Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters











Publication year range
1.
Anim Cells Syst (Seoul) ; 28(1): 428-438, 2024.
Article in English | MEDLINE | ID: mdl-39246418

ABSTRACT

Burn injuries, affecting local skin disruption as well as inducing systemic inflammatory responses, are presented as a global public health problem. To enhance the effects of burn wound healing, treatment must simultaneously regulate both re-epithelialization and hyperinflammation. Extracts of Sargassum horneri (S. horneri) have shown a potential to enhance skin wound healing through antioxidative properties, immune enhancement, and modulation of inflammatory responses. However, despite its promising application for burn wound healing, specific investigation into S. horneri-derived compounds for enhancing wound healing has not yet been conducted. In this research, we investigated the burn wound-healing effect of the low-temperature pulverization-specific S. horneri extract (LPSHE), which could not be detected using the room-temperature grinding method. In a mouse burn model with third-degree burn injuries, LPSHE accelerated re-epithelialization by promoting the increase in F-actin formation and reduced burn-induced ROS levels. Additionally, LPSHE significantly regulated hyperinflammation by reducing pro-inflammatory cytokines. Further investigation into molecular mechanisms using HaCaT keratinocytes also demonstrated beneficial effects on burn wound healing. Taken together, our findings suggested that LPSHE is a promising therapeutic candidate for enhancing burn wound healing. Furthermore, this research underscored the importance of low-temperature pulverization in discovering novel natural compounds from marine organisms.

2.
Biology (Basel) ; 13(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39336079

ABSTRACT

The extensive outbreak of Sargassum horneri in China has not merely imposed a severe threat to the ecological environment and human life in coastal waters but also impeded the development of waterway transportation and the local economy. Consequently, we isolated polysaccharides from S. horneri, designated as SHP, and evaluated the antioxidant activity of SHP both in vitro and in vivo by investigating the effect of SHP on H2O2-induced African green monkey kidney cells (Vero cells) and zebrafish. The results demonstrated that SHP can enhance the activities of superoxide dismutase, catalase, and glutathione peroxidase in zebrafish. It also effectively inhibits micro malondialdehyde and ROS levels in Vero cells and zebrafish to mitigate the oxidative damage caused by H2O2, thereby achieving the protective effect of SHP on Vero cells and zebrafish. In conclusion, SHP holds the potential as a natural antioxidant. SHP can be contemplated for utilization as a natural antioxidant in the biomedical, cosmetic, and food industries, thereby alleviating the environmental stress caused by S. horneri and achieving resource utilization.

3.
Sci Rep ; 14(1): 15064, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956395

ABSTRACT

Sargassum horneri (S. horneri), a brown seaweed excessively proliferating along Asian coastlines, are damaging marine ecosystems. Thus, this study aimed to enhance nutritional value of S. horneri through lactic acid bacteria fermentation to increase S. horneri utilization as a functional food supplement, and consequently resolve coastal S. horneri accumulation. S. horneri supplemented fermentation was most effective with Lactiplantibacillus pentosus SH803, thus this product (F-SHWE) was used for further in vitro studies. F-SHWE normalized expressions of oxidative stress related genes NF-κB, p53, BAX, cytochrome C, caspase 9, and caspase 3, while non-fermented S. horneri (SHWE) did not, in a H2O2-induced HT-29 cell model. Moreover, in an LPS-induced HT-29 cell model, F-SHWE repaired expressions of inflammation marker genes ZO1, IL1ß, IFNγ more effectively than SHWE. For further functional assessment, F-SHWE was also treated in 3T3-L1 adipocytes. As a result, F-SHWE decreased lipid accumulation, along with gene expression of adipogenesis markers PPARγ, C/EBPα, C/EBPß, aP2, and Lpl; lipogenesis markers Lep, Akt, SREBP1, Acc, Fas; inflammation markers IFN-γ and NF-κB. Notably, gene expression of C/EBPß, IFN-γ and NF-κB were suppressed only by F-SHWE, suggesting the enhancing effect of fermentation on obesity-related properties. Compositional analysis attributed the protective effects of F-SHWE to acetate, an organic acid significantly higher in F-SHWE than SHWE. Therefore, F-SHWE is a novel potential anti-obesity agent, providing a strategy to reduce excess S. horneri populations along marine ecosystems.


