Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 478
Filter
1.
J Family Med Prim Care ; 13(5): 2073-2077, 2024 May.
Article in English | MEDLINE | ID: mdl-38948633

ABSTRACT

Introduction: Gastrointestinal infections affect many people annually. The most common bacterial agents involved in these infections are enteropathogenic bacteria and in the continuation of using broad-spectrum antibiotics, Clostridium difficile-associated diarrhea is involved, especially in hospitalized patients. The aim of the present study was to investigate the pattern of antibiotic resistance among enteropathogenic bacteria. Materials and Methods: In this cross-sectional study, 163 samples of patients with diarrhea in Dezful Ganjavian Hospital were examined. The samples were cultured in MacConkey, Hektoen enteric agar and GN broth, and cycloserine cefoxitin fructose agar media and incubated under standard conditions. In order to identify enteropathogenic bacteria, biochemical tests and serological confirmatory tests were used. Antibiotic resistance pattern of the isolates was investigated by Kirby-Bauer disk diffusion susceptibility test. Results: The frequency of pathogenic bacteria includes 41.1% of Shigella flexneri, followed by 41.1% of S. sonnei, 6.7% of Enteropathogenic E. coli, 5.5% of Salmonella enterica Serogroup B, and 5.5% of Shigella dysenteriae. The results revealed a total of 46 patients with orders regarding C. difficile culture, no C. difficile was isolated from the samples. The studied isolates showed the highest resistance to trimethoprim-sulfamethoxazole, and ceftriaxone (88.3%), and the most effective antibiotic in the treatment of patients was ciprofloxacin with 86% sensitivity. Conclusion: Susceptibility to antibiotics was different among the isolates, which shows that the early identification of the infection agent and the selection of the correct antibiotic treatment are effective in improving the gastrointestinal infection and preventing the spread of the infection.

2.
Sci Rep ; 14(1): 15380, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965268

ABSTRACT

Concerns about challenges with water availability in the Tadla Plain region of Morocco have grown as a result of groundwater contamination brought on by human activity, climate change, and insufficient groundwater management. The objective of the study is to measure the number of resistant bacteria in the groundwater of Beni Moussa and Beni Aamir, as well as to evaluate the level of water pollution in this area. 200 samples were therefore gathered from 43 wells over the course of four seasonal campaigns in 2017 and 2018. Additionally, the samples were examined to determine whether Salmonella species were present and if they were resistant to the 16 antibiotics that were tested. Salmonella spp. have been identified in 31 isolated strains in total, accounting for 18.02% of all isolated strains. Data on antibiotic resistance show that 58.1% of Salmonella spp. strains are multidrug-resistant (MDR); 38.7% of Salmonella strains are tolerant to at least six antibiotics, 19.4% to at least nine antibiotics, 9.7% to four to seven antibiotics, 6.5% to at least eleven antibiotics, and the remaining 3.2% to up to twelve antibiotics. A considerable level of resistance to cefepime (61.29%), imipenem (54.84%), ceftazidime (45.16%), ofloxacin (70.97%), and ertapenem (74.19%) was found in the data. Consequently, it is important to monitor and regulate the growth of MDR in order to prevent the groundwater's quality from declining.


Subject(s)
Anti-Bacterial Agents , Groundwater , Salmonella , Morocco , Salmonella/drug effects , Salmonella/isolation & purification , Anti-Bacterial Agents/pharmacology , Groundwater/microbiology , Humans , Water Microbiology , Microbial Sensitivity Tests , Incidence , Water Wells , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial
3.
Antibiotics (Basel) ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927222

