Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 307: 119466, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35577261

ABSTRACT

Leaching of herbicides in cropping soils not only impacts the groundwater sources but also reduces their effect in controlling weeds. Leaching studies were carried out in two cropping soils and two forestry biowaste media, wood pulp and sawdust with two herbicides, atrazine and bromacil in a packed lysimeter with simulated rainfall. The hypothesis was that high organic matter forestry biowaste soil amendments reduce the leaching of herbicides through the soil profile. Results from the experimental setups varied due to the impact of the simulated rainfall on the surface structure of the media. Organic carbon content, pH and structure of the media were all factors which affected the leaching of the two herbicides. The hypothesis was true for wood pulp, but for sawdust, organic matter content had less bearing on the leaching of the herbicides than other over-riding factors, such as pH, that were media specific. In sawdust, its large particle size and related pore volume allowed preferential flow of herbicides. Overall, the data indicated that both forestry biowastes were retentive to herbicide leaching, but the effect was more pronounced with wood pulp than sawdust.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Adsorption , Forestry , Herbicides/analysis , Soil/chemistry , Soil Pollutants/analysis
2.
Chemosphere ; 296: 133966, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35202671

ABSTRACT

Industrial effluents generally contain several metals, so during adsorptive treatment, they may influence the removal of each other. It is essential to explore the effect of co-cations on metal removal in multi-metal solutions. The present study examined the possibility of processed rice husk and saw dust to remove Cr6+, Ni2+, Cu2+, Cd2+ and Zn2+, from the single, binary and multi-component aqueous solutions. A substantial lesser removal of metal ions was observed in the presence of co-ions. This study revealed antagonistic effect on the removal of a particular metal ion, from the industrial effluent, even at optimum process parameters if other metal ions are present in the effluent. Although, a higher concentration of one metal ion than others in effluents increased its removal due to a greater number of ions as compared to other for the biosorption, yet presence of other ions influences the uptake of individual ions. In case of industrial effluents, maximum adsorption was obtained at pH 2.0 for Cr6+, 5.0 for Ni2+ and Cd2+ and 6.0 for Zn2+ and Cu2+. The study confirms the beneficial use of the studied biosorbents in water remediation.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Biomass , Cadmium/analysis , Hydrogen-Ion Concentration , Ions , Kinetics , Metals, Heavy/analysis , Wastewater , Water , Water Pollutants, Chemical/analysis
3.
Materials (Basel) ; 13(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153195

ABSTRACT

The processes focused on stone cutting generate a large volume of waste. Small size waste, silt/clay, is not used and goes to landfill. However, the composition of these wastes makes them useful for adding to cements and for use in construction. In the present paper, 10% Ordinary Portland cement is replaced by 10% waste from granite sawmill, which is studied to obtain sustainable ecological cement. This replacement provides advantages from the morphological and chemical point of view at the cements. The waste has a particle size that does not exceed 15 µm and that when replacing in the cement, after the hydration reaction, generates structures where Calcium Silicate Hydrate (C-S-H) gels and double layered hydroxide compounds (LDH) are reaction products formed in high concentration. These products develop stable phases in the structures over long time periods such one year, which was the time frame used in this study.

