Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
Article in English | MEDLINE | ID: mdl-38952049

ABSTRACT

The E-proteinoid 3 receptor (PTGER3), a member of the prostaglandin E2 (PGE2) subtype receptor, belongs to the G-protein-coupled superfamily of receptors. Animal studies have demonstrated its involvement in salt sensitivity by regulating sodium reabsorption. This study aimed to investigate the association between genetic variants of PTGER3 and salt sensitivity, longitudinal blood pressure (BP) changes, and the incidence of hypertension in Chinese adults. A chronic salt intake intervention was conducted involving 514 adults from 124 families in the 2004 Baoji Salt-Sensitivity Study Cohort in northern China. These participants followed a 3-day regular baseline diet, followed by a 7-day low-salt diet (3.0 g/d) and a 7-day high-salt diet (18 g/d), and were subsequently followed for 14 years. The findings revealed a significant relationship between the single nucleotide polymorphism (SNP) rs17482751 of PTGER3 and diastolic blood pressure (DBP) response to high salt intervention. Additionally, SNPs rs11209733, rs3765894, and rs2268062 were significantly associated with longitudinal changes in systolic blood pressure (SBP), DBP, and mean arterial pressure (MAP) during the 14-year follow-up period. SNP rs6424414 was significantly associated with longitudinal changes in DBP over 14 years. Finally, SNP rs17482751 showed a significant correlation with the incidence of hypertension over 14 years. These results emphasize the significant role of PTGER3 gene polymorphism in salt sensitivity, longitudinal BP changes, and the development of hypertension in the Chinese population.

2.
BMC Genomics ; 25(1): 612, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890564

ABSTRACT

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an intermediate phenotype of hypertension and is a predictor of long-term cardiovascular events and death. However, the genetic structures of SSBP are uncertain, and it is difficult to precisely diagnose SSBP in population. So, we aimed to identify genes related to susceptibility to the SSBP, construct a risk evaluation model, and explore the potential functions of these genes. METHODS AND RESULTS: A genome-wide association study of the systemic epidemiology of salt sensitivity (EpiSS) cohort was performed to obtain summary statistics for SSBP. Then, we conducted a transcriptome-wide association study (TWAS) of 12 tissues using FUSION software to predict the genes associated with SSBP and verified the genes with an mRNA microarray. The potential roles of the genes were explored. Risk evaluation models of SSBP were constructed based on the serial P value thresholds of polygenetic risk scores (PRSs), polygenic transcriptome risk scores (PTRSs) and their combinations of the identified genes and genetic variants from the TWAS. The TWAS revealed that 2605 genes were significantly associated with SSBP. Among these genes, 69 were differentially expressed according to the microarray analysis. The functional analysis showed that the genes identified in the TWAS were enriched in metabolic process pathways. The PRSs were correlated with PTRSs in the heart atrial appendage, adrenal gland, EBV-transformed lymphocytes, pituitary, artery coronary, artery tibial and whole blood. Multiple logistic regression models revealed that a PRS of P < 0.05 had the best predictive ability compared with other PRSs and PTRSs. The combinations of PRSs and PTRSs did not significantly increase the prediction accuracy of SSBP in the training and validation datasets. CONCLUSIONS: Several known and novel susceptibility genes for SSBP were identified via multitissue TWAS analysis. The risk evaluation model constructed with the PRS of susceptibility genes showed better diagnostic performance than the transcript levels, which could be applied to screen for SSBP high-risk individuals.


Subject(s)
Blood Pressure , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Blood Pressure/genetics , Gene Expression Profiling , Hypertension/genetics , Transcriptome , Polymorphism, Single Nucleotide , Male , Risk Assessment , Female , Sodium Chloride, Dietary/adverse effects
3.
J Am Heart Assoc ; 13(12): e034632, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842286