ABSTRACT

Salmonella is one of the world's leading causes of zoonotic and foodborne illnesses. Recently, antimicrobial resistance (AMR) has become one of the most critical challenges to public health and food safety. Herein, we employed a meta-analysis to determine the pooled prevalence and spatiotemporal distribution of serovars and antimicrobial resistance in NTS in Burkina Faso. To find eligible articles, a comprehensive literature search of PubMed, African Journals Online, ScienceDirect, Google Scholar, and the gray literature (university libraries) in Burkina was conducted for the period from 2008 to 2020. Studies meeting the inclusion criteria were selected and assessed for risk of bias. To assess the temporal and spatial relationships between serotypes and resistant strains from humans, animals, food, and the environment, a random-effects statistical model meta-analysis was carried out using the Comprehensive Meta-Analysis Version 3.0 program. The NTS prevalence rates were 4.6% (95% CI: 3-7) and 20.1% (95% CI: 6.6-47.4) in humans and animals, respectively, and 16.8% (95% CI: 10.5-25.8) and 15.6% (95% CI: 8.2-27.5) in food and the environment, respectively. Most NTS serovars were S. Derby, reported both in food and animals, and S. Typhimurium, reported in humans, while S. Croft II, S. Jodpur II, and S. Kentucky were the most prevalent in the environment. NTS isolates were highly resistant to erythromycin, amoxicillin, cefixime, and cephalothin, with a pooled prevalence of multidrug resistance of 29% (95% CI: 14.5-49.5). The results of this review show a high diversity of Salmonella serotypes, as well as high antibiotic resistance in Salmonella isolates from animal, human, food, and environmental samples in Burkina, calling for a consolidated "One Health" approach to better understand the drivers of pathogen emergence, spread, and antimicrobial resistance, as well as the formulation of intervention measures needed to limit the risk associated with the disease.

4.
Methods Mol Biol ; 2813: 107-115, 2024.
Article in English | MEDLINE | ID: mdl-38888773

ABSTRACT

Mass spectrometry-based proteomics provides a wealth of information about changes in protein production and abundance under diverse conditions, as well as mechanisms of regulation, signaling cascades, interaction partners, and communication patterns across biological systems. For profiling of intracellular pathogens, proteomic profiling can be performed in the absence of a host to singularly define the pathogenic proteome or during an infection-like setting to identify dual perspectives of infection. In this chapter, we present techniques to extract proteins from the human bacterial intracellular pathogen, Salmonella enterica serovar Typhimurium, in the presence of macrophages, an important innate immune cell in host defense. We outline sample preparation, including protein extraction, digestion, and purification, as well as mass spectrometry measurements and bioinformatics analysis. The data generated from our dual perspective profiling approach provides new insight into pathogen and host protein modulation under infection-like conditions.


Subject(s)
Bacterial Proteins , Macrophages , Proteomics , Salmonella typhimurium , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Proteomics/methods , Humans , Bacterial Proteins/metabolism , Macrophages/microbiology , Macrophages/metabolism , Host-Pathogen Interactions , Proteome/metabolism , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections/immunology , Computational Biology/methods , Mass Spectrometry/methods
5.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890864

ABSTRACT

Loop-mediated isothermal amplification, LAMP, is nowadays the most popular isothermal nucleic acid amplification technique, and as such, several commercial, ready-to-use master mixes have flourished. Unfortunately, independent studies to determine their performance are limited. The current study performed an independent evaluation of the existing ready-to-use commercial LAMP master mixes WarmStart® LAMP Kit, LavaLAMP™ DNA Master Mix, Saphir Bst Turbo GreenMaster, OptiGene Fast Master Mix ISO-004, and SynLAMP Mix. To reduce bias, three different genes, namely ttr (Salmonella spp.), rfbE (E. coli O157), and hly (Listeria monocytogenes), were targeted. The comparison was based on amplification speed, performance with decreasing DNA concentrations, and the effect of five typical LAMP reaction additives (betaine, DMSO, pullulan, TMAC, and GuHCl). Significant differences were observed among the different master mixes. OptiGene provided the fastest amplification and showed less detrimental effects associated with the supplements evaluated. Out of the chemicals tested, pullulan provided the best results in terms of amplification speed. It is noteworthy that the different additives impacted the master mixes differently. Overall, the current study provides insights into the performance of commercial LAMP master mixes, which can be of value for the scientific community to better select appropriate reagents when developing new methods.

7.
Ital J Food Saf ; 13(2): 12142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38807743

ABSTRACT

The microbiological monitoring of bivalve mollusk harvesting areas in the Marche region is based on the parameters of Escherichia coli and Salmonella spp. However, Regulation EU/2019/627 stated criteria based on E. coli only to determine the health status of these areas. Therefore, the reason for Salmonella spp. monitoring, as provided in the Marche region, could be aimed at reducing the risk of placing on the market contaminated bivalve mollusks. This study, using the results of microbiological monitoring carried out in the Marche region from 2015 to 2022 and the methods based on Bayes' theorem and Poisson's distribution, evaluated the effectiveness and efficiency of Salmonella spp. monitoring in reducing the risk to the consumer. The results show that i) the use of a single sample unit significantly reduced the possibility of detecting non-compliance with the microbiological safety criterion; ii) the time taken to report positive results (average of approximately 10 days) did not allow the timely implementation of control measures; iii) the prevalence of positive outcomes was quite sporadic: a random trend of positivity is recognizable on a geographical and monthly basis for mussels and a geographical basis for striped clams; iv) considering the predictive value of E. coli against Salmonella spp., the specificity is very high and the negative predictive value versus Salmonella spp. would be >80%. In conclusion, the study shows that the monitoring of Salmonella spp. has a limited effect on reducing the risk to the consumer; however, in the cost/benefit assessment, other aspects not covered by this study should be considered.