Subject(s)
3T3-L1 Cells , Adipocytes , Fermentation , Inflammation , Oxidative Stress , Sargassum , Sargassum/chemistry , Mice , Animals , Adipocytes/metabolism , Adipocytes/drug effects , Oxidative Stress/drug effects , Humans , Inflammation/metabolism , Lactobacillus pentosus/metabolism , HT29 Cells , Adipogenesis/drug effects
4.
Antioxidants (Basel) ; 13(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38929129

ABSTRACT

Sargassum horneri (SH) is widely consumed as a healthy seaweed food in the Asia-Pacific region. However, the bioactive components contributing to its biological activity remain unknown. Herein, we optimized multifrequency ultrasonic-assisted extraction conditions to achieve higher antioxidant activity using a response surface methodology and an artificial neural network. High-resolution mass spectrometry (HRMS; negative mode) was used to tentatively identify the secondary metabolites in the optimized SH extract, which were further tested against oxidative stress in RAW264.7 cells. Additionally, the identified compounds were analyzed in silico to determine their binding energies with the Keap1 protein (4L7B). We identified 89 compounds using HRMS, among which 19 metabolites (8 polyphenolics, 2 flavonoids, 2 lignans, 2 terpenes, 2 tannins, 2 sulfolipids, and 1 phospholipid) were putatively reported for the first time in SH. The in vitro results revealed that optimized SH extract inhibited oxidative stress via the Nrf2/MAPKs/HO-1 pathway in a dose-dependent manner. This result was validated by performing in silico simulation, indicating that sargaquinoic acid and glycitein-7-O-glucuronide had the highest binding energies (-9.20 and -9.52 Kcal/mol, respectively) toward Keap1 (4L7B). This study offers a unique approach for the scientific community to identify potential bioactive compounds by optimizing the multivariant extraction processing conditions, which could be used to develop functional and nutraceutical foods.

5.
Front Biosci (Landmark Ed) ; 29(5): 194, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38812330

ABSTRACT

BACKGROUNDS: Melanogenesis, regulated by genetic, hormonal, and environmental factors, occurs in melanocytes in the basal layer of the epidermis. Dysregulation of this process can lead to various skin disorders, such as hyperpigmentation and hypopigmentation. Therefore, the present study investigated the effect of ultrasonic-assisted ethanol extract (SHUE) from Sargassum horneri (S. horneri), brown seaweed against melanogenesis in α-melanocyte-stimulating hormone (MSH)-stimulated B16F10 murine melanocytes. METHODS: Firstly, yield and proximate compositional analysis of the samples were conducted. The effect of SHUE on cell viability has been evaluated by using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After that, the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes were examined. Western blot analysis was carried out to investigate the protein expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, the effect of extracellular signal-regulated kinase (ERK) on the melanogenesis process was assessed via Western blotting. RESULTS: As per the analysis, SHUE contained the highest average yield on a dry basis at 28.70 ± 3.21%. The findings showed that SHUE reduced the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes. Additionally, the expression levels of MITF, TRP1, and TRP2 protein were significantly downregulated by SHUE treatment in α-MSH-stimulated B16F10 murine melanocytes. Moreover, SHUE upregulated the phosphorylation of ERK and AKT in α-MSH-stimulated B16F10 murine melanocytes. In addition, experiments conducted using the ERK inhibitor (PD98059) revealed that the activity of SHUE depends on the ERK signaling cascade. CONCLUSION: These results suggest that SHUE has an anti-melanogenic effect and can be used as a material in the formulation of cosmetics related to whitening and lightening.


Subject(s)
Ethanol , Melanins , Melanocytes , Monophenol Monooxygenase , Sargassum , Animals , Sargassum/chemistry , Melanins/biosynthesis , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Melanocytes/drug effects , Melanocytes/metabolism , Mice , Ethanol/chemistry , Microphthalmia-Associated Transcription Factor/metabolism , alpha-MSH/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Melanoma, Experimental/metabolism , Cell Line, Tumor , Intramolecular Oxidoreductases/metabolism
6.
Int Immunopharmacol ; 131: 111851, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38492337

