Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 755
Filter
1.
Med Phys ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984799

ABSTRACT

BACKGROUND: Cone beam CT (CBCT) is widely utilized in clinics. However, the scatter artifact degrades the CBCT image quality, hampering the expansion of CBCT applications. Recently, beam-blocker methods have been used for CBCT scatter correction and proved their high cost-effectiveness. PURPOSE: A rotating beam-blocker (RBB) method for CBCT scatter correction was proposed to complete scatter correction and image reconstruction within a single scan in both full- and half-fan scan scenarios. METHODS: The RBB consisted of two open regions and two blocked regions, and was designed as a centrosymmetric structure. The open and blocked projections could be alternatively obtained within one single rotation. The open projections were corrected with the scatter signal calculated from the blocked projections, and then used to reconstruct the 3D image via the Feldkamp-Davis-Kress algorithm. The performance of the RBB method was evaluated on head and pelvis phantoms in scenarios with and without a bowtie filter. The images obtained from nine repeated scans in each scenario were used to calculate the evaluation metrics including the CT number error, spatial nonuniformity (SNU) and contrast-to-noise ratio (CNR). RESULTS: For the head phantom, the CT number error was decreased to <5 after scatter correction from >200 HU before correction when scanned without a bowtie filter, and to <4 from >160 HU when scanned with a full bowtie filter. For the pelvis phantom, the CT number error was reduced to <12 after scatter correction from >250 HU before correction when scanned without a bowtie filter, and to <10 from >190 HU when scanned with a half bowtie filter. After scatter correction, the uniformity and contrast were both improved, resulting in an SNU of >79% decrease and CNR of >2 times increase, respectively. CONCLUSIONS: High-quality CBCT images could be obtained in a single scan after using the proposed RBB method for scatter correction, enabling more accurate image guidance for surgery and radiation therapy applications. With almost no time delay between the successive open and blocked projections, the RBB method could eliminate the motion-induced anatomical mismatches between the corresponding open and blocked projections and could find particular usefulness in thoracic and abdominal imaging.

2.
Appl Microbiol Biotechnol ; 108(1): 406, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958764

ABSTRACT

The proliferation and dissemination of antimicrobial-resistant bacteria is an increasingly global challenge and is attributed mainly to the excessive or improper use of antibiotics. Currently, the gold-standard phenotypic methodology for detecting resistant strains is agar plating, which is a time-consuming process that involves multiple subculturing steps. Genotypic analysis techniques are fast, but they require pure starting samples and cannot differentiate between viable and non-viable organisms. Thus, there is a need to develop a better method to identify and prevent the spread of antimicrobial resistance. This work presents a novel method for detecting and identifying antibiotic-resistant strains by combining a cell sorter for bacterial detection and an elastic-light-scattering method for bacterial classification. The cell sorter was equipped with safety mechanisms for handling pathogenic organisms and enabled precise placement of individual bacteria onto an agar plate. The patterning was performed on an antibiotic-gradient plate, where the growth of colonies in sections with high antibiotic concentrations confirmed the presence of a resistant strain. The antibiotic-gradient plate was also tested with an elastic-light-scattering device where each colony's unique colony scatter pattern was recorded and classified using machine learning for rapid identification of bacteria. Sorting and patterning bacteria on an antibiotic-gradient plate using a cell sorter reduced the number of subculturing steps and allowed direct qualitative binary detection of resistant strains. Elastic-light-scattering technology is a rapid, label-free, and non-destructive method that permits instantaneous classification of pathogenic strains based on the unique bacterial colony scatter pattern. KEY POINTS: • Individual bacteria cells are placed on gradient agar plates by a cell sorter • Laser-light scatter patterns are used to recognize antibiotic-resistant organisms • Scatter patterns formed by colonies correspond to AMR-associated phenotypes.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Phenotype , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Flow Cytometry/methods , Microbial Sensitivity Tests/methods , Light
3.
Food Chem ; 456: 139951, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38876058

ABSTRACT

To study the olfactory perceptual interaction of odorants (OPIO) in binary mixtures containing maltol, a simple and efficient analysis method was developed. This method correlated three variables of the binary mixture: two rates of change in perceived odor intensities of two odorants within the binary mixtures, and the degree of overall odor synergy exhibited by the binary mixtures. By creating a three-dimensional scatter matrix with the variables, the changes in odor intensity of the binary mixture due to OPIO were visualized. The results revealed that the proportions of mutual antagonism, opposite effect, mutual independence, and mutual synergy in the binary mixtures were 64.7%, 32.9%, 1.9%, and 0.5%, respectively. The odor of maltol was mainly masked, and those of esters (68%), aldehydes and ketones (33%) in the mixture were enhanced. In terms of overall odor intensity, 67% of cases involved partial addition, followed by 22.2% overshadowing, and 19.6% stronger component effect.