8.
One Health ; 18: 100746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38746539

ABSTRACT

Multi-host communities are perfect scenarios for the emergence and spread of pathogens, threatening the recovery of endangered, isolated, or inbred populations, such as the brown bear (Ursus arctos) in northwestern Spain. The population recovery in recent years has forced bears to occupy highly anthropized areas, increasing their interaction with human and domestic animals, with potential consequences for global health. During 2022-2023 a survey of parasites, bacteria and viruses shared between wildlife, domestic animals and humans was performed in this population using non-invasive surveillance, i.e., bear fecal samples (n = 73) and sponge-based sampling of trees (n = 42; 14 rubbed trees and 28 control trees). Pathogen detection rates were defined as the percentage of qPCR or culture-positive samples. Generalized linear models were fitted to assess their relationship with environmental variables including dispersion of the human population, and percentage of agricultural and periurban habitats in a 6 km-buffer around each sample. Canine Adenovirus type 1 (45.2%), Giardia spp. (15.1%), Salmonella spp. (12.3%), and extended-spectrum-beta-lactamases (ESBL) Escherichia coli (1.4%) were identified in fecal samples. In contrast, only five sponges from three rubbed and two control trees resulted positive to E. coli (14.3%). The results suggest that several pathogens are common in the Cantabrian brown bear population and that anthropization of the territory modulates their prevalence and richness. The effective design of management programs for bear conservation will require a one-health approach, in which genetic analysis of non-invasive samples can be key tools for the sanitary surveillance at the wildlife-livestock-human interface.

9.
Foodborne Pathog Dis ; 21(7): 440-446, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597592

ABSTRACT

Salmonella spp. and Citrobacter spp. are among the microorganisms causing important foodborne outbreaks. In this study, it was tried to determine the presence and rate of Salmonella spp. and Citrobacter spp. in salad samples collected from certain regions of province of Isparta in Türkiye. A total of 50 salad samples were analyzed. Classical culture technique was used for microbiological analysis of salad samples. Suspected isolates obtained were identified using the VITEK-2 system. Although no negative visual changes were observed in the salad samples used in the study, it was determined that the number of Gram-negative microorganisms was very high and six salad samples were not suitable for public health. In 50 salad samples, 2% Salmonella and 4% Citrobacter freundii were detected. In addition, it was determined that the Salmonella strain isolated from the salad sample was resistant to three different antibiotics and Citrobacter was resistant to two different antibiotics. Salmonella spp. and Citrobacter spp. are considered very dangerous to public health because they are associated with foodborne outbreaks and can develop antibiotic resistance very quickly. Salad producers should try to reduce the possibility of microbial contamination by using different technologies.


Subject(s)
Citrobacter , Food Microbiology , Public Health , Salmonella , Salmonella/isolation & purification , Citrobacter/isolation & purification , Humans , Turkey , Salads/microbiology , Food Contamination/analysis , Microbial Sensitivity Tests , Fast Foods/microbiology , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , Citrobacter freundii/isolation & purification , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Drug Resistance, Bacterial
10.
J Microbiol Biotechnol ; 34(5): 1101-1108, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38563109