ABSTRACT

Allergic diseases have become a serious problem worldwide and occur when the immune system overreacts to stimuli. Sargassum horneri is an edible marine brown alga with pharmacological relevance in treating various allergy-related conditions. Therefore, this study aimed to investigate the effect of fucosterol (FST) isolated from S. horneri on immunoglobulin E(IgE)/bovine serum albumin (BSA)-stimulated allergic reactions in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. The in silico analysis results revealed the binding site modulatory potential of FST on the IgE and IgE-FcεRI complex. The findings of the study revealed that FST significantly suppressed the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine in a dose-dependent manner. In addition, FST effectively decreased the expression of FcεRI on the surface of BMCMCs and its IgE binding. FST dose-dependently downregulated the expression of allergy-related cytokines (interleukin (IL)-4, -5, -6, -13, tumor necrosis factor (TNF)-α, and a chemokine (thymus and activation-regulated chemokine (TARC)) by suppressing the activation of nuclear factor-κB (NF-κB) and Syk-LAT-ERK-Gab2 signaling in IgE/BSA-stimulated BMCMCs. As per the histological analysis results of the in vivo studies with IgE-mediated PCA in BALB/c mice, FST treatment effectively attenuated the PCA reactions. These findings suggest that FST has an immunopharmacological potential as a naturally available bioactive compound for treating allergic reactions.


Subject(s)
Anaphylaxis , Anti-Allergic Agents , Hypersensitivity , Sargassum , Stigmasterol/analogs & derivatives , Mice , Animals , Immunoglobulin E/metabolism , Serum Albumin, Bovine , Sargassum/metabolism , Mast Cells , Passive Cutaneous Anaphylaxis , Hypersensitivity/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Cell Degranulation , Mice, Inbred BALB C , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use
7.
Molecules ; 29(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542981

ABSTRACT

Converting Sargassum horneri (SH)-a harmful marine stranding that can cause golden tide-to highly porous bio-adsorbent material (via one-step catalytic oxidative pyrolysis with K2FeO4) can be a strategically useful method for obtaining low-cost materials suitable for CO2 capture. In this manuscript, the behavior of different mass ratios of K2FeO4/SH precursor acting on the surface physicochemical properties of carbon materials are reported. The results suggest that specific surface area and total pore volume first increased to the mass ratio of K2FeO4/carbon precursor, then decreased. Among the samples prepared, the highest specific surface area was obtained with a K2FeO4/SH precursor ratio of 1:4 (25%-ASHC), and the CO2 adsorption performance was significantly increased and faster compared with the original biochar. The fitted values of the three kinetic models showed that the double exponential model provided the best description of carbon adsorption, indicating both physical and chemical adsorption; 25%-ASHC also exhibited excellent cyclic stability. The improved CO2 adsorption performance observed after K2FeO4 activation is mainly due to the increase in material porosity, specific surface area, and the enrichment of nitrogen and oxygen functional groups.

8.
J Cosmet Dermatol ; 23(4): 1365-1373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38031658

ABSTRACT

BACKGROUND: Sargassum horneri came ashore after flowing from the South China Sea to Jeju Island a few years ago. This caused a significant environmental impact on coastal areas where S. horneri has accumulated because of decomposition and the release of toxic substances, such as hydrogen sulfide. AIMS: In this study, we evaluated a biological ingredient prepared from fucoidan-rich S. horneri and demonstrated its antiwrinkle effects on ultraviolet B (UVB)-induced fibroblast cells. MATERIALS AND METHODS: Fucoidan samples from S. horneri were prepared according to a previously published process with modifications. The compositional analysis of S. horneri fucoidan extract (SHFE) as well as its effects on antiaging were examined to determine its utility as a functional material. RESULTS: SHFE exhibited antioxidant properties using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Treatment of UVB-induced fibroblasts with SHFE significantly increased the synthesis of procollagen compared with adenosine treatment and inhibited MMP-1 and MMP-3 expression. In a clinical study, SHFE lotion improved skin barrier effects in forearms and transepidermal water loss (TEWL) values were reduced after 3 weeks of use compared with a placebo. CONCLUSION: SHFE has utility as an additive with functional antiaging effects for a range of cosmetic products as it restores skin hydration in the epidermal barrier.