4.
Diagnostics (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893602

ABSTRACT

Incorrect scatter scaling of positron emission tomography (PET) images can lead to halo artifacts, quantitative bias, or reconstruction failure. Tail-fitted scatter scaling (TFSS) possesses performance limitations in multiple cases. This study aims to investigate a novel method for scatter scaling: maximum-likelihood scatter scaling (MLSS) in scenarios where TFSS tends to induce artifacts or are observed to cause reconstruction abortion. [68Ga]Ga-RGD PET scans of nine patients were included in cohort 1 in the scope of investigating the reduction of halo artifacts relative to the scatter estimation method. PET scans of 30 patients administrated with [68Ga]Ga-uPAR were included in cohort 2, used for an evaluation of the robustness of MLSS in cases where TFSS-integrated reconstructions are observed to fail. A visual inspection of MLSS-corrected images scored higher than TFSS-corrected reconstructions of cohort 1. The quantitative investigation near the bladder showed a relative difference in tracer uptake of up to 94.7%. A reconstruction of scans included in cohort 2 resulted in failure in 23 cases when TFSS was used. The lesion uptake values of cohort 2 showed no significant difference. MLSS is suggested as an alternative scatter-scaling method relative to TFSS with the aim of reducing halo artifacts and a robust reconstruction process.

5.
Heliyon ; 10(11): e31904, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845969

ABSTRACT

Background and aim: New quantitative ultrasound techniques can be used to quantify hepatic steatosis, including tissue attenuation imaging (TAI), tissue scatter -distribution imaging (TSI), and the hepatorenal index (HRI). However, the measurement norms and the effects of fasting on these measurements remain unclear. The present study performed a methodological exploration and investigated the reliability of these measurements. Methods: In total, 103 participants were prospectively recruited for ultrasonography and magnetic resonance imaging (MRI) scans. For the TAI and TSI data, the upper (2 cm), middle (4 cm) and lower (6 cm) areas determined according to the depth of the region of interest from the liver capsule, were sampled three times. Correlation analyses were performed to compare the measurements of TAI, TSI, and HRI with the controlled attenuation parameter (CAP) or MRI-proton density fat fraction (MRI-PDFF). Intra- and inter-operator repeatability was assessed using intraclass correlation coefficients. The effects of fasting on these measurements were then compared. Results: The TAI and TSI measurements obtained from the upper and middle depths exhibited stronger correlations with the CAP measurements than those obtained from the lower depth. Specifically, the mean TAI had a significant positive correlation with MRI-PDFF (r = 0.753, P < 0.0001). TAI and TSI measurements exhibited excellent intra- (0.933 and 0.925, respectively) and inter- (0.896 and 0.766, respectively) examiner reliability. However, the correlation between HRI and CAP measurements was only 0.281, with no significant correlation with MRI-PDFF, and intra- and inter-examiner reproducibility of 0.458 and 0.343, respectively. Fasting did not affect these measurements. Conclusions: TAI and TSI measurements demonstrated good intra- and interobserver reliability and correlated well with CAP and MRI-PDFF measurements. However, in practice-based clinical applications, the sampling depth should be controlled within 2-4 cm of the hepatic capsule; no fasting is required before the examination.

6.
Ultrasonography ; 43(4): 250-262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898634

ABSTRACT

PURPOSE: This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) as the reference standard. METHODS: This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses. RESULTS: TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (ß=7.134), hepatic fibrosis (ß=4.808), alanine aminotransferase (ß=0.202), triglyceride levels (ß=0.027), and diabetes mellitus (ß=3.710). CONCLUSION: QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.