ABSTRACT

BACKGROUND: Hypertension is the leading risk factor for cardiovascular disease worldwide. Patients with blood pressure (BP) response to dietary sodium reduction are referred to as "salt sensitive." Salt sensitivity (SS) might be due to differences in sodium storage capacity and the erythrocyte SS examines this capacity of the red blood cells. This study aimed to test the effect of a self-performed sodium reduced diet on BP in patients with essential hypertension and examine whether erythrocyte SS predicts SS. METHODS AND RESULTS: Seventy-two patients with hypertension were included and randomized 2:1 to either sodium reduction or a control group for 4 weeks. Blood samples, 24-hour BP measurement, and 24-hour urine collection were performed before and after. The intervention group received advice on how to lower sodium intake. Urinary sodium excretion decreased 66 mmol (95% CI, -96 to -37 mmol) in the intervention group compared with the control group. Systolic 24-hour BP decreased 9 mm Hg after low-sodium diet compared with the control group (95% CI, -13 to -4 mm Hg). Similarly, the difference in reduction in diastolic BP between the groups was 5 mm Hg (95% CI, -8 to -1 mm Hg). We found no correlation between erythrocyte SS at baseline and decrease in 24-hour BP, neither systolic nor diastolic (P=0.66 and P = 0.84). CONCLUSIONS: Self-performed sodium reduction was feasible and led to decrease in 24-hour BP of 9/5 mm Hg compared with a control group. The erythrocyte SS did not correlate to the change in BP after lowering sodium intake. REGISTRATION: URL: https://clinicaltrials.gov; Unique Identifier: NCT05165823.


Subject(s)
Blood Pressure , Diet, Sodium-Restricted , Essential Hypertension , Humans , Female , Male , Middle Aged , Diet, Sodium-Restricted/methods , Essential Hypertension/physiopathology , Essential Hypertension/diet therapy , Essential Hypertension/diagnosis , Blood Pressure/physiology , Aged , Erythrocytes/metabolism , Treatment Outcome , Adult
4.
Expert Rev Cardiovasc Ther ; 22(6): 265-271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823009

ABSTRACT

INTRODUCTION: The aim of the present study is to analyze the data indicating an association between high salt intake and the gastrointestinal microbiota in the development of salt-sensitive hypertension in animals and men. It is also, to discuss the preventive effects of exercise on gut-induced hypertension by favorably modifying the composition of gut microbiota. AREAS COVERED: Salt sensitivity is quite common, accounting for 30%-60% in hypertensive subjects. Recently, a novel cause for salt-sensitive hypertension has been discovered through the action of gut microbiota by the secretion of several hormones and the action of short chain fatty acids (SCFAs). In addition, recent studies indicate that exercise might favorably modify the adverse effects of gut microbiota regarding their effects on BP. To identify the role of gut microbiota on the incidence of hypertension and CVD and the beneficial effect of exercise, a Medline search of the English literature was conducted between 2018 and 2023 and 42 pertinent papers were selected. EXPERT OPINION: The analysis of data from the selected papers disclosed that the gut microbiota contribute significantly to the development of salt-sensitive hypertension and that exercise modifies their gut composition and ameliorates their adverse effects on BP.


Subject(s)
Blood Pressure , Exercise , Gastrointestinal Microbiome , Hypertension , Sodium Chloride, Dietary , Gastrointestinal Microbiome/physiology , Humans , Hypertension/prevention & control , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/administration & dosage , Animals , Exercise/physiology , Fatty Acids, Volatile/metabolism
5.
Sci China Life Sci ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38739172

ABSTRACT

Individuals with a high degree of salt sensitivity (SS) have a greater risk of cardiovascular disease (CVD), but whether SS fosters CVD by influencing metabolomics homeostasis remains unclear. This study aimed to reveal the role of the SS-related metabolomics signature in the development of CVDs, based on the MetaSalt study, which was a dietary salt-intervention trial conducted at four centers in China in 2019. A total of 528 participants were recruited and underwent 3 days of baseline observations, a 10-day low-salt intervention, and a 10-day high-salt intervention. Plasma untargeted metabolomics, lipidomics, and BP measurements were scheduled at each stage. Participants were grouped into extreme SS, moderate SS, and salt-resistant (SR) individuals according to their BP responses to salt. Linear mixed models were used to identify SS-related metabolites and determine the relationship between the SS-related metabolomics signature and arterial stiffness. Mendelian randomization (MR) analyses were applied to establish the causal pathways among the SS-related metabolites, BP, and CVDs. Among the 713 metabolites, 467 were significantly changed after the high-salt intervention. Among them, the changes in 30 metabolites from the low-salt to the high-salt intervention differed among the SS groups. Of the remaining nonsalt-related metabolites, the baseline levels of 11 metabolites were related to SS. These 41 metabolites explained 23% of the variance in SS. Moreover, SS and its metabolomics signature were positively correlated with arterial stiffness. MR analyses demonstrated that the SS-related metabolites may affect CVD risk by altering BP, indicating that the increase in BP was the consequence of the changes in SS-related metabolites rather than the cause. Our study revealed that the metabolomics signature of SS individuals differs from that of SR individuals and that the changes in SS-related metabolites may increase arterial stiffness and foster CVDs. This study provides insight into understanding the biology and targets of SS and its role in CVDs.