Subject(s)
Sargassum , Humans , Sargassum/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Collagen
9.
Mar Pollut Bull ; 199: 115944, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142666

ABSTRACT

Golden tide outbreak threatened the marine ecological environment. Sargassum horneri is a single dominant species of the Yellow Sea golden tide, which growth and development are affected by changes in sea water temperature. This study investigated the photosynthetic physiology of copper algae and found that the growth rate, chlorophyll a content, carotenoid content, Fv/Fm, and maximum electron transfer efficiency were significantly reduced, indicating that Sargassum horneri was under stress under high temperature. In this study, high-throughput sequencing was used to analyze the response mechanisms of photosynthesis-related genes in S. horneri under high temperature stress. The results showed that most of the photosynthesis-related genes in S. horneri were downregulated and photosynthesis was inhibited under high temperature stress. However, the expression levels of ferredoxin, ferredoxin-NADP reductase, light-harvesting protein complexes, and oxygen-evolving complex genes were significantly upregulated (P ≤ 0.05) after five days of high temperature treatment. This study found that photosynthesis related genes play a crucial role in regulating the photosynthetic response of S. horneri to high temperature stress.


Subject(s)
Sargassum , Temperature , Chlorophyll A , Photosynthesis , Seawater
10.
Mol Nutr Food Res ; 67(24): e2300462, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37986167

ABSTRACT

SCOPE: Particulate matter (PM) can cause cellular oxidative damage and promote respiratory diseases. It has recently shown that Sargassum horneri ethanol extract (SHE) containing sterols and gallic acid reduces PM-induced oxidative stress in mice lung cells through ROS scavenging and metal chelating. In this study, the role of alveolar macrophages (AMs) is identified that are particularly susceptible to DNA damage due to PM-triggered oxidative stress in lungs of OVA-sensitized mice exposed to PM. METHODS AND RESULTS: The study scrutinizes if PM exposure causes oxidative DNA damage to AMs differentially depending on their type of polarization. Further, SHE's potential is investigated in reducing oxidative DNA damage in polarized AMs and restoring AM polarization in PM-induced allergic airway inflammation. The study discovers that PM triggers prolonged oxidative stress to AMs, leading to lipid peroxidation in them and alveolar epithelial cells. Particularly, AMs are polarized to M2 phenotype (F4/80+ CD206+ ) with enhanced oxidative DNA damage when subject to PM-induced oxidative stress. However, SHE repairs oxidative DNA damage in M1- and M2-polarized AMs and reduces AMs polarization imbalance due to PM exposure. CONCLUSION: These results suggest the possibility of SHE as beneficial foods against PM-induced allergic airway inflammation via suppression of AM dysfunction.


Subject(s)
Macrophages, Alveolar , Sargassum , Animals , Mice , Particulate Matter/toxicity , Inflammation/drug therapy , Inflammation/chemically induced , Oxidative Stress , Administration, Oral
11.
Harmful Algae ; 129: 102523, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37951622

ABSTRACT

Floating macroalgae of Sargassum horneri (S. horneri) in the East China Sea (ECS) has increased in recent years, with ocean warming being one of the driving factors. Yet their possible origins, based on a literature review, are unclear. Here, using multi-sensor high-resolution remote sensing data and numerical experiments for the period of 2015-2023, we show two possible origins of the ECS floating S. horneri, one being local near the Zhejiang coast with initiation in January-February and the other being remote (> 800 km from the first) in the Bohai Sea with initiation in June-November. While their drifting pathways are revealed in the sequential remote sensing imagery, numerical experiments suggest that S. horneri from the remote origin (Bohai Sea) can hardly meander through the strong Yangtze River frontal zone, which may serve as a "wall" to prevent trespassing of surface floating seaweed to the south of the frontal zone, where S. horneri has a local origin. PLAIN LANGUAGE SUMMARY: Sargassum horneri (S. horneri) is a brown macroalgae (seaweed) abundant in surface waters of the East China Sea (ECS), which can serve as a moving habitat, but can also cause major beaching events and environmental problems. Knowledge of its origins is important to help implement mitigation strategies and understand possible ecological impacts along its drifting pathways. Using high-resolution remote sensing images and numerical experiments, we track floating S. horneri in space and time between 2015 and 2023. Two possible origins are identified, one being far away from the ECS and the other being local, both of which are known to have benthic S. horneri. The study also reveals how S. horneri are transported from their source regions resulting in large-scale distributions previously observed in medium-resolution satellite imagery.