4.
Heliyon ; 5(7): e02059, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31372536

ABSTRACT

When drilling with water based muds (WBM), significant fluid loss volumes from the mud into the formation can have adverse effects not just on the mud and its properties but also on the stability of the wellbore. Prevention of mud filter loss is one way of assessing the performance of a drilling mud. However, evaluation of the effectiveness or otherwise of a fluid loss control additive can be made by characterizing the mud cake formed. Interestingly, the mud cake characterization is one area that has been somewhat neglected in drilling fluid formulation with agro waste materials. Two cellulosic materials - rice husk and saw dust were chosen for the experimental study. The specie of the rice husk used was the African rice (Oryza glaberrima) while the dust from the saw milling of Oxystigma manni was utilized for this study. To ensure result acceptability, the rice husk and saw dust were ground and the resulting products were sieved to 1.25 × 10-4 m. The filtration characteristics of the formulated mud samples were tested using the American Petroleum Institute (API) filter press and in accordance to the API recommended practice for field testing WBMs. From the filter loss tests, it was observed that the ground rice husk prevented filter loss by an average of 77% compared to ground saw dust filtration control of 63%. In addition, it was observed that at higher concentrations, ground saw dust and rice husk prevented fluid loss to the minimum acceptable API standard. For the filter cake thickness measured in millimetres, ground rice husk exhibited thicker mud cakes when compared with the saw dust by an average amount of 14%. For the mud cake characteristics, the rice husk mud exhibited smooth and slippery cakes while the saw dust mud exhibited rough texture, sticky and firm cakes.

5.
Braz. j. microbiol ; 49(1): 38-44, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889215

ABSTRACT

ABSTRACT Discharge of coke-oven wastewater to the environment may cause severe contamination to it and also threaten the flora and fauna, including human beings. Hence before dumping it is necessary to treat this dangerous effluent in order to minimize the damage to the environment. Conventional technologies have inherent drawbacks however, biological treatment is an advantageous alternative method. In the present study, bacteria were isolated from the soil collected from the sites contaminated by coke-oven effluent rich in phenol and cyanide. Nucleotides sequence alignment and phylogenetic analysis showed the identity of the selected phenol and cyanide degrading isolates NAUN-16 and NAUN-1B as Pseudomonas putida and Pseudomonas stutzeri, respectively. These two isolates tolerated phenol up to 1800 mg L-1 and cyanide up to 340 mg L-1 concentrations. The isolates were immobilized on activated charcoal, saw dust and fly ash. The effluent was passed through the column packed with immobilized cells with a flow rate of 5 mL min-1. The isolates showed degradation of phenol up to 80.5% and cyanide up to 80.6% and also had the ability to reduce biological oxygen demand, chemical oxygen demand and lower the pH of effluent from alkaline to near neutral. The study suggests the utilization of such potential bacterial strains in treating industrial effluent containing phenol and cyanide, before being thrown in any ecosystem.


Subject(s)
Cyanides/metabolism , Phenol/metabolism , Pseudomonas putida/metabolism , Pseudomonas stutzeri/metabolism , Waste Disposal, Fluid/methods , Wastewater/microbiology , Biodegradation, Environmental , Cells, Immobilized/classification , Cells, Immobilized/metabolism , Coke/analysis , Cyanides/analysis , Industrial Waste/analysis , Phenol/analysis , Phylogeny , Pseudomonas putida/classification , Pseudomonas putida/genetics , Pseudomonas putida/isolation & purification , Pseudomonas stutzeri/classification , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/isolation & purification , Wastewater/analysis
6.
Braz J Microbiol ; 49(1): 38-44, 2018.
Article in English | MEDLINE | ID: mdl-28958662

ABSTRACT

Discharge of coke-oven wastewater to the environment may cause severe contamination to it and also threaten the flora and fauna, including human beings. Hence before dumping it is necessary to treat this dangerous effluent in order to minimize the damage to the environment. Conventional technologies have inherent drawbacks however, biological treatment is an advantageous alternative method. In the present study, bacteria were isolated from the soil collected from the sites contaminated by coke-oven effluent rich in phenol and cyanide. Nucleotides sequence alignment and phylogenetic analysis showed the identity of the selected phenol and cyanide degrading isolates NAUN-16 and NAUN-1B as Pseudomonas putida and Pseudomonas stutzeri, respectively. These two isolates tolerated phenol up to 1800mgL-1 and cyanide up to 340mgL-1 concentrations. The isolates were immobilized on activated charcoal, saw dust and fly ash. The effluent was passed through the column packed with immobilized cells with a flow rate of 5mLmin-1. The isolates showed degradation of phenol up to 80.5% and cyanide up to 80.6% and also had the ability to reduce biological oxygen demand, chemical oxygen demand and lower the pH of effluent from alkaline to near neutral. The study suggests the utilization of such potential bacterial strains in treating industrial effluent containing phenol and cyanide, before being thrown in any ecosystem.