6.
Clin Exp Nephrol ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581621

ABSTRACT

BACKGROUND: Hypertension is one of the major etiologies that cause chronic kidney disease (CKD) and can exacerbate kidney dysfunction. Zinc is an essential trace element playing a role in blood pressure regulation, and zinc deficiency, a common comorbidity in patients with CKD, can cause hypertension. However, the precise mechanism underlying zinc deficiency-induced hypertension is unknown. Sodium (Na+) retention due to inappropriate Na+ reabsorption in the renal tubule is the principal pathophysiology of hypertension. Therefore, this study aimed to investigate the association between zinc deficiency and salt sensitivity. METHODS: Adult mice were fed a zinc-adequate (ZnA) or zinc-deficient (ZnD) diet combined with/without high salt in drinking water (HS) for 4 weeks (n = 6 each). Changes in blood pressure, urinary sodium excretion, and the expressions of the proximal tubular Na+ transporter, Na+/H+ exchanger 3 (NHE3), which mostly contributes to filtered Na+ reabsorption and the downstream Na+-Cl- transporter (NCC) were analyzed. RESULTS: Urinary Na+ excretion significantly increased in ZnD mice, indicating that zinc deficiency causes natriuresis. NHE3 expressions were significantly suppressed, whereas NCC was upregulated in ZnD mice. Interestingly, the combination of high salt and ZnD diet (HS-ZnD) reversed the urinary Na+ loss. The NCC remained activated and NHE3 expressions paradoxically increased in HS-ZnD mice compared with those fed the combination of high salt and ZnA diet. In addition, blood pressure significantly increased only in HS-ZnD mice. CONCLUSION: The combination of zinc deficiency and high salt causes hypertension. Zinc is associated with salt-sensitivity, potentially through NHE3 and NCC regulation.

7.
Metabolism ; 154: 155831, 2024 May.
Article in English | MEDLINE | ID: mdl-38431129

ABSTRACT

BACKGROUND: Excessive dietary salt intake increases vascular stiffness in humans, especially in salt-sensitive populations. While we recently suggested that the endothelial sodium channel (EnNaC) contributes to salt-sensitivity related endothelial cell (EC) and arterial stiffening, mechanistic understanding remains incomplete. This study therefore aimed to explore the role of EC-serum and glucocorticoid regulated kinase 1 (SGK1), as a reported regulator of sodium channels, in EC and arterial stiffening. METHODS AND RESULTS: A mouse model of salt sensitivity-associated vascular stiffening was produced by subcutaneous implantation of slow-release deoxycorticosterone acetate (DOCA) pellets, with salt (1 % NaCl, 0.2 % KCl) administered via drinking water. Preliminary data showed that global SGK1 deletion caused significantly decreased blood pressure (BP), EnNaC activity and aortic endothelium stiffness as compared to control mice following DOCA-salt treatment. To probe EC signaling pathways, selective deletion of EC-SGK1 was performed by cross-breeding cadherin 5-Cre mice with sgk1flox/flox mice. DOCA-salt treated control mice had significantly increased BP, EC and aortic stiffness in vivo and ex vivo, which were attenuated by EC-SGK1 deficiency. To demonstrate relevance to humans, human aortic ECs were cultured in the absence or presence of aldosterone and high salt with or without the SGK1 inhibitor, EMD638683 (10uM or 25uM). Treatment with aldosterone and high salt increased intrinsic stiffness of ECs, which was prevented by SGK1 inhibition. Further, the SGK1 inhibitor prevented aldosterone and high salt induced actin polymerization, a key mechanism in cellular stiffening. CONCLUSION: EC-SGK1 contributes to salt-sensitivity related EC and aortic stiffening by mechanisms appearing to involve regulation of actin polymerization.