7.
Article in English | MEDLINE | ID: mdl-38836184

ABSTRACT

Dual-source photon-counting CT combines the high temporal resolution and high pitch of dual-source CT with the material quantification capabilities of photon-counting CT. It, however, results in cross-scatter that increases in severity with increased patient size and collimation. This cross-scatter must be corrected to ensure the removal of scatter artifacts and improve quantitative accuracy. To evaluate residual cross-scatter of a first-generation dual-source photon-counting CT and the effect of phantom size, collimation, and radiation dose, a phantom was scanned in single- and dual-source modes with and without its extension ring at three collimations and three radiation doses. Virtual monoenergetic images (VMI) at 50 keV, VMI 150 keV, and iodine density maps were reconstructed to determine variation between acquisition parameters in single- and dual-source modes. Additionally, differences relative to single-source acquisitions and to single-source and small collimation acquisitions were calculated to reflect residual cross-scatter with and without matched collimation. At VMI 50 keV, inserts exhibited accuracy and similar variation between single- and dual-source modes, averaging 5.4 ± 2.6 and 6.2 ± 2.5 HU, respectively, across phantom size, collimation, and radiation dose. Differences relative to single-source measured 5.1 ± 8.5 and 0.4 ± 4.2 HU while differences relative to single-source and small collimation acquisitions were 6.4 ± 10.8 HU and -0.5 ± 3.9 HU for VMI 50 and 150 keV, respectively. This minimal residual cross-scatter increases confidence in the quantitative accuracy of spectral results necessary for clinical applications of dual-source photon-counting CT with motion, such as cardiac imaging.

8.
Pediatr Radiol ; 54(7): 1197-1204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769141

ABSTRACT

BACKGROUND: Reports comparing field lens doses between helical scans with a 40-mm detector width and axial scans with a 160-mm detector width using different computed tomography (CT) scanners are currently scarce. OBJECTIVE: To compare scatter doses for lenses between a helical scan with a 40-mm detector width and an axial scan with a 160-mm detector width when using different CT scanners in the context of pediatric chest examinations. MATERIALS AND METHODS: Two different CT machines were used: Revolution CT (GE Healthcare, Waukesha, WI) with a 256-row, 0.625-mm multidetector; and Aquilion ONE GENESIS Edition (Canon Medical Systems, Otawara, Japan) with a 320-row, 0.5-mm multidetector. Three pediatric anthropomorphic phantoms were used, with optically stimulated luminescence dosimeters (OSLDs) placed on the left and right lenses. The scatter dose values measured by the OSLDs were compared between a helical scan with a 40-mm detector width and an axial scan with a 160-mm detector width during pediatric chest CT examinations. RESULTS: Median equivalent doses for the helical and axial scans were 0.12 and 0.12 mSv/mGy for the newborn, 0.17 and 0.16 mSv/mGy for the 1-year-old, and 0.18 and 0.15 mSv/mGy for the 5-year-old, respectively, when using the Revolution CT. With the Revolution CT, no significant differences were observed in the scatter doses between helical and axial scans in the newborn and 1-year-old phantoms. However, the lens scatter dose for the helical scan was approximately 20-35% higher than that for the axial scan in the 5-year-old phantom (P<0.01). The median equivalent doses of eye lenses for the helical and axial scans were 0.12 and 0.07 mSv/mGy for the newborn, 0.07 and 0.05 mSv/mGy for the 1-year-old, and 0.14 and 0.12 mSv/mGy for the 5-year-old, respectively, when using the Aquilion ONE. With the Aquilion ONE, lens scatter doses for the helical scan were approximately 70%, 40%, and 30% higher in the newborn, 1-year-old, and 5-year-old phantoms, respectively, than those for the axial scan (P<0.01). CONCLUSIONS: When using the Aquilion ONE, lens scatter doses for the helical scan were significantly higher in all three phantoms than those for the axial scan. In contrast, when using the Revolution CT, the lens scatter dose for the helical scan was significantly higher in the 5-year-old phantom than that for the axial scan. These results suggest that although scattered doses may vary with respect to the CT scanner and body size, they are generally lower in the case of axial scans.


