Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Cell Rep ; : 114305, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38906148

ABSTRACT

Planarian flatworms undergo continuous internal turnover, wherein old cells are replaced by the division progeny of adult pluripotent stem cells (neoblasts). How cell turnover is carried out at the organismal level remains an intriguing question in planarians and other systems. While previous studies have predominantly focused on neoblast proliferation, little is known about the processes that mediate cell loss during tissue homeostasis. Here, we use the planarian epidermis as a model to study the mechanisms of cell removal. We established a covalent dye-labeling assay and image analysis pipeline to quantify the cell turnover rate in the planarian epidermis. Our findings indicate that the ventral epidermis is highly dynamic and epidermal cells undergo internalization via basal extrusion, followed by a relocation toward the intestine and ultimately digestion by intestinal phagocytes. Overall, our study reveals a complex homeostatic process of cell clearance that may generally allow planarians to catabolize their own cells.

2.
Proc Natl Acad Sci U S A ; 121(26): e2321349121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889152

ABSTRACT

Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a nonribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide ß-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme Aromatic L-amino acid decarboxylase (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a nonribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for nonribosomal peptides as signaling molecules in other organisms.


Subject(s)
Planarians , Animals , Planarians/metabolism , Female , Male , Peptide Synthases/metabolism , Peptide Synthases/genetics , Sexual Development , Peptides/metabolism , Reproduction/drug effects , Signal Transduction/drug effects
3.
bioRxiv ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38106172

ABSTRACT

Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a non-ribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide ß-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a non-ribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for non-ribosomal peptides as signaling molecules in other organisms.

4.
Biotechniques ; 75(6): 231-239, 2023 12.
Article in English | MEDLINE | ID: mdl-37851365

ABSTRACT

Whole-mount in situ hybridization is a critical technique for analyzing gene expression in planarians. While robust in situ protocols have been developed, these protocols are laborious, making them challenging to incorporate in an academic setting, reducing throughput and increasing time to results. Here, the authors systematically tested modifications to all phases of the protocol with the goal of eliminating steps and reducing time without impacting quality. This modified protocol allows for whole-mount colorimetric in situ hybridization and multicolor fluorescence in situ hybridization to be completed in two days with a significant reduction in steps and hands-on processing time.


Subject(s)
Planarians , Animals , Planarians/genetics , In Situ Hybridization, Fluorescence/methods
5.
Methods Mol Biol ; 2680: 93-106, 2023.
Article in English | MEDLINE | ID: mdl-37428373

ABSTRACT

Since the establishment of planarian species as laboratory models, investigation of molecular pathways has relied heavily on visualization of transcripts using in situ hybridization (ISH). ISH has revealed various aspects ranging from anatomical details of different organs to distribution of planarian stem cell populations and signaling pathways involved in their unique regenerative response. High-throughput sequencing techniques including single-cell approaches have allowed us to investigate gene expression and cell lineages in more detail. One application that could provide important new insights into more subtle intercellular transcriptional differences and intracellular mRNA localization is single-molecule fluorescent in situ hybridization (smFISH). In addition to obtaining an overview of the expression pattern, this technique allows for single-molecule resolution and hence quantification of a transcript population. This is achieved by hybridization of individual oligonucleotides antisense to a transcript of interest, all carrying a single fluorescent label. This way, a signal is produced only when the combination of labelled oligonucleotides, targeting the same transcript, are hybridized, minimizing background and off-target effects. Moreover, it requires only a few steps compared to the conventional ISH protocol and thus saves time. Here we describe a protocol for the tissue preparation, probe synthesis, and smFISH, combined with immunohistochemistry, for whole-mount Schmidtea mediterranea samples.


Subject(s)
Planarians , Animals , In Situ Hybridization, Fluorescence , Planarians/genetics , In Situ Hybridization , Coloring Agents/chemistry , Immunohistochemistry
6.
Methods Mol Biol ; 2680: 107-119, 2023.
Article in English | MEDLINE | ID: mdl-37428374

ABSTRACT

Whole-mount in situ hybridization (WISH), colorimetric or fluorescent (FISH), allows for the visualization of endogenous RNA. For planarians, robust WISH protocols exist for small-sized animals (>5 mm) of the model species Schmidtea mediterranea and Dugesia japonica. However, the sexual strain of Schmidtea mediterranea studied for germline development and function reaches much larger body sizes in excess of 2 cm. The existing whole-mount WISH protocols are not optimal for such large specimens, owing to insufficient tissue permeabilization. Here, we describe a robust WISH protocol for 12-16 mm long sexually mature Schmidtea mediterranea individuals that could serve as a starting point for adapting WISH to other large planarian species.