Subject(s)
Sargassum , Seaweed , Ecosystem , China
12.
Antioxidants (Basel) ; 12(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37891920

ABSTRACT

Sargassum horneri, a brown seaweed, is known for its various health benefits; however, there are no reports on its effects on depression. This study aimed to investigate the antidepressant effects of S. horneri ethanol extract (SHE) in mice injected with corticosterone (CORT) and to elucidate the underlying molecular mechanisms. Behavioral tests were conducted, and corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and CORT levels were measured. A fluorometric monoamine oxidase (MAO) enzyme inhibition assay was performed. Neurotransmitters like serotonin, dopamine, and norepinephrine levels were determined. Moreover, the ERK-CREB-BDNF signaling pathway in the prefrontal cortex and hippocampus was evaluated. Behavioral tests revealed that SHE has antidepressant effects by reducing immobility time and increasing time spent in open arms. Serum CRH, ACTH, and CORT levels decreased in the mice treated with SHE, as did the glucocorticoid-receptor expression in their brain tissues. SHE inhibited MAO-A and MAO-B activities. In addition, SHE increased levels of neurotransmitters. Furthermore, SHE activated the ERK-CREB-BDNF pathway in the prefrontal cortex and hippocampus. These findings suggest that SHE has antidepressant effects in CORT-injected mice, via the regulation of the hypothalamic-pituitary-adrenal axis and monoaminergic pathway, and through activation of the ERK-CREB-BDNF signaling pathway. Thus, our study suggests that SHE may act as a natural antidepressant.

13.
Genes (Basel) ; 14(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895318

ABSTRACT

Sargassum horneri, a prevalent species of brown algae found along the coast of the northwest Pacific Ocean, holds significant importance as a valuable source of bioactive compounds. However, its rapid growth can lead to the formation of a destructive "golden tide", causing severe damage to the local economy and coastal ecosystems. In this study, we carried out de novo whole-genome sequencing of S. horneri using next-generation sequencing to unravel the genetic information of this alga. By utilizing a reference-guided de novo assembly pipeline with a closely related species, we successfully established a final assembled genome with a total length of 385 Mb. Repetitive sequences made up approximately 30.6% of this genome. Among the identified putative genes, around 87.03% showed homology with entries in the NCBI non-redundant protein database, with Ectocarpus siliculosus being the most closely related species for approximately one-third of these genes. One gene encoding an alkaline phosphatase family protein was found to exhibit positive selection, which could give a clue for the formation of S. horneri golden tides. Additionally, we characterized putative genes involved in fucoidan biosynthesis metabolism, a significant pathway in S. horneri. This study represents the first genome-wide characterization of a S. horneri species, providing crucial insights for future investigations, such as ecological genomic analyses.


Subject(s)
Sargassum , Seaweed , Seaweed/genetics , Sargassum/genetics , Sargassum/metabolism , Ecosystem , Pacific Ocean
14.
Mar Pollut Bull ; 195: 115494, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703632

ABSTRACT

The new velocity fields based on the Generalized Ekman (GE) theory to trace floating algae were derived and verified by drifter observations and compared to reanalysis datasets in the Yellow Sea (YS). Two velocity fields using diagnostic approaches and two velocity fields from reanalysis datasets were examined. The results revealed that the diagnostic velocity fields had comparable accuracy to the reanalysis datasets, even locally better. Then, we applied each velocity field to trace green algae, Ulva prolifera, in July 2011 and brown algae, Sargassum horneri, in May 2017 using particle tracking experiments. In addition, drifter trajectories were simulated, and error accumulation speed was estimated for each velocity field. Simulation results using the diagnostic velocity fields consistently showed better agreement with satellite images and in situ observations than those using reanalysis datasets, demonstrating that the diagnostic velocity could be a superior tool for simulating surface-floating substances and organisms. The approach to derive diagnostic velocity fields can be easily applied instead of relying on heavy computing numerical models.