Subject(s)
Lens, Crystalline , Phantoms, Imaging , Radiation Dosage , Scattering, Radiation , Humans , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/radiation effects , Tomography, Spiral Computed/methods , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/instrumentation , Equipment Design , Radiometry/methods , Child , Radiation Exposure/analysis , Infant , Infant, Newborn
9.
J Appl Clin Med Phys ; 25(6): e14353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693646

ABSTRACT

BACKGROUND: A physical scatter grid is not often used in pelvic bedside examinations. However, multiple studies regarding scatter correction software (SC SW) are available for mobile chest radiography but the results are unclear for pelvic radiography. PURPOSE: We evaluated SC SW of Fujifilm (Virtual Grid) on gridless pelvic radiographs obtained from a human Thiel-embalmed body to investigate the potential of Virtual Grid in pelvic bedside examinations. METHODS: Gridless, Virtual Grid, and physical grid pelvic radiographs of a female Thiel-embalmed body were collected with a broad range of tube loads. Different software (SW) grid ratios-6:1, 10:1, 13:1, 17:1, and 20:1-were applied on the gridless radiographs to investigate the image quality (IQ) improvement of 13 IQ criteria in a visual grading analysis (VGA) setup. RESULTS: Gridless radiograph scores are significantly lower (p < 0.001) than Virtual Grid and physical grid scores obtained with the same tube load. Virtual Grid radiographs score better than gridless radiographs obtained with a higher tube load which makes a dose reduction possible. The averaged ratings of the IQ criteria processed with different SW ratios increase with increasing SW grid ratios. However, no statistically significant differences were found between the SW grid ratios. The scores of the physical grid radiographs are higher than those of the Virtual Grid radiographs when they are obtained with the same tube load. CONCLUSION: We conclude that Virtual Grid with an SW ratio of 6:1 improves the IQ of gridless pelvic radiographs in such a manner that a dose reduction is possible. However, physical grid radiograph ratings are higher compared to those of Virtual Grid radiographs.


Subject(s)
Pelvis , Humans , Female , Pelvis/diagnostic imaging , Image Processing, Computer-Assisted/methods , Software , Scattering, Radiation , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Phantoms, Imaging
10.
Radiography (Lond) ; 30(4): 1125-1135, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797045

ABSTRACT

INTRODUCTION: The conventional anti-scatter grid is widely used in X-ray radiography to reduce scattered X-rays, but it increases patient dose. Scatter-correction software offers a dose-reducing alternative by correcting for scattered X-rays without a physical grid. Grids and software correction are necessary to reduce scatter radiation and improve image quality especially for the large body parts. The scatter correction can be beneficial in situations where the use of grid is challenging. The implementation of grids and advanced software correction techniques is imperative to ensure that radiographic images maintain high levels of clarity, contrast, and resolution, and ultimately facilitating more accurate diagnoses. This study compares image quality and radiation dose for abdomen exams using scatter correction software and physical grids. METHODS: An anthropomorphic phantom (abdomen) underwent imaging with varying fat and lean tissue layers and body mass index (BMI) configurations. Imaging parameters included 70 kVp tube voltage, 110 cm SID, and Automatic Exposure Control (AEC) both lateral and central chambers. AP abdomen X-ray projections were acquired with and without an anti-scatter grid, and scatter correction software was applied. Image quality was assessed using contrast to noise ratio (CNR) and signal to noise ratio (SNR) metrics. The tube current mAs was considered an exposure factor that affected radiation dose and was used to compare the VG software and physical grid. Radiation dose was measured using Dose Area Products (DAP). The effective dose was estimated using Monte Carlo simulation-PCXMC software. Paired t-tests were used to investigate the image quality difference between the Gridless and VG software, Gridless and PG, and VG software and PG approaches. For the DAP and effective dose, paired t-test was used to investigate the difference between VG software and PG. RESULTS: Images acquired with a grid had the highest mean CNR (71.3 ± 32) compared to Gridless (50 ± 33.8) and scatter correction software (59.3 ± 37.9). The mean SNR of the grid images was (82.7.3 ± 38.9), which is 18% higher than the scatter correction software images (70.4 ± 36.7) and 29% higher than in the Gridless images (62.9.3 ± 34). The mean DAP value was reduced by 81% when the scatter correction software was used compared to the grid (mean: 65.4 µGy.m2 and 338.2 µGy.m2, respectively) with a significant difference (p = 0.001). Scatter correction software resulted in a lower effective dose compared to physical grid use, (mean difference± SD = -0.3 ± 0.18 mSv) with a significant difference (P = 0.02). CONCLUSION: Scatter correction software reduced the radiation dose required but images employing a grid yielded higher CNR and SNR. However, the radiation dose reduction might affect the image quality to a level that impacts the diagnostic information available. Thus, further research needs to be conducted to optimise the use of the scatter correction software. IMPLICATION FOR PRACTICE: Objectively, X-ray scatter correction software might be promising in conditions where a grid cannot be applied.