Subject(s)
Mediterranea , Planarians , Animals , Planarians/genetics , RNA , Germ Cells , In Situ Hybridization
7.
Methods Mol Biol ; 2680: 81-91, 2023.
Article in English | MEDLINE | ID: mdl-37428372

ABSTRACT

Whole-mount in situ hybridization (WISH) is an extremely useful technique for visualizing specific mRNA targets and solving many biological questions. In planarians, this method is really valuable, for example, for determining gene expression profiles during whole-body regeneration and analyzing the effects of silencing any gene to determine their functions. In this chapter, we present in detail the WISH protocol routinely used in our lab, using a digoxigenin-labelled RNA probe and developing with NBT-BCIP. This protocol is basically that already described in Currie et al. (EvoDevo 7:7, 2016), which put together several modifications developed from several laboratories in recent years that improved the original protocol developed in the laboratory of Kiyokazu Agata in 1997. Although this protocol, or slight modifications of it, is the most common protocol in the planarian field for NBT-BCIP WISH, our results show that key steps such as the use and time of NAC treatment to remove the mucus need to be taken into account depending on the nature of the gene analyzed, especially for the epidermal markers.


Subject(s)
Planarians , Animals , Planarians/genetics , In Situ Hybridization , Colorimetry , RNA, Messenger/genetics , Digoxigenin
8.
Methods Mol Biol ; 2680: 179-187, 2023.
Article in English | MEDLINE | ID: mdl-37428378

ABSTRACT

The need of highly viable cells dissociated from Schmidtea mediterranea is constantly growing. In this chapter, we describe a cell dissociation method based on papain (papaya peptidase I). This enzyme, often used to dissociate cells with complex morphology, is a cysteine protease with a broad specificity and increases both the yield and the viability of the dissociated cell suspension. The papain dissociation is preceded by a pretreatment for mucus removal, as this was shown to greatly improve the yield of cell dissociation, regardless of the method used. Papain-dissociated cells are suitable for a variety of downstream applications, like live immunostaining, flow cytometry, cell sorting, transcriptomics, and cell transplantation, also at the single-cell level.


Subject(s)
Mediterranea , Papain , Gene Expression Profiling
9.
Methods Mol Biol ; 2680: 189-207, 2023.
Article in English | MEDLINE | ID: mdl-37428379

ABSTRACT

The use of flow cytometry and fluorescence-activated cell sorting to roughly separate subpopulations of cells in Schmidtea mediterranea is long established. In this chapter, we describe a method for the immunostaining-either single or double-of live planarian cells, using mouse monoclonal antibodies reactive against S. mediterranea plasma membrane antigens. This protocol allows to sort live cells according to their membrane signature, offering the possibility to further characterize the cell populations in S. mediterranea in a variety of downstream applications, like transcriptomics and cell transplantation, also at the single-cell level.


Subject(s)
Mediterranea , Planarians , Animals , Mice , Flow Cytometry , Planarians/genetics , Gene Expression Profiling , Cell Membrane
10.
Methods Cell Biol ; 177: 213-240, 2023.
Article in English | MEDLINE | ID: mdl-37451768

ABSTRACT

The flatworm planarian, Schmidtea mediterranea (Smed) is a master at regenerating and rebuilding whole animals from fragments. A full understanding of Smed's regenerative capabilities requires a high-resolution characterization of organs, tissues, and the adult stem cells necessary for regeneration in their native environment. Here, we describe a serial block face scanning electron microscopy (SBF-SEM) protocol, optimized for Smed specifically, for visualizing the ultrastructure of membranes and condensed chromosomes in this model organism.


Subject(s)
Mediterranea , Planarians , Animals , Volume Electron Microscopy
11.
J Comp Physiol B ; 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36899149

ABSTRACT

The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.

