Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 740: 140153, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32563882

ABSTRACT

The electrooxidation of methiocarb and bisphenol A was studied in complex matrices, namely, simulated and real sanitary landfill leachate samples, using a boron-doped diamond anode. With simulated sanitary landfill leachate samples, the influence of the type and ratio of carbon source (glucose/humic acid) and electrolyte (NaCl or Na2SO4) on the emerging contaminants removal was assessed. Using real sanitary landfill leachate, the influence of current density was evaluated. The experimental results showed that electrooxidation, using a boron-doped diamond anode, can be successfully utilized to degrade methiocarb and bisphenol A when present in complex matrices, such as sanitary landfill leachate, and that methiocarb is more easily oxidized than bisphenol A. Furthermore, it was found that the presence of chloride and high humic acid content increases emerging contaminants removal rate, showing that electrooxidation at boron-doped diamond is particularly adequate to solve the problems raised by sanitary landfill leachate, even when contaminated with emerging contaminants.

2.
Molecules ; 24(16)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405098

ABSTRACT

Electrochemical technologies have been broadly applied in wastewaters treatment, but few studies have focused on comparing the performance of the different electrochemical processes, especially when used to treat highly-polluted streams. The electrochemical treatment of a reverse osmosis concentrate of sanitary landfill leachate was performed by means of electrocoagulation (EC), anodic oxidation (AO) and electro-Fenton (EF) processes, and the use of different electrode materials and experimental conditions was assessed. All the studied processes and experimental conditions were effective in organic load removal. The results obtained showed that EC, with stainless steel electrodes, is the cheapest process, although it presents the disadvantage of sludge formation with high iron content. At high applied current intensity, AO presents the best treatment time/energy consumption ratio, especially if the samples' initial pH is corrected to 3. However, pH correction from natural to 3 deeply decreases nitrogen-containing compounds' removal. For longer treatment time, the EF process with a carbon-felt cathode and a BDD anode, performed at natural iron content and low applied current intensity, is the most favorable solution.


Subject(s)
Electrochemical Techniques , Water Pollutants, Chemical/chemistry , Water Purification , Osmosis
3.
Environ Technol ; 40(7): 835-842, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29168925

ABSTRACT

Arthrobacter sp. named as JY5-1 isolated from contaminated soil of a coking plant can degrade 1-naphthol as the sole carbon source. Through identification of species, analysis of the optimal degradation condition and kinetic equation, the degradation characteristic of Arthrobacter sp. JY5-1 was obtained. Later, the acclimated strain was added into the bio-reactor to observe treatment performance of landfill leachate. The results showed that the optimal conditions for strain JY5-1 biodegradation in the study were pH 7.0 and 30oC. The bio-reactor operation experiment declared that Arthrobacter sp. JY5-1 had a strengthened effect on COD removal of landfill leachate. Moreover, the efficiency of COD removal could be high and stable when JY5-1 was accumulated as a biofilm together with active sludge. These results demonstrate that adding 1-naphthol-degrading strain JY5-1 is a feasible technique for the enhanced treatment of sanitary landfill leachate, providing theoretical support for engineering utilization.


Subject(s)
Arthrobacter , Water Pollutants, Chemical , Biodegradation, Environmental , Bioreactors , Naphthols
4.
Environ Technol ; 40(22): 2897-2905, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29580169

ABSTRACT

The appropriate treatment of sanitary landfill leachate is one of the greatest challenges nowadays due to the large volumes of solid waste generated. Thus, the aim of this study is to evaluate the performance of different routes involving the integration of advanced oxidation processes based on Fenton's reagents (AOP-Fenton) and microfiltration (MF) and nanofiltration (NF) membrane processes for the treatment of landfill leachate. MF module configuration (submerged or sidestream) and MF and NF recovery rate were evaluated. The combination of AOP-Fenton, MF and NF proved to be an effective treatment for landfill leachate. High removal efficiencies of chemical oxidation demand (94-96%) and colour (96-99%) were obtained. The configuration named route 3, composed of MF of raw landfill leachate (MF1), POA-Fenton-MF2 of the MF1 concentrate and NF of both MF1 and MF2 permeates, showed a higher global water recovery and was responsible for lower waste generation. It was considered the best one in terms of environmental, technical and economical aspects.