ABSTRACT

Earlier studies have validated the isolation of extended-spectrum beta-lactamase-producing Salmonella (ESBL-Sal) strains from food. While poultry is recognized as a reservoir for Salmonella contamination, pertinent data regarding ESBL-Sal remains limited. Consequently, the Ministry of Food and Drug Safety has isolated Salmonella spp. from retail meat and evaluated their antibiotic susceptibility and genetic characteristics via whole-genome sequencing. To further elucidate these aspects, this study investigates the prevalence, antibiotic resistance profiles, genomic characteristics, and homology of ESBL-Sal spp. obtained from livestock-derived products in South Korean retail outlets. A total of 653 Salmonella spp. were isolated from 1,876 meat samples, including 509 beef, 503 pork, 555 chicken, and 309 duck samples. The prevalence rates of Salmonella were 0.0%, 1.4%, 17.5%, and 28.2% in the beef, pork, chicken, and duck samples, respectively. ESBL-Sal was exclusively identified in poultry meat, with a prevalence of 1.4% in the chicken samples (8/555) and 0.3% in the duck samples (1/309). All ESBL-Sal strains carried the blaCTX-M-1 gene and exhibited resistance to ampicillin, ceftiofur, ceftazidime, nalidixic acid, and tetracycline. Eight ESBL-Sal isolates were identified as S. Enteritidis with sequence type (ST) 11. The major plasmid replicons of the Enteritidis-ST11 strains were IncFIB(S) and IncFII(S), carrying antimicrobial resistance genes (ß-lactam, tetracycline, and aminoglycoside) and 166 virulence factor genes. The results of this study provide valuable insights for the surveillance and monitoring of ESBL-Sal in South Korean food chain.


Subject(s)
Anti-Bacterial Agents , Chickens , Ducks , Food Microbiology , Meat , Microbial Sensitivity Tests , Salmonella , beta-Lactamases , beta-Lactamases/genetics , Animals , Republic of Korea , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/enzymology , Salmonella/drug effects , Meat/microbiology , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Ducks/microbiology , Cattle , Swine/microbiology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Prevalence , Poultry/microbiology , Plasmids/genetics
11.
Braz J Microbiol ; 55(2): 1759-1772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622468

ABSTRACT

Due to specific bacterial microbiota, raw milk cheeses have appreciated sensory properties. However, they may pose a threat to consumer safety due to potential pathogens presence. This study evaluated the microbiological contamination of 98 raw milk cheeses from Beira Baixa, Portugal. Presence and enumeration of Coagulase Positive Staphylococci (CPS), Listeria monocytogenes, Salmonella spp., pathogenic Escherichia coli, and indicator microorganisms (non-pathogenic E. coli and Listeria spp.) was attained. E. coli antimicrobial resistance (AMR) was also evaluated. PCR and/or Whole genome sequencing (WGS) was used to characterize E. coli, Salmonella spp. and L. monocytogenes isolates. Sixteen cheeses (16.3%) were classified as Satisfactory, 59 (60.2%) as Borderline and 23 (23.5%) as Unsatisfactory/Potential Injurious to Health. L. monocytogenes, CPS > 104 cfu g-1, Extraintestinal pathogenic E. coli (ExPEC) and Salmonella spp. were detected in 4.1%, 6.1%, 3.1% and 1.0% of the samples, respectively. Listeria innocua (4.1%) and E. coli > 104 cfu g-1 (16.3%) were also detected. AMR E. coli was detected in 23/98 (23.5%) of the cheese samples, of which two were multidrug resistant. WGS identified genotypes already associated to human disease and Listeria spp. cluster analysis indicated that cheese contamination might be related with noncompliance with Good Hygiene Practices during cheese production.


Subject(s)
Cheese , Food Microbiology , Milk , Cheese/microbiology , Portugal , Animals , Milk/microbiology , Food Safety , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/classification , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Hygiene , Escherichia coli/genetics , Escherichia coli/isolation & purification , Food Contamination/analysis , Drug Resistance, Bacterial , Humans
12.
Vaccines (Basel) ; 12(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675781