12.
Cell Rep Methods ; 2(10): 100298, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36313809

ABSTRACT

Planarians have long been studied for their regenerative abilities. Moving forward, tools for ectopic expression of non-native proteins will be of substantial value. Using a luminescent reporter to overcome the strong autofluorescence of planarian tissues, we demonstrate heterologous protein expression in planarian cells and live animals. Our approach is based on the introduction of mRNA through several nanotechnological and chemical transfection methods. We improve reporter expression by altering untranslated region (UTR) sequences and codon bias, facilitating the measurement of expression kinetics in both isolated cells and whole planarians using luminescence imaging. We also examine protein expression as a function of variations in the UTRs of delivered mRNA, demonstrating a framework to investigate gene regulation at the post-transcriptional level. Together, these advances expand the toolbox for the mechanistic analysis of planarian biology and establish a foundation for the development and expansion of transgenic techniques in this unique model system.


Subject(s)
Planarians , Animals , Planarians/genetics , RNA, Messenger/genetics , Mediterranea/metabolism , Models, Biological , Transfection
13.
Elife ; 112022 08 23.
Article in English | MEDLINE | ID: mdl-35997250

ABSTRACT

Planarians have become an established model system to study regeneration and stem cells, but the regulatory elements in the genome remain almost entirely undescribed. Here, by integrating epigenetic and expression data we use multiple sources of evidence to predict enhancer elements active in the adult stem cell populations that drive regeneration. We have used ChIP-seq data to identify genomic regions with histone modifications consistent with enhancer activity, and ATAC-seq data to identify accessible chromatin. Overlapping these signals allowed for the identification of a set of high-confidence candidate enhancers predicted to be active in planarian adult stem cells. These enhancers are enriched for predicted transcription factor (TF) binding sites for TFs and TF families expressed in planarian adult stem cells. Footprinting analyses provided further evidence that these potential TF binding sites are likely to be occupied in adult stem cells. We integrated these analyses to build testable hypotheses for the regulatory function of TFs in stem cells, both with respect to how pluripotency might be regulated, and to how lineage differentiation programs are controlled. We found that our predicted GRNs were independently supported by existing TF RNAi/RNA-seq datasets, providing further evidence that our work predicts active enhancers that regulate adult stem cells and regenerative mechanisms.


Subject(s)
Adult Stem Cells , Planarians , Adult Stem Cells/metabolism , Animals , Chromatin , Enhancer Elements, Genetic/genetics , Humans , Planarians/genetics , Planarians/metabolism , Stem Cells/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Methods Mol Biol ; 2450: 509-527, 2022.
Article in English | MEDLINE | ID: mdl-35359326

ABSTRACT

Over the past several decades, planarians have emerged as a powerful model system with which to study the cellular and molecular basis of whole-body regeneration. The best studied planarians belong to freshwater flatworm species that maintain their remarkable regenerative capacity partly through the deployment of a population of adult pluripotent stem cells. Assessment of gene function in planarian regeneration has primarily been achieved through RNA interference (RNAi), either through the feeding or injection of double-stranded RNA (dsRNA). RNAi treatment of planarians has several advantages, including ease of use, which allows for medium-throughput screens of hundreds of genes over the course of a single project. Here, I present methods for dsRNA synthesis and RNAi feeding, as well as strategies for follow-up assessment of both structural and functional regeneration of organ systems of planarians, with a special emphasis on neural regeneration.


Subject(s)
Planarians , Pluripotent Stem Cells , Animals , Nerve Regeneration , Planarians/genetics , RNA Interference , RNA, Double-Stranded/genetics
15.
Cell Rep ; 38(11): 110525, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294875

ABSTRACT

Female germ cells develop into oocytes, with the capacity for totipotency. In most animals, these remarkable cells are specified during development and cannot be regenerated. By contrast, planarians, known for their regenerative prowess, can regenerate germ cells. To uncover mechanisms required for female germ cell development and regeneration, we generated gonad-specific transcriptomes and identified genes whose expression defines progressive stages of female germ cell development. Strikingly, early female germ cells share molecular signatures with the pluripotent stem cells driving planarian regeneration. We observe spatial heterogeneity within somatic ovarian cells and find that a regionally enriched foxL homolog is required for oocyte differentiation, but not specification, suggestive of functionally distinct somatic compartments. Unexpectedly, a neurotransmitter-biosynthetic enzyme, aromatic L-amino acid decarboxylase (AADC), is also expressed in somatic gonadal cells, and plays opposing roles in female and male germ cell development. Thus, somatic gonadal cells deploy conserved factors to regulate germ cell development and regeneration in planarians.