Subject(s)
Water Pollutants, Chemical , Hydrogen Peroxide , Oxidation-Reduction , Solid Waste
5.
Environ Sci Pollut Res Int ; 26(1): 24-33, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29961224

ABSTRACT

In this study, the efficiency of electrochemical oxidation to treat a sanitary landfill leachate was evaluated by the reduction in physico-chemical parameters and in ecotoxicity. The acute toxicity of the sanitary landfill leachates, before and after treatment, was assessed with the model organism Daphnia magna. Electrochemical oxidation treatment was effective in the removal of organic load and ammonium nitrogen and in the reduction of metal ions concentrations. Furthermore, a reduction of 2.5-fold in the acute toxicity towards D. magna after 36 h of treatment was noticed. Nevertheless, the toxicity of the treated leachate is still very high, and further treatments are necessary in order to obtain a non-toxic effluent to this aquatic organism. Toxicity results were also compared with others described in the literature for different leachate treatments and test organisms.


Subject(s)
Electrochemical Techniques/methods , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Water Purification/methods , Ammonia/analysis , Ammonia/toxicity , Animals , Biological Oxygen Demand Analysis , Daphnia/drug effects , Ecotoxicology , Nitrogen/analysis , Nitrogen/toxicity , Oxidation-Reduction , Water Pollutants, Chemical/toxicity
6.
Environ Sci Pollut Res Int ; 24(30): 24002-24010, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28879487

ABSTRACT

Sanitary landfill leachate is one of the major problems arising from disposal of urban waste. Sanitary landfill leachate may, however, have use in agriculture. This study, therefore, aimed to analyze initial plant growth and gas exchange in sunflower seedlings supplemented with sanitary landfill leachate and subjected to drought stress through variables of root fresh mass (RFM), shoot fresh mass (SFM), total fresh mass (TFM), relative chlorophyll content (CL), stomatal conductance (g s ), transpiration rate (E), net photosynthetic rate (A), ratio of internal to external CO2 concentration (Ci/Ca),water use efficiency (EUA), instantaneous carboxylation efficiency (A/Ci), and electron transport rate (ETR). The experimental design was a completely randomized 2 (irrigated and non-irrigated) × 4 (sand, sand + 100 kg N ha-1 organic fertilizer, sand + 100 kg N ha-1 sanitary landfill leachate, and sand + 150 kg N ha-1 sanitary landfill leachate) factorial with five replicates. Under drought stress conditions, leachate treatment supplemented with 100 kg N ha-1 exhibited higher plant fresh weights than those of the treatment containing 150 kg N ha-1. Increases in fresh mass in plant treatments supplemented with 100 and 150 kg N ha-1 sanitary landfill leachate were related to higher photosynthetic rates.


Subject(s)
Chlorophyll/metabolism , Helianthus/growth & development , Water Pollutants, Chemical , Chlorophyll/chemistry , Droughts , Electron Transport , Photosynthesis , Seedlings , Water
7.
Chemosphere ; 184: 1223-1229, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28672722

ABSTRACT

The electro-Fenton oxidation of a concentrate from reverse osmosis of a sanitary landfill leachate, with an initial chemical oxygen demand (COD) of 42 g L-1, was carried out using a carbon-felt cathode and a boron doped diamond anode. The influence of the applied current intensity, initial pH and dissolved iron initial concentration on the electro-Fenton process was assessed. For the experimental conditions used, results showed that the initial pH is the parameter that more strongly influences the current efficiency of the electro-Fenton process, being this influence more pronounced on the oxidation rate than on the mineralization rate of the organic matter. The increase in iron initial concentration was found to be detrimental, since the natural amount of iron present in the effluent, 73 mg L-1 of total iron and 61 mg L-1 of dissolved iron, was sufficient to ensure the electro-Fenton process at the applied intensities - 0.2-1.4 A. For the more favourable conditions studied, initial pH of 3 and natural iron concentration, it was found an increase in the organic load and nitrogen removals with the applied current intensity. For the highest current intensity applied, a COD removal of 16.7 g L-1 was achieved after 8-h experiments.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Biological Oxygen Demand Analysis , Boron/chemistry , Carbon , Diamond , Electrodes , Filtration , Hydrogen Peroxide/chemistry , Iron , Nitrogen , Osmosis , Oxidation-Reduction , Waste Disposal Facilities
8.
Waste Manag ; 63: 292-298, 2017 May.
Article in English | MEDLINE | ID: mdl-27633719