ABSTRACT

Bacterial surface display platforms have been developed for applications such as vaccine delivery and peptide library screening. The type V secretion system is an attractive anchoring motif for the surface expression of foreign proteins in gram-negative bacteria. SadA belongs to subtype C of the type V secretion system derived from Salmonella spp. and promotes biofilm formation and host cell adherence. The inner membrane lipoprotein SadB is important for SadA translocation. In this study, SadA was used as an anchoring motif to expose heterologous proteins in Salmonella typhimurium using SadB. The ability of SadA to display heterologous proteins on the S. typhimurium surface in the presence of SadB was approximately three-fold higher than that in its absence of SadB. Compared to full-length SadA, truncated SadAs (SadA877 and SadA269) showed similar display capacities when exposing the B-cell epitopes of urease B from Helicobacter pylori (UreB158-172aa and UreB349-363aa). We grafted different protein domains, including mScarlet (red fluorescent protein), the urease B fragment (UreBm) from H. pylori SS1, and/or protective antigen domain 4 from Bacillus anthracis A16R (PAD4), onto SadA877 or SadA1292. Whole-cell dot blotting, immunofluorescence, and flow cytometric analyses confirmed the localization of Flag×3-mScarlet (~30 kDa) and Flag×3-UreBm-mScarlet (~58 kDa) to the S. typhimurium surface using truncated SadA877 or SadA1292 as an anchoring motif. However, Flag×3-UreBm-PAD4-mScarlet (~75 kDa) was displayed on S. typhimurium using SadA1292. The oral administrated pSadBA1292-FUM/StmΔygeAΔmurI and pSadBA877-FUM/StmΔygeAΔmurI could elicit a significant mucosal and humoral immunity response. SadA could thus be used as an anchoring motif for the surface expression of large heterologous proteins as a potential strategy for attenuated bacterial vaccine development.

13.
Life (Basel) ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672760

ABSTRACT

Nowadays, there is an effort to improve the effectiveness of the composting process, supported by the addition of various supplements to reduce soil nutrition losses and increase soil remediation. The aim of this study was to examine the devitalization effect of natural additives like zeolite-clinoptilolite and its combination with hydrated lime in composted cattle manure on indicator and pathogen bacteria. The composting process was running in three static piles of cattle manure mixed with wheat straw (control, zeolite-lime, and zeolite) for 126 days. Composted manure substrates were determined for physicochemical (temperature, pH, nitrogen and phosphorus content, C/N, organic matter, and moisture) and microbiological analyses (Salmonella spp., indicator bacteria). The effects of additives were reflected in changes in physicochemical factors, e.g., an increase in temperature (<53 °C) or pH (<9.3). According to Pearson correlation, these changes (pH, Nt, Pt) resulted in a significant decrease (p < 0.001) of indicator bacteria (two or three orders) in zeolite pile or zeolite-lime pile. Die-off of Salmonella spp. in the zeolite-lime pile was indicated within 41 days; in other piles, this occurred on day 63. Our results can aid in further optimizing the composting of cattle manure in order to lower environmental pollution and the risk of human infection.

14.
Foodborne Pathog Dis ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38603588

ABSTRACT

This study assessed the microbiological quality and safety of mozzarella during various production stages in northern Tocantins, Brazil, by identifying critical biological points in the industrial environment within a tropical climatic region. Batches of mozzarella were evaluated, from raw milk to primary packaging, with a shelf life of 120 d at 4°C. Indicator microorganisms were quantified, and through microbiological and biomolecular approaches, Salmonella spp. and Listeria monocytogenes were identified. In addition, the toxigenic potential of coagulase-positive staphylococci (CPS) was characterized. Results indicated that the raw milk used for mozzarella production had low microbiological quality; pasteurization of raw milk effectively eliminated all identified pathogens and reduced microbiological counts (p > 0.05). An increase in bacterial counts (>2 log colony-forming unit [CFU]/g) and recontamination with Salmonella spp. and CPS, which potentially produce staphylococcal enterotoxin B, were observed during milk coagulation and curd draining. Stretching of the fermented curd reduced the enterobacteria, total coliforms, and Escherichia coli median values by 2.56, 2.64, and 2.3 log CFU/mL, respectively. Similarly, brining the pieces by immersion reduced the quantity of enterobacteria and total coliforms by 2.3 and 1.6 log CFU/mL, respectively. Of interest, in the freshly finished product, Salmonella spp. was present but L. monocytogenes was absent; however, after the shelf-life period, L. monocytogenes was present but Salmonella spp. was absent. Considering the environmental conditions that can promote the multiplication and preservation of pathogens and spoilage of dairy products in tropical climates, it is necessary to review operational hygiene procedures, particularly in milk coagulation vats and fermentation tables. This will ensure the production of high-quality mozzarella cheese with a reduced consumption risk.