Subject(s)
Planarians , Pluripotent Stem Cells , Animals , Cell Differentiation/genetics , Female , Germ Cells/metabolism , Male , Ovary , Pluripotent Stem Cells/metabolism
16.
Toxicol Sci ; 185(2): 220-231, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34791476

ABSTRACT

The growing number of commercially used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head-regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A [BPA]). Planarian flatworms are an established alternative animal model for neurodevelopmental studies and have remarkable regenerative abilities allowing neurodevelopment to be induced via head resection. Here, we observed changes in photophobic behavior and central nervous system (CNS) morphology to evaluate the impact of exposure to low concentrations of ethanol, BPA, and BPA industry alternatives bisphenol F, and bisguaiacol on neurodevelopment. Our studies show that exposure to 1% v/v ethanol during regeneration induces a recoverable 48-h delay in the development of proper CNS integrity, which aligns with behavioral assessments of cognitive ability. Exposure to BPA and its alternatives induced deviations to neurodevelopment in a range of severities, distinguished by suppressions, delays, or a combination of the 2. These results suggest that quick and inexpensive behavioral assessments are a viable surrogate for tedious and costly immunostaining studies, equipping more utility and resolution to the planarian model for neurodevelopmental toxicity in the future of mass chemical screening. These studies demonstrate that behavioral phenotypes observed following chemical exposure are classifiable and also temporally correlated to the anatomical development of the CNS in planaria. This will facilitate and accelerate toxicological screening assays with this alternative animal model.


Subject(s)
Neurotoxicity Syndromes , Planarians , Animals , Ethanol/toxicity , Mediterranea , Neurotoxicity Syndromes/etiology , Neurotoxins/toxicity
17.
Biomolecules ; 11(10)2021 10 17.
Article in English | MEDLINE | ID: mdl-34680165

ABSTRACT

Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.


Subject(s)
Genetic Heterogeneity , Planarians/genetics , Regeneration/genetics , Stem Cells , Animals , Cell Differentiation/genetics , Planarians/growth & development
18.
Dev Biol ; 473: 130-143, 2021 05.
Article in English | MEDLINE | ID: mdl-33607113

ABSTRACT

Chromatin modifications function as critical regulators of gene expression and cellular identity, especially in the regulation and maintenance of the pluripotent state. However, many studies of chromatin modification in stem cells-and pluripotent stem cells in particular-are performed in mammalian stem cell culture, an in vitro condition mimicking a very transient state during mammalian development. Thus, new models for studying pluripotent stem cells in vivo could be helpful for understanding the roles of chromatin modification, for confirming prior in vitro studies, and for exploring evolution of the pluripotent state. The freshwater flatworm, Schmidtea mediterranea, is an excellent model for studying adult pluripotent stem cells, particularly in the context of robust, whole-body regeneration. To identify chromatin modifying and remodeling enzymes critical for planarian regeneration and stem cell maintenance, we took a candidate approach and screened planarian homologs of 25 genes known to regulate chromatin biology in other organisms. Through our study, we identified six genes with novel functions in planarian homeostasis, regeneration, and behavior. Of the list of genes characterized, we identified five planarian homologs of the mammalian CREB-Binding Protein (CBP) and p300 family of histone acetyltransferases, representing an expansion of this family in planarians. We find that two planarian CBP family members are required for planarian survival, with knockdown of Smed-CBP2 and Smed-CBP3 causing distinct defects in stem cell maintenance or function. Loss of CBP2 causes a quick, dramatic loss of stem cells, while knockdown of CBP3 affects stem cells more narrowly, influencing differentiation of several cell types that include neuronal subtypes and cells of the eye. Further, we find that Smed-CBP1 is required for planarian fissioning behavior. We propose that the division of labor among a diversified CBP family in planarians presents an opportunity to dissect specific functions of a broadly important histone acetyltransferase family.