Subject(s)
Phantoms, Imaging , Radiation Dosage , Radiography, Abdominal , Scattering, Radiation , Software , Humans , Radiography, Abdominal/methods , X-Rays
11.
Med Phys ; 51(7): 4948-4969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753884

ABSTRACT

BACKGROUND: Edge-on-irradiated silicon detectors are currently being investigated for use in full-body photon-counting computed tomography (CT) applications. The low atomic number of silicon leads to a significant number of incident photons being Compton scattered in the detector, depositing a part of their energy and potentially being counted multiple times. Even though the physics of Compton scatter is well established, the effects of Compton interactions in the detector on image quality for an edge-on-irradiated silicon detector have still not been thoroughly investigated. PURPOSE: To investigate and explain effects of Compton scatter on low-frequency detective quantum efficiency (DQE) for photon-counting CT using edge-on-irradiated silicon detectors. METHODS: We extend an existing Monte Carlo model of an edge-on-irradiated silicon detector with 60 mm active absorption depth, previously used to evaluate spatial-frequency-based performance, to develop projection and image domain performance metrics for pure density and pure spectral imaging tasks with 30 and 40 cm water backgrounds. We show that the lowest energy threshold of the detector can be used as an effective discriminator of primary counts and cross-talk caused by Compton scatter. We study the developed metrics as functions of the lowest threshold energy for root-mean-square electronic noise levels of 0.8, 1.6, and 3.2 keV, where the intermediate level 1.6 keV corresponds to the noise level previously measured on a single sensor element in isolation. We also compare the performance of a modeled detector with 8, 4, and 2 optimized energy bins to a detector with 1-keV-wide bins. RESULTS: In terms of low-frequency DQE for density imaging, there is a tradeoff between using a threshold low enough to capture Compton interactions and avoiding electronic noise counts. For 30 cm water phantom, 4 energy bins, and a root-mean-square electronic noise of 0.8, 1.6, and 3.2 keV, it is optimal to put the lowest energy threshold at 3, 6, and 1 keV, which gives optimal projection-domain DQEs of 0.64, 0.59, and 0.52, respectively. Low-frequency DQE for spectral imaging also benefits from measuring Compton interactions with respective optimal thresholds of 12, 12, and 13 keV. No large dependence on background thickness was observed. For the intermediate noise level (1.6 keV), increasing the lowest threshold from 5 to 35 keV increases the variance in a iodine basis image by 60%-62% (30 cm phantom) and 67%-69% (40 cm phantom), with 8 bins. Both spectral and density DQE are adversely affected by increasing the electronic noise level. Image-domain DQE exhibits similar qualitative behavior as projection-domain DQE. CONCLUSIONS: Compton interactions contribute significantly to the density imaging performance of edge-on-irradiated silicon detectors. With the studied detector topology, the benefit of counting primary Compton interactions outweighs the penalty of multiple counting at all lowest threshold energies. Compton interactions also contribute significantly to the spectral imaging performance for measured energies above 10 keV.


Subject(s)
Monte Carlo Method , Photons , Scattering, Radiation , Silicon , Tomography, X-Ray Computed , Silicon/chemistry , Tomography, X-Ray Computed/instrumentation , Phantoms, Imaging
12.
Int J Part Ther ; 11: 100009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757075