15.
Open Vet J ; 14(1): 284-291, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633165

ABSTRACT

Background: Bacterial Omphalitis has been reported as a significant cause of mortalities in newly hatched broiler chicks. Aim: This study aimed to assess the occurrence of omphalitis among broiler chickens in Gharbia governorate in Egypt. In addition, the bacteria associated with the occurrence of omphalitis in broiler chickens were also investigated and characterized. Methods: For this purpose, 43 farms in that area were surveyed. The comparative levels of omphalitis caused by Escherichia coli (E. coli), Salmonella spp., and Staphylococcus aureus (S. aureus) were screened in 129 chicks. The drug resistance to eight commonly used antimicrobials in Egyptian poultry farms was screened using the disk diffusion method. Results: The overall incidence rate of omphalitis was 37.21%. In birds with omphalitis, the co-prevalence of S. aureus, Salmonella spp., and E. coli was 87.5%. When compared to healthy flocks, broiler chicks with omphalitis caused by Salmonella spp., E. coli, and S. aureus had a greater mortality rate in the first week of life. However, there were no significant differences in the mortality cases caused by these pathogens. Eighty-seven percent of the cases of omphalitis were linked to E. coli and 75% to Salmonella spp. and S. aureus. From the yolk sac of broiler chicks with omphalitis, E. coli, Salmonella spp., and S. aureus were isolated at rates of 87.5%, 62.5%, and 45.8%, respectively. The isolates of E. coli and Salmonella spp. exhibited great sensitivity to gentamycin and Tetracycline; however, the strongest drug resistance was observed toward cefpodoxime, sulphamethoxazole and trimethoprim, ampicillin, and amoxycillin and clavulanic acid. The recovered isolates of S. aureus showed susceptibility to chloramphenicol (72.37%), oxytetracycline (81.82%), and erythromycin (81.82%). However, every S. aureus isolate that was found resistant to amoxycillin and clavulanic acid, penicillin G and oxacillin. of blaTEM, blaSHV, and blaCTX-M genes has been proposed as the genetic cause of ß-lactam antibiotic resistance in Salmonella spp. and E. coli. MecA and blaZ; however, were found in every strain of S. aureus. Conclusion: The frequency of omphalitis and its associated mortalities was comparatively high in Gharbia governorate. More efforts should be made to adopt strict hygienic standards for controlling and preventing such disease and this will consequently lead to minimizing the use of antimicrobials in poultry farms.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli , Staphylococcus aureus , Chickens , Egypt , Prevalence , Drug Resistance, Bacterial , Microbial Sensitivity Tests/veterinary , Staphylococcal Infections/veterinary , Poultry , Salmonella , Amoxicillin , Clavulanic Acid
16.
Int J Food Microbiol ; 417: 110697, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38642433

ABSTRACT

Foodborne illness caused by Salmonella spp. is one of the most prevalent public health problems globally, which have brought immeasurable economic burden and social impact to countries around the world. Neither current nucleic acid amplification detection method nor standard culture method (2-3 days) are suitable for field detection in areas with a heavy burden of Salmonella spp. Here, we developed a highly sensitive and accurate assay for Salmonella spp. detection in less than 40 min. Specifically, the invA gene of Salmonella spp. was amplified by recombinase polymerase amplification (RPA), followed by Pyrococcus furiosus Argonaute (PfAgo)-based target sequence cleavage, which could be observed by a fluorescence reader or the naked eye. The assay offered the lowest detectable concentration of 1.05 × 101 colony forming units/mL (CFU/mL). This assay had strong specificity and high sensitivity for the detection of Salmonella spp. in field samples, which indicated the feasibility of this assay.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Pyrococcus furiosus , Salmonella , Pyrococcus furiosus/genetics , Salmonella/genetics , Salmonella/isolation & purification , Nucleic Acid Amplification Techniques/methods , Food Safety , Recombinases/metabolism , Recombinases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Sensitivity and Specificity , Food Contamination/analysis
17.
Foodborne Pathog Dis ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563784

ABSTRACT

A TaqMan multiplex real-time PCR (mRT-PCR) was developed to detect simultaneously Salmonella spp., Escherichia coli O157, Staphylococcus aureus, and Listeria monocytogenes in food samples. The method involves four sets of primers and probes tailored to the unique DNA sequences found in the invA, nuc, rfbE, and hly genes of each pathogen. The generated standard curves, correlating gene copy numbers with Ct values, demonstrated high accuracy (R2 > 0.99) and efficiency (92%-104%). Meanwhile, the limit of detection was 100 CFU/mL for the four target bacteria in artificially contaminated food samples after 6-8 h of enrichment. The assay's effectiveness was further verified by testing 80 naturally contaminated food samples, showing results largely in agreement with traditional culture methods. Overall, this newly developed TaqMan mRT-PCR, inclusive of a pre-enrichment step, proves to be a dependable and effective tool for detecting single or multiple pathogens in diverse food items, offering significant potential for in vitro diagnostics.