Subject(s)
Endothelial Cells , Immediate-Early Proteins , Protein Serine-Threonine Kinases , Vascular Stiffness , Animals , Humans , Mice , Actins/metabolism , Aldosterone/metabolism , Aldosterone/pharmacology , Blood Pressure/physiology , Desoxycorticosterone Acetate , Endothelial Cells/metabolism , Glucocorticoids/metabolism , Protein Serine-Threonine Kinases/metabolism , Immediate-Early Proteins/metabolism
8.
Front Nutr ; 11: 1334853, 2024.
Article in English | MEDLINE | ID: mdl-38524849

ABSTRACT

Background: While salt sensitivity of blood pressure (SSBP) is a risk factor for hypertension, end-organ damage and death, most studies are conducted in western countries and in White people. We previously found that the prevalence of SSBP in Blacks living in Sub-Saharan Africa is as high as 75-80% like what has been reported in the west. Erythrocyte glycocalyx sensitivity to sodium (eGCSS), a marker of sodium-induced damage to the erythrocyte and vascular endothelial glycocalyx is thought to be related to blood pressure perturbations associated with salt intake. We hypothesized that SSBP correlates with eGCSS differently in men and women in Black people. Methods: We conducted a cross sectional study using data from our recent clinical trial from Livingstone University Teaching Hospital among 117 normotensive young adults. We used a "salt blood test" to determine eGCSS and an immediate pressor response to oral salt (IPROS) for the diagnosis of SSBP. Results: The proportion of males were equal to females and the median age (interquartile range) of the participants was 29 (22-45) years. The eGCSS scores were higher in salt-resistant females compared to salt-sensitive females and males. eGCSS correlated negatively with SSBP (AOR 0.98, 95% CI 0.97-0.99, p = 0.008), however, this relationship was driven by female sex and abrogated by male sex. Although blood pressure elevations exhibited a sustained bimodal pattern in both sexes, in males, systolic and diastolic blood pressure never returned to baseline during the time course as it did in females. Conclusion: In this study, eGCSS correlated negatively with SSBP in black women but not in black men and the pressor response to dietary salt was significantly higher in men compared to women. These results suggest that women tend to have a higher disruption of the vascular endothelial glycocalyx by an acute salt load, implying that acute changes in blood pressure may not be driven directly by the endothelial glycocalyx. Our findings suggest a novel mechanism linking eGCSS and SSBP with potential implications for sex differences in salt-induced cardiovascular disease.Clinical trial registration: https://clinicaltrials.gov/, identifier [NCT04844255].

9.
Adv Clin Exp Med ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506416

ABSTRACT

BACKGROUND: Recent studies have indicated that the skin lymphatic system and interstitium may play a role in the pathophysiology of arterial hypertension (AH). OBJECTIVES: We aimed to determine whether the set of pathway parameters described previously in rodents would allow for the distinction between hypertensive and normotensive patients. MATERIAL AND METHODS: Molecular and histopathological parameters from the skin and blood of patients with AH (AH group, n = 53), resistant AH (RAH group, n = 32) and control (C group, n = 45) were used, and a statistical multivariate bootstrap methodology combining partial least squares-discriminant analysis (PLS-DA) and selectivity ratio (SR) were applied. RESULTS: The C vs RAH model presented the best prediction performance (AUC test = 0.90) and had a sensitivity and specificity of 73.68% and 83.33%, respectively. However, the parameters selected for the C vs AH group model were the most important for the pathway described in the rodent model, i.e., greater density of the skin lymphatic vessels (D2-40 expression) and greater number of macrophages (CD68 expression), higher expression of the messenger ribonucleic acid (mRNA) of nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGFC) and podoplanin (PDPN) in the skin, greater concentration of hyaluronic acid (HA) in the skin, and lower serum concentration of VEGF-C. CONCLUSIONS: Our study suggests that the NFAT5/VEGF-C/lymphangiogenesis pathway, previously described in rodent studies, may also be present in human HA. Further experiments are needed to confirm our findings.