Subject(s)
Cyanides/metabolism , Phenol/metabolism , Pseudomonas putida/metabolism , Pseudomonas stutzeri/metabolism , Waste Disposal, Fluid/methods , Wastewater/microbiology , Biodegradation, Environmental , Cells, Immobilized/classification , Cells, Immobilized/metabolism , Coke/analysis , Cyanides/analysis , Industrial Waste/analysis , Phenol/analysis , Phylogeny , Pseudomonas putida/classification , Pseudomonas putida/genetics , Pseudomonas putida/isolation & purification , Pseudomonas stutzeri/classification , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/isolation & purification , Wastewater/analysis
7.
Materials (Basel) ; 12(1)2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30602685

ABSTRACT

This research attempted to develop an environmentally-friendly functional building mortar by the combined use of agriculture wastes (agro-wastes) and construction wastes in magnesium oxychloride cement (MOC). The agro-wastes referred to corn stalk (CS) and saw dust (SD), which were used to improve the flexural properties of host cementitious material, whilst the construction wastes referred to recycled clay brick powder (CBP), which was employed to enhance compressive strength and water resistance. Moreover, tourmaline powder (TP) was added as a negative ion-inducing admixture, at a fixed dosage of 10% by weight of MgO, to bestow air-improving functions on the end products. Results showed the flexural strength of MOC was enhanced by the addition of CS and SD. Besides, the incorporation of CBP improved the water resistance in a dosage-dependent way. In addition, the specimens containing CS and SD also had better negative ion-inducing performance due to their higher porosity. Overall, the study provided a feasible and attractive approach to recycle agro- and construction wastes for the production of air purifying mortar. The developed mortar possesses an eco-friendly nature (simultaneous reuse of various waste materials and improvement of the air quality).

8.
Bull Environ Contam Toxicol ; 99(6): 765-770, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29038940

ABSTRACT

The need to develop an approach for the reclamation of contaminated site using locally available agricultural waste has been considered. The present study investigated the application of sawdust as an effective amendment in the immobilization of potentially toxic metals (PTMs) by conducting a greenhouse experiment on soil collected from an automobile dumpsite. The amended and non-amended soil samples were analyzed for their physicochemical parameters and sequential extraction of PTMs. The results revealed that application of amendment had positive impact on the physicochemical parameters as organic matter content and cation exchange capacity increased from 12.1% to 12.8% and 16.4 to 16.8 meq/100 g respectively. However, the mobility and bioavalability of these metals was reduced as they were found to be distributed mostly in the non-exchangeable phase of soil. Therefore, application of sawdust successfully immobilized PTMs and could be applied for future studies in agricultural soil reclamation.


Subject(s)
Environmental Restoration and Remediation/methods , Metals/analysis , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Environmental Pollution , Wood
9.
Biochem Biophys Rep ; 12: 46-53, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28955791

ABSTRACT

Organic pollutants have an adverse effect on the neighboring environment. Industrial activates are the major sources of different organic pollutants. These primary pollutants react with surrounding and forms secondary pollutant, which persists for a long time. The present investigation has been carried out on the surface of activated sawdust for phenol eliminations. The process parameters initial concentration, contact time, adsorbent dose and pH were optimized by the response surface methodology (RSM). The numerical optimization of sawdust (SD), initial concentration 10 mg/l, contact time 1.5 h, adsorbent dose 4 g and pH 2, the optimum response result was 78.3% adsorption. Analysis of variance (ANOVA) was used to judge the adequacy of the central composite design and quadratic model found to be suitable. The coefficient of determination values was found to be maximum Adj R2 0.7223, and Pre R2 0.5739 and significant regression at 95% confidence level values.