ABSTRACT

The aim of this study was to provide an alternative way to remove bio-refractory organics and ammonical-nitrogen from mature municipal solid waste (MSW) landfill leachate by combining biological and photochemical processes. To achieve this objective, the effectiveness of anoxic aged refuse-based bioreactor (ARB) for biological leachate pretreatment followed by Advanced Oxidation Processes (AOPs) by heterogeneous photocatalysis (TiO2/UV) and persulfate (S2O82-) oxidation were tested. The results obtained after ARB based pre-treatment demonstrated a mean 72%, 81% and 92% degradation of COD, NH4N and TN, respectively. However, this treated leachate cannot be discharged without another treatment; hence, it was further treated by UV-mediated TiO2 photocatalysis and S2O82- oxidation. An average 82% of COD was abated at optimum condition (1gL-1 TiO2; pH 5) whereas, using an optimum 1.5gL-1 persulfate at pH 5, 81% COD reduction occurred. Acidic and alkaline pH favored COD and NH4N removal respectively. The results of this study demonstrated that coupling ARB with AOPs is potentially applicable process to deal with bio-recalcitrant compounds present in mature landfill leachate.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Hydrogen-Ion Concentration , Oxidation-Reduction , Titanium/chemistry , Water Pollutants, Chemical/chemistry
9.
Sci Total Environ ; 576: 99-117, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27780104

ABSTRACT

In this work, an innovative methodology for the treatment of landfill leachates, after aerobic lagooning, is proposed and adjusted at pilot-scale. This methodology involves an aerobic activated sludge biological pre-oxidation (ASBO), a coagulation/sedimentation step (240mgFe3+/L, at pH4.2) and a photo-oxidation through a photo-Fenton (PF) reaction (60mg Fe2+, at pH2.8) combining solar and artificial light. The ASBO process applied to a leachate after aerobic lagooning, with high organic and nitrogen content (1.1-1.5gC/L; 0.8-3.0gN/L) and low biodegradability (BOD5/COD =0.07-0.13), is capable to oxidise 62-99% of the ammonium nitrogen, consuming only the affluent alkalinity (70-100%). The coagulation/sedimentation stage led to the humic acids precipitation, promoting a marked change in leachate colour, from dark-brown to yellowish-brown (related to fulvic acids), accompanied by a reduction of 60%, 58% and 88% on DOC, COD and TSS, respectively. The PF system promoted the degradation of the recalcitrant organic molecules into more easily biodegradable ones. According to Zahn-Wellens biodegradability test, a leachate with 419mg DOC/L after coagulation, would have to be photo-oxidized until DOC <256mg/L, consuming 117mM of H2O2 and 10.4kJ/L of accumulated UV energy, to achieve an effluent that can be biologically treated in compliance with the COD discharge limit (150mg O2/L) into water bodies. The biological process downstream from the photocatalytic system would promote a mineralization >60%. The PF step cost to treat 100m3/day of leachate was 6.41€/m3, combining 1339m2 of CPCs with 31 lamps.

10.
J Environ Manage ; 181: 515-521, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27423100

ABSTRACT

Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent.