10.
Children (Basel) ; 11(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38255411

ABSTRACT

It is widely known that optimal nutrition in the first 1000 days of life positively impacts the child's development throughout adulthood. In this setting, salt should not be added to complementary feeding. In developed countries, salt intake is generally higher than recommended for children. Excessive salt intake is the major determinant of hypertension and is associated with several cardiovascular outcomes. Therefore, pediatricians have a key role in raising awareness among parents to avoid salt consumption in the first 1000 days of life to ensure better health for their children. Starting from a review of the literature published in PubMed/MedLine regarding the short- and long-term consequences of salt consumption during the first 1000 days of life, our comprehensive review aims to analyze the beneficial effects of avoiding salt at such a vulnerable stage of life as the first 1000 days. Obesity, hypertension, increased salt sensitivity, high sweet drink consumption, increased mortality, and morbidity persisting in adult age represent the principal consequences of a higher salt intake during the first 1000 days of life.

11.
Life (Basel) ; 14(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38255734

ABSTRACT

Previous transplantation studies and the concept of 'nephron underdosing' support the idea that the kidney plays a crucial role in the development of essential hypertension. This suggests that there are genetic factors in the kidney that can either elevate or decrease blood pressure. The kidney normally maintains arterial pressure within a narrow range by employing the mechanism of pressure-natriuresis. Hypertension is induced when the pressure-natriuresis mechanism fails due to both subtle and overt kidney abnormalities. The inheritance of hypertension is believed to be polygenic, and essential hypertension may result from a combination of genetic variants that code for renal tubular sodium transporters or proteins involved in regulatory pathways. The renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) are the major regulators of renal sodium reabsorption. Hyperactivity of either the RAAS or SNS leads to a rightward shift in the pressure-natriuresis curve. In other words, hypertension is induced when the activity of RAAS and SNS is not suppressed despite increased salt intake. Sodium overload, caused by increased intake and/or reduced renal excretion, not only leads to an expansion of plasma volume but also to an increase in systemic vascular resistance. Endothelial dysfunction is caused by an increased intracellular Na+ concentration, which inhibits endothelial nitric oxide (NO) synthase and reduces NO production. The stiffness of vascular smooth muscle cells is increased by the accumulation of intracellular Na+ and subsequent elevation of cytoplasmic Ca++ concentration. In contrast to the hemodynamic effects of osmotically active Na+, osmotically inactive Na+ stimulates immune cells and produces proinflammatory cytokines, which contribute to hypertension. When this occurs in the gut, the microbiota may become imbalanced, leading to intestinal inflammation and systemic hypertension. In conclusion, the primary cause of hypertension is sodium overload resulting from kidney dysregulation.

12.
J Clin Hypertens (Greenwich) ; 26(1): 36-46, 2024 01.
Article in English | MEDLINE | ID: mdl-38010846

ABSTRACT

Recent studies have reported the role of the M3 muscarinic acetylcholine receptor (M3R), a member of the G-protein coupled receptor superfamily, encoded by the CHRM3 gene, in cardiac function and the regulation of blood pressure (BP). The aim of this study was to investigate the associations of CHRM3 genetic variants with salt sensitivity, longitudinal BP changes, and the development of hypertension in a Chinese population. We conducted a chronic dietary salt intervention experiment in a previously established Chinese cohort to analyze salt sensitivity of BP. Additionally, a 14-year follow-up was conducted on all participants in the cohort to evaluate the associations of CHRM3 polymorphisms with longitudinal BP changes, as well as the incidence of hypertension. The single nucleotide polymorphism (SNP) rs10802811 within the CHRM3 gene displayed significant associations with low salt-induced changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), while rs373288072, rs114677844, and rs663148 exhibited significant associations with SBP and MAP responses to a high-salt diet. Furthermore, the SNP rs58359377 was associated with changes in SBP and pulse pressure (PP) over the course of 14 years. Additionally, the 14-year follow-up revealed a significant association between the rs619288 polymorphism and an increased risk of hypertension (OR = 1.74, 95% CI: 1.06-2.87, p = .029). This study provides evidence that CHRM3 may have a role in salt sensitivity, BP progression, and the development of hypertension.