Subject(s)
Chlorophyta , Sargassum , Ulva , Eutrophication , Computer Simulation , China
15.
Curr Issues Mol Biol ; 45(9): 7492-7512, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37754257

ABSTRACT

Sargassum horneri (SH) and Ulva australis (UA) are marine waste resources that cause environmental and economic problems when entering or multiplying the coastal waters of Jeju Island. We analyzed their anti-diabetic efficacy to assess their reusability as functional additives. The alpha-glucosidase inhibitory activity of SH and UA extracts was confirmed, and the effect of UA extract was higher than that of SH. After the induction of insulin-resistant HepG2 cells, the effects of the two marine extracts on oxidative stress, intracellular glucose uptake, and glycogen content were compared to the positive control, metformin. Treatment of insulin-resistant HepG2 cells with SH and UA resulted in a concentration-dependent decrease in oxidative stress and increased intracellular glucose uptake and glycogen content. Moreover, SH and UA treatment upregulated the expression of IRS-1, AKT, and GLUT4, which are suppressed in insulin resistance, to a similar degree to metformin, and suppressed the expression of FoxO1, PEPCK involved in gluconeogenesis, and GSK-3ß involved in glycogen metabolism. The oral administration of these extracts to rats with streptozotocin-induced diabetes led to a higher weight gain than that in the diabetic group. Insulin resistance and oral glucose tolerance are alleviated by the regulation of blood glucose. Thus, the SH and UA extracts may be used in the development of therapeutic agents or supplements to improve insulin resistance.

16.
Curr Issues Mol Biol ; 45(8): 6583-6592, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37623234

ABSTRACT

Hyperosmotic stress caused by tear hyposection is a leading cause of dry eye disease. We investigated the prevention of dry eye disease in corneal epithelial cells and in rats that were induced to develop dry eye disease via unilateral excision of their exorbital lacrimal gland using Sargassum horneri extract (AB_SH) and its bioactive component fucoidan. Oral administration of AB_SH (250 mg/kg and 500 mg/kg) and fucoidan (100 mg/kg) was conducted for 7 days. In order to measure tear secretion, phenol red thread tear tests were performed along with corneal irregularity measurements. The apoptotic injury in the cornea and the lacrimal gland was evaluated using TUNEL staining. AB_SH and fucoidan were shown to suppress apoptosis and the expression of apoptosis-related proteins in human corneal epithelial cells under hyperosmotic conditions. Oral administration of AB_SH and fucoidan attenuated tear hyposecretion and corneal irregularity in the lacrimal gland-excised rats. In addition, AB_SH and fucoidan also reduced apoptosis in the cornea and lacrimal gland. This study suggests that S. horneri extract and fucoidan can effectively ameliorate dry eye disease by suppressing the apoptosis of ocular tissues.

17.
Environ Sci Pollut Res Int ; 30(43): 98246-98260, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37606771

ABSTRACT

The growth response and incorporation of As into the Sargassum horneri was evaluated for up to 7 days using either arsenate (As(V)), arsenite (As(III)) or methylarsonate (MMAA(V) and DMAA(V)) at 0, 0.25, 0.5, 1, 2, and 4 µM with various phosphate (P) levels (0, 2.5, 5 and 10 µM). Except As(III), algal chlorophyll fluorescence was almost similar and insignificant, regardless of whether different concentrations of P or As(V) or MMAA(V) or DMAA(V) were provided (p > 0.05). As(III) at higher concentrations negatively affected algal growth rate, though concentrations of all As species had significant effects on growth rate (p < 0.01). Growth studies indicated that toxicity and sensitivity of As species to the algae followed the trend: As(III) > As(V) > MMAA(V) ~ DMAA(V). As bioaccumulation was varied significantly depending on the increasing concentrations of all As species and increasing P levels considerably affected As(V) uptake but no other As species uptake (p < 0.01). The algae accumulated As(V) and As(III) more efficiently than MMAA(V) and DMAA(V). At equal concentrations of As (4 µM) and P (0 µM), the alga was able to accumulate 638.2 ± 71.3, 404.1 ± 70.6, 176.7 ± 19.6, and 205.6 ± 33.2 nM g-1 dry weight of As from As(V), As(III), MMAA(V), and DMAA(V), respectively. The influence of low P levels with increased As(V) concentrations more steeply increased As uptake, but P on other As species did not display similar trends. The algae also showed passive modes for As adsorption of all As species. The maximum adsorption of As (63.7 ± 6.1 nM g-1 dry weight) was found due to 4 µM As(V) exposure, which was 2.5, 7.3, and 6.9 times higher than the adsorption amounts for the same concentration of As(III), MMAA(V), and DMAA(V) exposure, respectively. The bioavailability and accumulation behaviors of As were significantly influenced by P and As species, and this information is essential for As research on marine ecosystems.