ABSTRACT

Purpose: The effectiveness of intensity-modulated proton therapy (IMPT) for esophageal cancer treated with definitive concurrent chemoradiation therapy remains inadequately explored. We investigated long-term outcomes and toxicity experienced by patients who received IMPT as part of definitive esophageal cancer treatment. Patients and Methods: We retrospectively identified and analyzed 34 patients with locally advanced esophageal cancer who received IMPT with concurrent chemotherapy as a definitive treatment regimen at The University of Texas MD Anderson Cancer Center from 2011 to 2021. The median IMPT dose was 50.4 GyRBE in 28 fractions; concurrent chemotherapy consisted of fluorouracil and/or taxane and/or platinum. Survival outcomes were determined by the Kaplan-Meier method, and toxicity was scored according to the Common Terminology Criteria for Adverse Events version 4.0. Results: The median age of all patients was 71.5 years. Most patients had stage III (cT3 cM0) adenocarcinoma of the lower esophagus. At a median follow-up time of 39 months, the 5-year overall survival rate was 41.1%; progression-free survival, 34.6%; local regional recurrence-free survival, 78.1%; and distant metastasis-free survival, 65.0%. Common acute chemoradiation therapy-related toxicities included hematologic toxicity, esophagitis (and late-onset), fatigue, weight loss, and nausea (and late-onset); grade 3 toxicity rates were 26.0% for hematologic, 18.0% for esophagitis and 9.0% for nausea. No patient had grade ≥3 wt loss or radiation pneumonitis, and no patients had pulmonary fibrosis or esophageal fistula. No grade ≥4 events were observed except for hematologic toxicity (lymphopenia) in 2 patients. Conclusion: Long-term survival and toxicity were excellent after IMPT for locally advanced esophageal cancer treated definitively with concurrent chemoradiation therapy. When available, IMPT should be offered to such patients to minimize treatment-related cardiopulmonary toxicity without sacrificing outcomes.

13.
Biology (Basel) ; 13(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785835

ABSTRACT

Frequency-dependent predation is common in predator-prey interactions. Size is an important characteristic of seeds and is crucial in the regeneration stage of plant seeds. However, the frequency dependence of animal predation on seed size has not been reported. In this study, we conducted a field experiment and used different sizes of Liaodong oak (Quercus wutaishanica) seeds to test the frequency dependence of intraspecific seed size selection in rodents. We used the number ratio of large to small seeds as the frequency. The results show that the rate of small seeds being eaten in situ was significantly higher than that of large seeds (p < 0.05). The rates of different-sized seeds being eaten after removal decreased with increasing frequencies, and there was no significant difference between frequencies except for 1:9 and 9:1. The rates of large seeds being scatter-hoarded were significantly higher than those of small seeds at different frequencies (p < 0.05). The eating distances after removal of large seeds were significantly longer than those of small seeds at the same frequencies (p < 0.05). Furthermore, the scatter-hoarding distances of large seeds were significantly longer than those of small seeds at three frequencies (1:9, 3:7, and 9:1) (p < 0.05). That is, rodents consumed more small seeds in situ, dispersed and scatter-hoarded more large seeds, and dispersed large seeds over longer distances. Rodents exhibited a negative frequency dependence for small seeds and a positive frequency dependence for large seeds on being eaten in situ. Moreover, rodents exhibited a negative frequency dependence for large seeds and a positive frequency dependence for small seeds on being eaten after removal and scatter-hoarding. These results reveal the frequency dependence of rodent selection on seed size and provide new insights into animal-mediated seed dispersal and the regeneration of plant populations.

14.
Clin Res Hepatol Gastroenterol ; 48(6): 102365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703816

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is characterized by dysregulated carbohydrate and lipid metabolism, which are its primary features. However, traditional biochemical markers pose challenges for accurate quantification and visualization of metabolic states. This study introduces a novel states-based approach for accurate NAFLD assessment. METHODS: Joint probabilistic distributions of triglycerides and glycemia were constructed using dual-indicator Probabilistic Scatter Plots based on clinical data (healthy controls: n = 1978; NAFLD patients: n = 471). Patterns of metabolic dysregulation were revealed through comparison against healthy profiles. Self-organizing feature mapping (SOFM) clustered the distributions into four dominant states. RESULTS: Healthy scatter plots demonstrated a distinct progression of sub-states ranging from very healthy to sub-healthy. In contrast, NAFLD plots exhibited shifted probability centers and outward divergence. SOFM clustering classified the states into: mild; moderate and severe lipid metabolism disorders; and carbohydrate metabolism disorders. CONCLUSIONS: Probabilistic Scatter Plots, when combined with SOFM clustering, facilitate a states-based quantification of NAFLD metabolic dysregulation. This method integrates multi-dimensional biochemical indicators and their distributions into a cohesive framework, enabling precise and intuitive visualization for personalized diagnosis and monitoring of prognostic developments.