Subject(s)
Hypertension , Adult , Humans , Blood Pressure/genetics , Hypertension/epidemiology , Hypertension/genetics , Sodium Chloride, Dietary/adverse effects , Incidence , Polymorphism, Single Nucleotide , China/epidemiology , Receptor, Muscarinic M3/genetics
13.
Heliyon ; 9(12): e22466, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125519

ABSTRACT

Accumulating evidence showed that competing endogenous RNA (ceRNA) mechanism plays a pivotal role in salt sensitivity of blood pressure (SSBP). We constructed a ceRNA network based on SSBP-related differently expressed lncRNAs (2), mRNAs (73) and miRNAs (18). Bioinformatic analyses were utilized to analyze network and found network genes participate in biological pathways related to SSBP pathogenesis such as regulation of nitric oxide biosynthetic process (GO:0045,428) and cellular response to cytokine stimulus (GO:0071,345). Fourteen candidate ceRNA pathways were selected from network to perform qRT-PCR validation and found nine RNAs (KCNQ1OT1, SLC8A1-AS1, IL1B, BCL2L11, KCNJ15, CX3CR1, KLF2, hsa-miR-362-5p and hsa-miR-423-5p) differently expressed between salt-sensitive (SS) and salt-resistant (SR) groups (P < 0.05). Four ceRNA pathways were further validated by luciferase reporter assay and found KCNQ1OT1→hsa-miR-362-5p/hsa-miR-423-5p→IL1B pathways may influence the pathogenic mechanism of SS. Our findings suggested the ceRNA pathway and network may affect SS occurrence mainly through endothelial dysfunction and inflammatory activation.

14.
J Cardiovasc Dev Dis ; 10(10)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37887861

ABSTRACT

This study aimed to delineate the effect of sodium chloride on the induction of inflammatory responses and the development of hypertension in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. Splenocytes were isolated from the spleens of SS and SR rats, and cultured on anti-CD3-coated plates for 5 days. The cultured splenic T-cells were challenged with a hypertonic salt solution (0, 20, or 40 mM) in the absence or presence of IL-6 (0, 20, or 60 ng/mL), TGF-ß (0, 5, or 15 ng/mL), or IL-23 (0, 10, or 30 ng/mL), and analyzed via ELISA, flow cytometry, and immunofluorescence. The hypertonic salt solution potentiated IL-17A production, as well as the differentiation of Th17 cells via IL-6/TGF-ß/IL-23, exclusively in SS rats. However, it did not affect IL-10 production or the differentiation of Treg cells in any of the groups. Furthermore, it potentiated the signal of RORγt in IL-6-treated splenic T-cells from SS rats. To summarize, cultured splenic T-cells exhibited enhanced inflammatory responses on exposure to a hypertonic salt solution in SS rats only, which indicated that sodium chloride and inflammatory cytokines synergistically drove the induction of pathogenic Th17 cells and the development of hypertension in this group only.

15.
Am J Physiol Renal Physiol ; 325(6): F707-F716, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37795535

ABSTRACT

Blood pressure (BP) responses to sodium intake show great variation, discriminating salt-sensitive (SS) from salt-resistant (SR) individuals. The pathophysiology behind salt sensitivity is still not fully elucidated. We aimed to investigate salt-induced effects on body fluid, vascular tone, and autonomic cardiac response with regard to BP change in healthy normotensive individuals. We performed a randomized crossover study in 51 normotensive individuals with normal body mass index and estimated glomerular filtration rate. Subjects followed both a low-Na+ diet (LSD, <50 mmol/day) and a high-Na+ diet (HSD, >200 mmol/day). Cardiac output, systemic vascular resistance (SVR), and cardiac autonomous activity, through heart rate variability and cross-correlation baroreflex sensitivity (xBRS), were assessed with noninvasive continuous finger BP measurements. In a subset, extracellular volume (ECV) was assessed by iohexol measurements. Subjects were characterized as SS if mean arterial pressure (MAP) increased ≥3 mmHg after HSD. After HSD, SS subjects (25%) showed a 6.1-mmHg (SD 1.9) increase in MAP. No differences between SS and SR in body weight, cardiac output, or ECV were found. SVR was positively correlated with Delta BP (r = 0.31, P = 0.03). xBRS and heart rate variability were significantly higher in SS participants compared to SR participants after both HSD and LSD. Sodium loading did not alter heart rate variability within groups. Salt sensitivity in normotensive individuals is associated with an inability to decrease SVR upon high salt intake that is accompanied by alterations in autonomous cardiac regulation, as reflected by decreased xBRS and heart rate variability. No discriminatory changes upon high salt were observed among salt-sensitive individuals in body weight and ECV.NEW & NOTEWORTHY Extracellular fluid expansion in normotensive individuals after salt loading is present in both salt-sensitive and salt-resistant individuals and is not discriminatory to the blood pressure response to sodium loading in a steady-state measurement. In normotensive subjects, the ability to sufficiently vasodilate seems to play a pivotal role in salt sensitivity. In a normotensive cohort, differences in sympathovagal balance are also present in low-salt conditions rather than being affected by salt loading. Whereas treatment and prevention of salt-sensitive blood pressure increase are mostly focused on renal sodium handling and extracellular volume regulation, our study suggests that an inability to adequately vasodilate and altered autonomous cardiac functioning are additional key players in the pathophysiology of salt-sensitive blood pressure increase.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Humans , Blood Pressure , Sodium Chloride, Dietary/adverse effects , Heart Rate/physiology , Cross-Over Studies , Sodium Chloride/pharmacology , Sodium/pharmacology , Body Weight
16.
Bioimpacts ; 13(5): 355-358, 2023.
Article in English | MEDLINE | ID: mdl-37736342