Subject(s)
Electrochemical Techniques/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Boron , Carbon , Diamond , Electrochemical Techniques/instrumentation , Electrodes , Hydrogen Peroxide , Hydrogen-Ion Concentration , Iron/chemistry , Nitrogen/chemistry , Nitrogen/isolation & purification , Osmosis , Oxidation-Reduction
11.
Sci Total Environ ; 541: 282-291, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26410703

ABSTRACT

The influence of applied current density and chloride ion concentration on the ability of Ti/Pt/PbO2 and Ti/Pt/SnO2-Sb2O4 anodes for the electrochemical oxidation of humic acid and sanitary landfill leachate samples was assessed and compared with that of BDD anode. For the experimental conditions used, results show that both organic load and nitrogen removal rates increase with the applied current density and chloride ion concentration, although there is an optimum COD/[Cl-]0 ratio below which there is no further increase in COD removal. Metal oxide anodes present a similar performance to that of BDD, being the results obtained for Ti/Pt/PbO2 slightly better than for Ti/Pt/SnO2-Sb2O4. Contrary to BDD, Ti/Pt/PbO2 promotes lower nitrate formation and is the most suitable material for total nitrogen elimination. The importance of the optimum ratio of Cl-/COD/NH4 +initial concentrations is discussed.

12.
J Environ Manage ; 164: 32-40, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26342264

ABSTRACT

This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed.


Subject(s)
Iron/chemistry , Photochemistry/methods , Water Pollutants, Chemical/chemistry , Flocculation , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Sewage , Sunlight , Temperature , Ultraviolet Rays , Waste Disposal, Fluid/methods
13.
Water Res ; 81: 375-87, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26140989

ABSTRACT

The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after a second biological process, 6.2 kJ L(-1) UV energy and 36 kWh m(-3) electrical energy were consumed using SPEF with a BDD anode at 200 mA cm(-2), 60 mg [TDI]0 L(-1), pH 2.8 and 20 °C.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Electrochemical Techniques , Hydrogen Peroxide/chemistry , Nitrogen/chemistry , Oxidation-Reduction , Photochemical Processes , Sunlight
14.
Waste Manag ; 36: 177-83, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25464941

ABSTRACT

The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical-chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm(-)(2), 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent's high resistance to treatment.


Subject(s)
Photolysis , Waste Management/methods , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Time Factors , Waste Disposal Facilities
15.
J Environ Manage ; 141: 9-15, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24762568

ABSTRACT

This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits.


Subject(s)
Bioreactors , Filtration/methods , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/metabolism , Aerobiosis , Nitrogen/metabolism
16.
Eng. sanit. ambient ; 15(4): 401-410, out.-dez. 2010. ilus, tab
Article in Portuguese | LILACS | ID: lil-578706

ABSTRACT

O objetivo deste estudo foi avaliar o desempenho de um sistema de tratamento de lixiviado de aterro sanitário, em escala piloto, formado por três lagoas em série (L1, L2 e L3) seguidas por um filtro de pedras (FP). Foram estudadas três condições operacionais, verificando-se o efeito da recirculação do efluente da L3 para a L1: 0, 50 e 100 por cento da vazão. O sistema absorveu bem as flutuações de cargas, apresentando remoções superiores a 80 por cento para DBO F, 70 por cento para DQO T e 98 por cento para nitrogênio amoniacal. Na lagoa L2 houve nitrificação parcial, com acúmulo de nitritos. Ocorreu presença marcante do gênero Chlamydomonas nas lagoas L2 e L3 fotossintéticas. Observou-se diminuição da toxicidade do lixiviado, com reduções superiores a 95 por cento na saída do sistema. A melhor eficiência de remoção para as três condições operacionais estudadas foi obtida com 100 por cento de recirculação.


The objective of this study was to evaluate the performance of a landfill leachate treatment system, at pilot scale, formed by three in series ponds (L1, L2, and L3) followed by a rock filter. Three operational conditions were studied, assessing the effluent recirculation effect from L3 to L1: 0, 50 and 100 percent of the flow rate. The system assimilated well the load fluctuations, showing removal efficiencies over 80 percent for BOD F, 70 percent for COD T and 98 percent for ammonia. In the L2 pond there was partial nitrification with nitrite accumulation. It was observed an outstanding presence of the Chlamydomonas gender in photosynthetic ponds L2 and L3. A reduction of the toxicity from the landfill leachate was observed, with reduction of over 95 percent in the system output. The better removal efficiency for the three studied operational conditions was obtained for 100 percent of recirculation.

SELECTION OF CITATIONS
SEARCH DETAIL
...