Subject(s)
Carbohydrate Metabolism , Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Middle Aged , Male , Female , Adult , Triglycerides/blood , Probability , Blood Glucose/analysis , Blood Glucose/metabolism
15.
Integr Zool ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698498

ABSTRACT

Scatter-hoarding rodents play important roles in plant regeneration and species coexistence in many forest ecosystems. Cache pilferage, the behavior of rodents seeking or relocating seeds cached by other individuals, is ubiquitous during the scatter-hoarding process. The effects of canopy openness on cache pilferage have received considerable attention, most of which have focused on the comparison between full canopy cover and completely open areas, such as forest gaps. However, little attention has been given to whether the subtle variation in forest canopy openness affects cache pilferage, although subtle variation in light environments exists in many forests, especially tropical and subtropical forests, where the overall canopy is large and the forest window is relatively small. Here, we directly tested these questions by simulating 400 artificial caches, each containing one seed from four selected tree species, in a subtropical forest in southwestern China. The overall canopy openness of the forest was relatively small (with a mean value of 11.1%), but subtle spatial variation still existed (ranging from 5.7% to 19.5%). Overall, caches with lower canopy openness were more likely to be pilfered and removed faster, although not all species showed the same pattern. Our study highlights that subtle variation in forest canopy openness, even in a closed primary forest, has significant effects on cache pilferage by rodents, which may influence the following seed germination and forest regeneration processes. Additionally, seedling species composition may further be altered because the canopy effects on cache pilferage are species-specific.

16.
Radiol Phys Technol ; 17(2): 488-503, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696086

ABSTRACT

We proposed a new deep learning (DL) model for accurate scatter correction in digital radiography. The proposed network featured a pixel-wise water equivalent path length (WEPL) map of subjects with diverse sizes and 3D inner structures. The proposed U-Net model comprises two concatenated modules: one for generating a WEPL map and the other for predicting scatter using the WEPL map as auxiliary information. First, 3D CT images were used as numerical phantoms for training and validation, generating observed and scattered images by Monte Carlo simulation, and WEPL maps using Siddon's algorithm. Then, we optimised the model without overfitting. Next, we validated the proposed model's performance by comparing it with other DL models. The proposed model obtained scatter-corrected images with a peak signal-to-noise ratio of 44.24 ± 2.89 dB and a structural similarity index measure of 0.9987 ± 0.0004, which were higher than other DL models. Finally, scatter fractions (SFs) were compared with other DL models using an actual phantom to confirm practicality. Among DL models, the proposed model showed the smallest deviation from measured SF values. Furthermore, using an actual radiograph containing an acrylic object, the contrast-to-noise ratio (CNR) of the proposed model and the anti-scatter grid were compared. The CNR of the images corrected using the proposed model are 16% and 82% higher than those of the raw and grid-applied images, respectively. The advantage of the proposed method is that no actual radiography system is required for collecting training dataset, as the dataset is created from CT images using Monte Carlo simulation.


Subject(s)
Deep Learning , Phantoms, Imaging , Radiographic Image Enhancement , Scattering, Radiation , Water , Radiographic Image Enhancement/methods , Monte Carlo Method , Image Processing, Computer-Assisted/methods , Humans , Tomography, X-Ray Computed , Algorithms , Signal-To-Noise Ratio , Imaging, Three-Dimensional
17.
Am J Clin Pathol ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581145

ABSTRACT

OBJECTIVES: We assessed the utility of red blood cell (RBC) CD105 and side scatter (SSC) parameters by flow cytometry for the detection of low-grade myelodysplastic neoplasms (MDS) in bone marrow specimens. METHODS: Ten RBC parameters incorporating CD105 or SSC combined with the Meyerson-Alayed scoring system (MASS) metrics were retrospectively evaluated by flow cytometry for utility in detecting low-grade MDS (n = 56) compared with cytopenic controls (n = 86). RESULTS: Myelodysplastic neoplasms were associated with 7 of the RBC parameters in univariate analysis. Multivariate analysis using cutoff values based on optimal and 95% specificity levels of the RBC metrics and the MASS parameters revealed the SSC ratio of CD105-positive and CD105-negative RBC fractions (CD105+/- SSC); the percentage and coefficient of variation of the CD105-positive fraction of RBCs (CD105%, CD105+CV) emerged as significant RBC variables. Two simple scoring schemes using these RBC values along with MASS parameters were identified: 1 using CD105+/- SSC, CD105%, and CD105+CV combined with the percentage of CD177-positive granulocytes (CD177%), myeloblast percentage (CD34%), and granulocyte SSC (GranSSC), and the other incorporating CD105+/- SSC, CD105+CV, CD177%, CD34%, GranSSC, and B-cell progenitor percentage. Both demonstrated a sensitivity of approximately 80%, with a specificity of roughly 90% for the detection of MDS compared with cytopenic controls. CONCLUSIONS: The red blood cell parameter, CD105+/- SSC, appears to be beneficial in the evaluation of low-grade MDS by flow cytometry.

18.
AAPS PharmSciTech ; 25(4): 76, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580881

ABSTRACT

For liquid drug products, e.g., solutions or suspensions for oral or parenteral dosing, stability needs to be demonstrated in primary packaging during storage and in dosing devices during in-use periods per quality guidelines from the International Conference on Harmonisation (ICH) and the European Agency for the Evaluation of Medicinal Products (EMEA). One aspect of stability testing for liquid drug products is in-use stability, which typically includes transferring the liquid samples into another container for further sample preparation with extraction diluent and necessary agitation. Samples are then analyzed with traditional chromatography methods, which are laborious, prone to human errors, and time-consuming, especially when this process needs to be repeated multiple times during storage and in-use periods. Being able to analyze the liquid samples non-destructively would significantly improve testing efficiency. We investigated different Raman techniques, including transmission Raman (TRS) and back scatter Raman with a non-contact optic (NCO) probe, as alternative non-destructive tools to the UHPLC method for API quantitation in in-use liquid samples pulled into plastic dosing syringes. The linearity of the chemometric methods for these two techniques was demonstrated by cross-validation sample sets at three levels over an API concentration range of 60 to 80 mg/mL. The accuracy of the chemometric models was demonstrated by the accurate prediction of the API concentrations in independent samples from four different pilot plant batches manufactured at different sites. Both techniques were successful in measuring a signal through a plastic oral dosing syringe, and predicting the suspension API concentration to within 4% of the UHPLC-measured value. For future work, there are opportunities to improve the methodology by exploring additional probes or to expand the range of applications by using different sample presentations (such as prefilled syringes) or formulation matrices for solutions and suspensions.


Subject(s)
Bulk Drugs , Syringes , Humans , Drug Packaging , Suspensions , Excipients
19.
J Korean Med Sci ; 39(16): e149, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685891

ABSTRACT

The appropriate plot effectively conveys the author's conclusions to the readers. Journal of Korean Medical Science is providing a series of guidelines to show you how to make consistent and excellent plots more easily. In this article, we introduce scatter plots and more.

20.
EJNMMI Phys ; 11(1): 33, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564100

ABSTRACT

BACKGROUND: Developments in transarterial radioembolization led to the conception of new microspheres loaded with holmium-166 (166Ho). However, due to the complexity of the scatter components in 166Ho single photon emission computed tomography (SPECT), questions about image quality and dosimetry are emerging. The aims of this work are to investigate the scatter components and correction methods to propose a suitable solution, and to evaluate the impact on image quality and dosimetry including Monte-Carlo (MC) simulations, phantom, and patient data. METHODS: Dual energy window (DEW) and triple energy window (TEW) methods were investigated for scatter correction purposes and compared using Contrast Recovery Coefficients (CRC) and Contrast to Noise Ratios (CNR). First, MC simulations were carried out to assess all the scatter components in the energy windows used, also to confirm the choice of the parameter needed for the DEW method. Then, MC simulations of acquisitions of a Jaszczak phantom were conducted with conditions mimicking an ideal scatter correction. These simulated projections can be reconstructed and compared with real acquisitions corrected by both methods and then reconstructed. Finally, both methods were applied on patient data and their impact on personalized dosimetry was evaluated. RESULTS: MC simulations confirmed the use of k = 1 for the DEW method. These simulations also confirmed the complexity of scatter components in the main energy window used with a high energy gamma rays component of about half of the total counts detected, together with a negligible X rays component and a negligible presence of fluorescence. CRC and CNR analyses, realized on simulated scatter-free projections of the phantom and on scatter corrected acquisitions of the same phantom, suggested an increased efficiency of the TEW method, even at the price of higher level of noise. Finally, these methods, applied on patient data, showed significant differences in terms of non-tumoral liver absorbed dose, non-tumoral liver fraction under 50 Gy, tumor absorbed dose, and tumor fraction above 150 Gy. CONCLUSIONS: This study demonstrated the impact of scatter correction on personalized dosimetry on patient data. The use of a TEW method is proposed for scatter correction in 166Ho SPECT imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...