ABSTRACT

Salt sensitivity defines a state characterized by a highly reactive blood pressure to changes in salt intake. The salt-sensitive phenotype is strongly associated with hypertension, visceral adiposity/metabolic syndrome, and ageing. Obesity accounts for around 70% of hypertension in young adults, and 30% to 50% of adult hypertensives carry the salt-sensitive phenotype. It is estimated that the salt-sensitive phenotype is responsible for high blood pressure in over 600 million adults. But is the salt-sensitive phenotype correctable? Interventional, controlled, clinical trials in obese adolescents and young obese adults, demonstrated that weight-reducing lifestyle modifications revert the salt-sensitive to the salt-resistant phenotype, and restored the faulty production of nitric oxide. Correction of the salt-sensitive phenotype lowers the blood pressure by reducing its reactivity to dietary salt. In a random sample of obese adults subjected to lifestyle modifications, those who were salt-resistant at baseline, were also normotensive and failed to further lower their blood pressure despite a 12% drop in body weight. The salt-resistant phenotype protects the metabolically healthy obese from hypertension, even if their salt consumption is comparable to that of salt-sensitive obese. In summary, at early stages, the elevated blood pressure of obesity, is determined by epigenetic changes leading to a state of salt-sensitivity.

17.
Adv Med Sci ; 68(2): 276-289, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37639949

ABSTRACT

PURPOSE: Recent studies, conducted mainly on the rodent model, have demonstrated that regulatory pathway in the skin provided by glycosaminoglycans, nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGF-C) and process of lymphangiogenesis may play an important role in extrarenal regulation of sodium (Na+) balance, body water volume, and blood pressure. We aimed to investigate the concentrations and relations among the main factors of this pathway in human skin to confirm that this regulatory axis also exists in humans. PATIENTS AND METHODS: Skin specimens from patients diagnosed with arterial hypertension and from control group were histologically and molecularly examined. RESULTS: The primary hypertensive and control groups did not differ in Na+ â€‹concentrations in the skin. However, the patients with hypertension and higher skin Na+ concentration had significantly greater density of skin lymphatic vessels. Higher skin Na+concentration was associated with higher skin water content. In turn, skin water content correlated with factors associated with lymphangiogenesis, i.e. NFAT5, VEGF-C, and podoplanin (PDPN) mRNA expression in the skin. The strong mutual pairwise correlations of the expressions of NFAT5, VEGF-C, vascular endothelial growth factor D (VEGF-D) and PDPN mRNA were noted in the skin in all of the studied groups. CONCLUSIONS: Our study confirms that skin interstitium and the lymphatic system may be important players in the pathophysiology of arterial hypertension in humans. Based on the results of our study and existing literature in this field, we propose the hypothetical model which might explain the phenomenon of salt-sensitivity.


Subject(s)
Hypertension , Lymphatic Vessels , Humans , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Sodium , Vascular Endothelial Growth Factor D , Hypertension/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , RNA, Messenger , Water
18.
Front Physiol ; 14: 1208270, 2023.
Article in English | MEDLINE | ID: mdl-37534363

ABSTRACT

Introduction: Salt sensitivity of blood pressure is a phenomenon in which blood pressure changes according to dietary sodium intake. Our previous studies found that high salt activates antigen presenting cells, resulting in the development of hypertension. The mechanisms by which salt-induced immune cell activation is regulated in salt sensitivity of blood pressure are unknown. In the current study, we investigated dietary salt-induced effects on the renin-angiotensin-aldosterone system (RAAS) gene expression in myeloid immune cells and their impact on salt sensitive hypertension in humans. Methods: We performed both bulk and single-cell sequencing analysis on immune cells with in vitro and in vivo high dietary salt treatment in humans using a rigorous salt-loading/depletion protocol to phenotype salt-sensitivity of blood pressure. We also measured plasma renin and aldosterone using radioimmunoassay. Results: We found that while in vitro high sodium exposure downregulated the expression of renin, renin binding protein and renin receptor, there were no significant changes in the genes of the renin-angiotensin system in response to dietary salt loading and depletion in vivo. Plasma renin in salt sensitive individuals tended to be lower with a blunted response to the salt loading/depletion challenge as previously reported. Discussion: These findings suggest that unlike systemic RAAS, acute changes in dietary salt intake do not regulate RAAS expression in myeloid immune cells.

19.
Gels ; 9(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37232999

ABSTRACT

The water absorption measurements of a novel superabsorbent anionic hydrogel, H-Na-PCMSA-g-PAN, has been reported first time in water with a poor conductivity, 0.15 M saline (NaCl, CaCl2, and AlCl3) solutions, and simulated urine (SU) solutions at various times. The hydrogel has been prepared by the saponification of the graft copolymer, Na-PCMSA-g-PAN (%G = 316.53, %GE = 99.31). Results indicated that as compared to the swelling capacity values evaluated in water with a poor conductivity, the ability of the hydrogel to swell in various saline solutions with the same concentration is significantly reduced at all different durations. The swelling tends to be Na+ > Ca2+ > Al3+ at the same saline concentration in the solution. Studies of the absorbency in various aqueous saline (NaCl) solutions also revealed that the swelling capacity decreased as the ionic strength of the swelling medium rose, which is consistent with the experimental results and Flory's equation. Furthermore, the experimental results strongly suggested that second-order kinetics governs the swelling process of the hydrogel in various swelling media. The swelling characteristics and equilibrium water contents for the hydrogel in various swelling media have also been researched. The hydrogel samples have been successfully characterized by FTIR to show the change in chemical environment to COO- and CONH2 groups after swelling in different swelling media. The samples have also been characterized by SEM technique.

20.
Hypertens Res ; 46(7): 1795-1803, 2023 07.
Article in English | MEDLINE | ID: mdl-37160967

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) inhibitors lowers blood pressure (BP) and exert a salutary effect on the salt sensitivity of BP. This study aimed to examine the associations of SGLT2 genetic variants with salt sensitivity, longitudinal BP changes and the risk of incident hypertension in Baoji Salt-Sensitive Study. A total of 514 participants were recruited when the cohort was established in 2004, and 333 participants received a dietary intervention that consisted of a 3-day usual diet followed sequentially by a 7-day low-salt diet and a 7-day high-salt diet. The cohort was then followed up for 14 years to evaluate the longitudinal BP changes and development of hypertension. We found that SGLT2 SNP rs3813007 was significantly associated with the systolic BP (SBP) responses to the low-salt diet. Over the 14 years of follow-up, SNPs rs3116149 and rs3813008 were significantly associated with the longitudinal SBP changes, and SNPs rs3116149, rs3813008, rs3813007 in SGLT2 were significantly associated with incidence of hypertension. Furthermore, gene-based analyses revealed that SGLT2 was significantly associated with hypertension incidence. Our study suggests that SGLT2 genetic polymorphisms may be involved in salt sensitivity and development of hypertension.


Subject(s)
Blood Pressure , East Asian People , Hypertension , Sodium Chloride, Dietary , Adult , Humans , Blood Pressure/physiology , Hypertension/epidemiology , Hypertension/etiology , Hypertension/genetics , Incidence , Polymorphism, Single Nucleotide , Sodium Chloride, Dietary/adverse effects , Sodium-Glucose Transporter 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...