10.
J Environ Manage ; 172: 136-42, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26934642

ABSTRACT

In the present study, laboratory scale bioremediation of dual purpose kerosene (DPK) hydrocarbon polluted soil using bulking agent (saw dust) was carried out. The effect of different parameters such as total petroleum hydrocarbon (TPH), dehydrogenase activity (DHase) and pH on bioremediation performance were evaluated. Studied parameters such as microbial dynamics, percentage degradation (95.20%), DHase (8.20 ± 0.43) were found to be higher in saw dust amended system and significantly differed with control at p < 0.05. Experimental data adequately fitted the first order kinetic thus, generated r(2) values (0.966), first order degradation constant (0.659 d(-1)), and degradation half-life t1/2 = ln2/k (1.05 d). Micrococcus luteus, Bacillus sp., Rhizopus arrhizus and Aspergillus sp. were isolated from the study. The use of saw dust as bulking agent greatly increased biodegradation rate and resulted in effective DPK hydrocarbon clean up. Therefore, saw dust could serve as an effective biostimulant towards improved bioremediation of hydrocarbon polluted environment.


Subject(s)
Environmental Restoration and Remediation/methods , Hydrocarbons , Soil Pollutants , Agriculture , Bacillus/metabolism , Biodegradation, Environmental , Half-Life , Hydrocarbons/analysis , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Hydrogen-Ion Concentration , Kerosene , Micrococcus luteus/metabolism , Nigeria , Petroleum , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil Pollutants/metabolism
11.
Bioresour Technol ; 198: 300-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26402873

ABSTRACT

Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.


Subject(s)
Charcoal , Eucalyptus , Methylene Blue/chemistry , Acetates , Adsorption , Citric Acid , Diffusion , Dust , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Tartrates
12.
Bioresour Technol ; 148: 24-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24041762

ABSTRACT

Co-pyrolysis behaviors of saw dust (SD) and Shenfu bituminous coal (SF) were studied in a drop tube furnace and a fixed bed reactor at different temperatures respectively. Six different biomass/coal ratios (B:C) were used. Compared the results with the calculated value obtained by the additional behavior, CO volume yields were lower while H2, CH4, CO2, volume yields were higher. Blend char yields had a good agreement with the calculated values, and their structures remained similar with SD and SF char's. Synergy effect occurred in gaseous phase, which was mainly caused by the secondary reactions. Compared the blend char yields in the drop tube furnace with those in the fixed bed reactor, the results showed the contacting way of biomass and coal particles had little influence on char yield in co-pyrolysis process. The reactivity index of blend char achieved the minimum at B:C=40:60 and the maximum at B:C=80:20.


Subject(s)
Biomass , Bioreactors , Biotechnology/instrumentation , Biotechnology/methods , Coal/analysis , Dust/analysis , Hot Temperature , Carbon Dioxide/analysis , Charcoal/chemistry
13.
Saudi J Biol Sci ; 17(4): 341-5, 2010 Oct.
Article in English | MEDLINE | ID: mdl-23961095

ABSTRACT

Pleurotus eryngii is a popular mushroom due to its excellent consistency of cap and stem, culinary qualities and longer shelf life. In Bangladesh, where Pleurotus mushrooms are very popular, P. eryngii may take position among the consumers, but currently this mushroom is not cultivated in large scale there. In this study, 3 strains of P. eryngii such as Pe-1 (native to Bangladesh), Pe-2 (germplasm collected from China) and Pe-3 (germplasm collected from Japan) were cultivated on saw dust and rice straw and their growth and yield parameters were investigated. Pe-1 on saw dust showed the highest biological yield and efficiency (73.5%) than other strains. Also, the mycelium run rate and number of fruiting bodies were higher in Pe-1 than other two strains. The quality of mushroom strains was near about similar. On saw dust, the yield and efficiency were better than those cultivated on rice straw, however, on straw; the mushroom fruiting bodies were larger in size. This study shows the prospects of P. eryngii cultivation in Bangladesh and suggests further study in controlled environment for higher yield and production.

SELECTION OF CITATIONS
SEARCH DETAIL
...