18.
Foodborne Pathog Dis ; 21(5): 298-305, 2024 May.
Article in English | MEDLINE | ID: mdl-38484326

ABSTRACT

Salmonella spp. is among the most central etiological agents in foodborne bacterial disorders. To identify Salmonella spp., numerous new molecular techniques have been developed conversely to the traditional culture-based methods. In this work, a new peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method was developed for the specific detection of Salmonella species, allowing a faster analysis compared with the traditional methods (ISO 6579-1: 2017). The method was optimized based on a novel PNA probe (SalPNA1692) combined with a blocker probe to detect Salmonella in food samples through an assessment of diverse-rich and selective enrichment broths. Our findings indicated that the best outcome was obtained using a 24-h pre-enrichment step in buffered peptone water, followed by RambaQuick broth selective enrichment for 16 h. For the enrichment step performance validation, fresh ground beef was artificially contaminated with two ranges of concentration of inoculum: a low level (0.2-2 colony-forming units [CFUs]/25 g) and a high level (2-10 CFUs/25 g). The new PNA-FISH method presented a specificity of 100% and a detection limit of 0.5 CFU/25 g of food sample, which confirms the great potential of applying PNA probes in food analysis.


Subject(s)
Food Microbiology , In Situ Hybridization, Fluorescence , Peptide Nucleic Acids , Salmonella , In Situ Hybridization, Fluorescence/methods , Salmonella/isolation & purification , Salmonella/genetics , Food Microbiology/methods , Animals , Food Contamination/analysis , Cattle , Sensitivity and Specificity , Limit of Detection , Red Meat/microbiology
19.
Future Microbiol ; 19: 377-384, 2024 03.
Article in English | MEDLINE | ID: mdl-38305237

ABSTRACT

Background: The present study aims to determine the presence of Yersinia spp., Yersinia pestis, Yersinia enterocolitica pathogen, Listeria monocytogenes, Salmonella spp., Shigella spp., Francisella tularensis and Borrelia spp. in brown rats of Tehran, Iran. Methods: PCR was used to detect various bacteria in 100 brown rats, Also, ELISA was used to detect antibodies against the F. tularensis and Borrelia spp. Results: A total of 16% and 13% of fecal samples were positive for Yersinia spp. and Y. enterocolitica pathogen. ELISA results were negative for F. tularensis and Borrelia. No specific antibodies (IgG) were against these bacteria. Conclusion: According to the results of our analysis, rats are significant transmitters and carriers of a variety of illnesses that can spread to both people and other animals.


Subject(s)
Listeria monocytogenes , Shigella , Yersinia enterocolitica , Humans , Animals , Rats , Yersinia enterocolitica/genetics , Iran/epidemiology , Salmonella
20.
J Vet Diagn Invest ; 36(2): 278-282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336609

ABSTRACT

We describe an unusual outbreak of mortality in suckling piglets following the misadministration of an oral vaccine against Salmonella Typhimurium and Salmonella Choleraesuis. Within 3-48 h of vaccination of a batch of ~700 piglets, ~300 developed marked swelling in the dorsal neck region, respiratory distress, fever, recumbency, and apathy. In total, ~100 died, and 4 were submitted for autopsy. Gross and microscopic lesions consisted of focally extensive areas of purple discoloration in the skin of the cervical region, associated with edema and hemorrhage in the subcutis and muscles. Additionally, there was interstitial pneumonia with marked interlobular edema and mild fibrinous pleuritis. Aerobic bacterial culture identified Salmonella Typhimurium (3 cases) and Salmonella Choleraesuis (1 case) in samples of skeletal muscle and lung and from pleural swab samples. Marked immunostaining against Salmonella spp. was observed in the skeletal muscle of the cervical region, as well as in blood vessels and macrophages from the lung, liver, spleen, and kidney. We concluded that inappropriate intramuscular administration of an oral vaccine against Salmonella resulted in septicemia and death in a batch of piglets.


Subject(s)
Salmonella Infections, Animal , Salmonella , Swine Diseases , Swine , Animals , Salmonella Infections, Animal/microbiology , Swine Diseases/microbiology , Salmonella typhimurium , Vaccines, Attenuated , Edema/veterinary , Administration, Oral
SELECTION OF CITATIONS
SEARCH DETAIL
...