Subject(s)
Arsenic , Sargassum , Bioaccumulation , Biological Availability , Ecosystem , Phosphates
18.
Harmful Algae ; 126: 102451, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37290886

ABSTRACT

Golden tide, caused by Sargassum horneri, is becoming another periodic and trans-regional harmful macroalgal bloom in the Yellow Sea (YS) and East China Sea (ECS) other than the green tide. In this study, we employed high-resolution remote sensing, field validations, and population genetics to investigate the spatiotemporal development pattern of Sargassum blooms during the years 2017 to 2021 and explore the potential environmental factors that influence them. Sporadic floating Sargassum rafts could be detected in the middle or northern YS during autumn and the distribution area then occurred sequentially along the Chinese and/or western Korean coastlines. The floating biomass amplified significantly in early spring, reached its maximum in two to three months with an evident northward expansion, and then declined rapidly in May or June. The scale of the spring bloom was much larger than the winter one in terms of coverage, suggesting an additional local source in ECS. The blooms were mostly confined to waters with a sea surface temperature range of 10-16℃, while the drifting pathways were consistent with the prevailing wind trajectory and surface currents. The floating S. horneri populations exhibited a homogenous and conservative genetic structure among years. Our findings underscore the year-round cycle of golden tides, the impact of physical hydrological environments on the drifting and blooming of pelagic S. horneri, and provide insights for monitoring and forecasting this emerging marine ecological disaster.


Subject(s)
Sargassum , Eutrophication , Biomass , China , Seasons
19.
Front Nutr ; 10: 1162934, 2023.
Article in English | MEDLINE | ID: mdl-37125026

ABSTRACT

Sargassum horneri (S. horneri) is a brown seaweed that contains a fucose-rich sulfated polysaccharide called fucoidan and is known to possess beneficial bioactivities, such as anti-inflammatory, antiviral, antioxidative, and antitumoral effects. This study aimed to determine the anti-inflammatory effects of AB_SH (hydrothermal extracts from S. horneri) and its bioactive compound (fucoidan) against tumor necrosis factor alpha (TNF-α)-induced inflammation in human retinal pigment epithelial (RPE) cells. AB_SH did not exhibit any cytotoxicity, and it decreased the mRNA expression of interleukin (IL)-6 and IL-8 and the production of the cytokines IL-6 and TNF-α. It also suppressed the expression levels of phosphorylated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), including c-Jun amino-terminal kinases (JNK), p38 protein kinases (p38), and extracellular signal-regulated kinase (ERK) proteins, suggesting that AB_SH inhibits activation of the NF-kB/MAPK signaling pathway. Since fucoidan was identified in the composition analysis of AB_SH, it was additionally shown to be required for its anti-inflammatory effects in TNF-α-stimulated human RPE cells. In line with the AB_SH results, fucoidan reduced the mRNA levels of IL-6, IL-1ß, and IL-8 and production of the cytokines IL-6, TNF-α, and IL-8 through the downregulation of the NF-kB/MAPK signaling pathway in a dose-dependent manner. Collectively, the ability of AB_SH from S. horneri hydrothermal extracts to reduce inflammation indicates that it may be a good functional ingredient for managing ocular disorders.

20.
J Microbiol Biotechnol ; 33(3): 363-370, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36775854

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammation associated with skin hypersensitivity caused by environmental factors. The objent of this study was to assess the hot water extracts of Sargassum horneri (SHHWE) on AD. AD was induced by spreading 2,4-dinitrochlorobenzene (DNCB) on the BALB/c mice. The efficacy of SHHWE was tested by observing the immunoglobulin E (IgE), cytokine, skin clinical severity score and cytokine secretions in concanavalin A (Con A)-stimulated splenocytes. The levels of interleukine (IL)-4, IL-5 and IgE, the pro-inflammatory cytokines that are closely related, were notably suppressed in a does-dependent manner by SHHWE, whereas the level of interferon γ (IFN-γ), the atopy-related Th1 cytokine inhibiting the production of Th2 cytokines, was increased. Therefore, these results show that SHHWE has a potent anti-inhibitory effect on AD and is highly valuable for cosmetic development.


Subject(s)
Dermatitis, Atopic , Sargassum , Animals , Mice , Plant Extracts/pharmacology , Skin , Dermatitis, Atopic/chemically induced , Cytokines , Water , Immunoglobulin E , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL