7.4. The film structure is homogeneous without cracks, unlike some commercial preparations. The dissolution study of salicylates revealed different courses in their release and the influence of MS concentration in the film. The formulated PLGA-based FFS containing 5 % SA and 10 % MS is promising for sustained and prolonged local delivery of salicylates, used mainly for keratolytic and anti-inflammatory actions and pain relief.


Subject(s)
Drug Delivery Systems , Lactic Acid , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Salicylates , Salicylic Acid , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Salicylates/administration & dosage , Salicylates/chemistry , Salicylates/pharmacokinetics , Lactic Acid/chemistry , Drug Delivery Systems/methods , Salicylic Acid/administration & dosage , Salicylic Acid/chemistry , Salicylic Acid/pharmacokinetics , Polyglycolic Acid/chemistry , Drug Liberation , Administration, Topical , Chemistry, Pharmaceutical/methods , Administration, Cutaneous , Hydrogen-Ion Concentration , Solubility , Delayed-Action Preparations , Skin/metabolism
15.
Plants (Basel) ; 13(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611492

ABSTRACT

Opuntia ficus-indica has always interacted with many phytophagous insects; two of them are Dactylopius coccus and D. opuntiae. Fine cochineal (D. coccus) is produced to extract carminic acid, and D. opuntiae, or wild cochineal, is an invasive pest of O. ficus-indica in more than 20 countries around the world. Despite the economic and environmental relevance of this cactus, D. opuntiae, and D. coccus, there are few studies that have explored volatile organic compounds (VOCs) derived from the plant-insect interaction. The aim of this work was to determine the VOCs produced by D. coccus and D. opuntiae and to identify different VOCs in cladodes infested by each Dactylopius species. The VOCs (essential oils) were obtained by hydrodistillation and identified by GC-MS. A total of 66 VOCs from both Dactylopius species were identified, and 125 from the Esmeralda and Rojo Pelón cultivars infested by D. coccus and D. opuntiae, respectively, were determined. Differential VOC production due to infestation by each Dactylopius species was also found. Some changes in methyl salicylate, terpenes such as linalool, or the alcohol p-vinylguaiacol were related to Dactylopius feeding on the cladodes of their respective cultivars. Changes in these VOCs and their probable role in plant defense mechanisms should receive more attention because this knowledge could improve D. coccus rearing or its inclusion in breeding programs for D. opuntiae control in regions where it is a key pest of O. ficus-indica.

16.
Front Neurosci ; 18: 1368816, 2024.
Article in English | MEDLINE | ID: mdl-38629053

ABSTRACT

Introduction: Subjective tinnitus, the perception of sound without an external acoustic source, is often subsequent to noise-induced hearing loss or ototoxic medications. The condition is believed to result from neuroplastic alterations in the auditory centers, characterized by heightened spontaneous neural activities and increased synchrony due to an imbalance between excitation and inhibition. However, the role of the thalamic reticular nucleus (TRN), a structure composed exclusively of GABAergic neurons involved in thalamocortical oscillations, in the pathogenesis of tinnitus remains largely unexplored. Methods: We induced tinnitus in mice using sodium salicylate and assessed tinnitus-like behaviors using the Gap Pre-Pulse Inhibition of the Acoustic Startle (GPIAS) paradigm. We utilized combined viral tracing techniques to identify the neural circuitry involved and employed immunofluorescence and confocal imaging to determine cell types and activated neurons. Results: Salicylate-treated mice exhibited tinnitus-like behaviors. Our tracing clearly delineated the inputs and outputs of the auditory-specific TRN. We discovered that chemogenetic activation of the auditory TRN significantly reduced the salicylate-evoked rise in c-Fos expression in the auditory cortex. Discussion: This finding posits the TRN as a potential modulatory target for tinnitus treatment. Furthermore, the mapped sensory inputs to the auditory TRN suggest possibilities for employing optogenetic or sensory stimulations to manipulate thalamocortical activities. The precise mapping of the auditory TRN-mediated neural pathways offers a promising avenue for designing targeted interventions to alleviate tinnitus symptoms.

17.
Indian J Nephrol ; 34(1): 67-69, 2024.
Article in English | MEDLINE | ID: mdl-38645910

ABSTRACT

Salicylates are often used in clinical practice as antiplatelets as well as analgesics. Its overdose is not uncommon due to its easy availability over the counter. Mortality is high in severe cases when a lethal dose is consumed. Treatment of overdose is difficult due to the non-availability of an antidote. Hemodialysis is an underutilized treatment modality in such cases. We discuss here a case of a young female who presented to us 2.5 h after the consumption of a lethal dose of salicylate with symptoms of only tinnitus. She was successfully treated with two sessions of hemodialysis. Her drug levels on admission were remarkably high, and early hemodialysis was justified in view of high-dose consumption with minimal symptoms.

18.
Arch Toxicol ; 98(7): 2199-2211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38658404

ABSTRACT

As part of the safety assessment of salicylate esters in cosmetics, we developed a metabolism factor based on in vitro to in vivo extrapolation (IVIVE) to provide a better estimation of the aggregate internal exposure to the common metabolite, salicylic acid. Optimal incubation conditions using human liver S9 were identified before measuring salicylic acid formation from 31 substances. Four control substances, not defined as salicylic esters but which could be mistaken as such due to their nomenclature, did not form salicylic acid. For the remaining substances, higher in vitro intrinsic clearance (CLint, in vitro) values generally correlated with lower LogP values. A "High-Throughput Pharmacokinetic" (HTPK) model was used to extrapolate CLint, in vitro values to human in vivo clearance and half-lives. The latter were used to calculate the percentage of substance metabolised to salicylic acid in 24 h in vivo following human exposure to the ester, i.e. the "metabolism factor". The IVIVE model correctly reproduced the observed elimination rate of 3 substances using in silico or in vitro input parameters. For other substances, in silico only-based predictions generally resulted in lower metabolism factors than when in vitro values for plasma binding and liver S9 CLint, in vitro were used. Therefore, in vitro data input provides the more conservative metabolism factors compared to those derived using on in silico input. In conclusion, these results indicate that not all substances contribute equally (or at all) to the systemic exposure to salicylic acid. Therefore, we propose a realistic metabolism correction factor by which the potential contribution of salicylate esters to the aggregate consumer exposure to salicylic acid from cosmetic use can be estimated.


Subject(s)
Esters , Salicylic Acid , Humans , Salicylic Acid/pharmacokinetics , Salicylic Acid/metabolism , Cosmetics , Models, Biological , Administration, Cutaneous , Liver/metabolism , Liver/drug effects , Half-Life , Skin/metabolism , Skin/drug effects , Computer Simulation , Skin Absorption
19.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 3): 335-338, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38456058

ABSTRACT

Metal complexes of 3,5-diiso-propyl-salicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diiso-propyl-salicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hy-droxy group of the diiso-propyl-salicylate ligands participates in intra-molecular O-H⋯O hydrogen-bonding inter-actions.

20.
Front Pharmacol ; 15: 1345992, 2024.
Article in English | MEDLINE | ID: mdl-38515841

ABSTRACT

We performed an ab initio next-generation risk assessment (NGRA) for a fragrance ingredient, benzyl salicylate (BSal), to demonstrate how cosmetic ingredients can be evaluated for systemic toxicity endpoints based on non-animal approaches. New approach methodologies (NAMs) used to predict the internal exposure included skin absorption assays, hepatocyte metabolism, and physiologically based pharmacokinetic (PBPK) modeling, and potential toxicodynamic effects were assessed using pharmacology profiling, ToxProfiler cell stress assay, transcriptomics in HepG2 and MCF-7 cells, ReproTracker developmental and reproductive toxicology (DART) assays, and cytotoxicity assays in human kidney cells. The outcome of the NGRA was compared to that of the traditional risk assessment approach based on animal data. The identification of the toxicologically critical entity was a critical step that directed the workflow and the selection of chemicals for PBPK modeling and testing in bioassays. The traditional risk assessment and NGRA identified salicylic acid (SA) as the "toxdriver." A deterministic PBPK model for a single-day application of 1.54 g face cream containing 0.5% BSal estimated the Cmax for BSal (1 nM) to be much lower than that of its major in vitro metabolite, SA (93.2 nM). Therefore, SA was tested using toxicodynamics bioassays. The lowest points of departure (PoDs) were obtained from the toxicogenomics assays. The interpretation of these results by two companies and methods were similar (SA only results in significant gene deregulation in HepG2 cells), but PoD differed (213 µM and 10.6 µM). A probabilistic PBPK model for repeated applications of the face cream estimated the highest Cmax of SA to be 630 nM. The resulting margins of internal exposure (MoIE) using the PoDs were 338 and 16, which were more conservative than those derived from external exposure and in vivo PoDs (margin of safety values were 9,705). In conclusion, both traditional and ab initio NGRA approaches concluded that the daily application of BSal in a cosmetic leave-on face cream at 0.5% is safe for humans. The processing and interpretation of toxicogenomics data can lead to different PoDs, which can subsequently affect the calculation of the MoIE. This case study supports the use of NAMs in a tiered NGRA ab initio approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...