Subject(s)
CREB-Binding Protein/metabolism , Planarians/metabolism , Stem Cells/physiology , Animals , CREB-Binding Protein/genetics , Cell Differentiation/genetics , Glycoproteins/metabolism , Histone Acetyltransferases/metabolism , Homeostasis/genetics , Planarians/genetics , Pluripotent Stem Cells/metabolism , Regeneration/genetics , p300-CBP Transcription Factors/metabolism
19.
Curr Protoc Microbiol ; 59(1): e120, 2020 12.
Article in English | MEDLINE | ID: mdl-33058563

ABSTRACT

Freshwater planarians are a powerful model organism for the study of animal regeneration, stem cell maintenance and differentiation, and the development and functions of several highly conserved complex tissues. At the same time, planarians are easy to maintain, inexpensive to propagate, and reasonably macroscopic (1 mm to 1 cm in length), making them excellent organisms to use in both complex academic research and hands-on teaching laboratories. Here, we provide a detailed description of how to maintain and propagate these incredibly versatile animals in any basic laboratory setting. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Salt solution preparation Basic Protocol 2: Cleaning planarian housing Basic Protocol 3: Food preparation Basic Protocol 4: Feeding planarians Basic Protocol 5: Expansion and amplification of colony.


Subject(s)
Clinical Laboratory Techniques/methods , Fresh Water/parasitology , Planarians , Animal Feed , Animals , Cell Differentiation , Clinical Laboratory Techniques/instrumentation , Liver , Planarians/growth & development , Salts
20.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32907972

ABSTRACT

Freshwater planarians, flatworms from order Tricladida, are experimental models of stem cell biology and tissue regeneration. An aspect of their biology that remains less well studied is their relationship with viruses that may infect them. In this study, we identified a taxon of monosegmented double-stranded RNA (dsRNA) viruses in five planarian species, including the well-characterized model Schmidtea mediterranea Sequences for the S. mediterranea virus (abbreviated SmedTV for S. mediterranea tricladivirus) were found in public transcriptome data from multiple institutions, indicating that SmedTV is prevalent in S. mediterranea lab colonies, though without causing evident disease. The presence of SmedTV in discrete cells was shown through in situ hybridization methods for detecting the viral RNA. SmedTV-staining cells were found to be concentrated in neural structures (eyes and brain) but were also scattered in other worm tissues as well. In contrast, few SmedTV-staining cells were seen in stem cell compartments (also consistent with RNA sequencing data) or early blastema tissue. RNA interference (RNAi) targeted to the SmedTV sequence led to apparent cure of infection, though effects on worm health or behavior were not observed. Efforts to transmit SmedTV horizontally through microinjection were unsuccessful. Based on these findings, we conclude that SmedTV infects S. mediterranea in a persistent manner and undergoes vertical transmission to progeny worms during serial passage in lab colonies. The utility of S. mediterranea as a regeneration model, coupled with the apparent capacity of SmedTV to evade normal host immune/RNAi defenses under standard conditions, argues that further studies are warranted to explore this newly recognized virus-host system.IMPORTANCE Planarians are freshwater flatworms, related more distantly to tapeworms and flukes, and have been developed as models to study the molecular mechanisms of stem cell biology and tissue regeneration. These worms live in aquatic environments, where they are likely to encounter a variety of viruses, bacteria, and eukaryotic organisms with pathogenic potential. How the planarian immune system has evolved to cope with these potential pathogens is not well understood, and only two types of planarian viruses have been described to date. Here, we report discovery and inaugural studies of a novel taxon of dsRNA viruses in five different planarian species. The virus in the best-characterized model species, Schmidtea mediterranea, appears to persist long term in that host while avoiding endogenous antiviral or RNAi mechanisms. The S. mediterranea virus-host system thus seems to offer opportunity for gaining new insights into host defenses and their evolution in an important lab model.


Subject(s)
Double Stranded RNA Viruses/classification , Double Stranded RNA Viruses/genetics , Double Stranded RNA Viruses/metabolism , Planarians/virology , Platyhelminths/virology , Animals , Double Stranded RNA Viruses/isolation & purification , Evolution, Molecular , Fresh Water , In Situ Hybridization , Planarians/physiology , RNA Interference , RNA, Double-Stranded , Sequence Analysis, RNA , Stem Cells , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...