Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 101-112, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38265876

ABSTRACT

Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Šlonger and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues.


Subject(s)
Glutamic Acid , Hydrogen Peroxide , Catalase/chemistry , Hydrogen Peroxide/chemistry , Heme/chemistry , Threonine
2.
Bioresour Technol ; 339: 125603, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34293687

ABSTRACT

Two lignocellulolytic accessory enzymes, feruloyl esterase D (FAED_SCYTH) and ß-xylosidase (XYL43B_SCYTH) were cloned and produced in the Pichia pastoris X33 as host. The molecular weight of recombinant enzymes FAED_SCYTH and XYL43B_SCYTH were ~ 31 and 40 kDa, respectively. FAED_SCYTH showed optimal activity at pH 6.0, 60 °C; and XYL43B_SCYTH at pH 7.0, 50 °C. FAED_SCYTH and XYL43B_SCYTH exhibited t1/2: 4 and 0.5 h, respectively (50 °C, pH 5.0). The ß-xylosidase was bi-functional with pronounced activity against pNP-α-arabinofuranoside besides being highly xylose tolerant (retaining ~ 97% activity in the presence of 700 mM xylose). Cocktails prepared using these enzymes along with AA9 protein (PMO9D_SCYTH) and commercial cellulase CellicCTec2, showed improved hydrolysis of the pre-treated lignocellulosic biomass. Priming of pre-treated lignocellulosic biomass with these accessory enzymes was found to further enhance the hydrolytic potential of CellicCTec2 promising to reduce the enzyme load and cost required for obtaining sugars from biorefinery relevant pre-treated substrates.


Subject(s)
Fungi , Carboxylic Ester Hydrolases , Hydrolysis , Lignin , Saccharomycetales , Substrate Specificity , Xylosidases
3.
Chem Biodivers ; 17(5): e2000137, 2020 May.
Article in English | MEDLINE | ID: mdl-32207881

ABSTRACT

Thermomyces lanuginosus and Scytalidium thermophilum are among the most ubiquitous thermophilic fungi in compost and soil. Chemical study on these two prevalent strains collected from Yunnan led to isolation of 23 metabolites, including one new metabolite, therlanubutanolide, and 15 known compounds, isolated from the YGP culture broth of Thermomyces lanuginosus and 7 known compounds isolated from Scytalidium thermophilum, respectively. Therlanubutanolide shared the quite similar features of the same carbon skeleton and saturation as natural hexadecanoic acids. This was the first reported discovery of such a lactone as natural occurring metabolite. All the compounds were reported for the first time from thermophilic fungi. Among them, N-[(2S,3R,4E,8E)-1,3-dihydroxy-9-methyloctadeca-4,8-dien-2-yl]acetamide was for the first time reported to be a naturally occurring metabolite and its NMR data was first provided in this study. A type of PKS-derived metabolites, three 3,4-dihydronaphthalen-1(2H)-ones, which were widely found in plant pathogenic fungi as phytotoxins and reported to have antimicrobial activity, were obtained from both dominant thermophilic fungi. The frequent occurrence of such PKS phytotoxins in these two thermophilic fungi might suggest particular ecological interest.


Subject(s)
Ascomycota/metabolism , Naphthalenes/metabolism , Molecular Structure , Naphthalenes/chemistry , Polyketide Synthases/metabolism , Species Specificity
4.
Acta Crystallogr D Struct Biol ; 74(Pt 10): 979-985, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30289408

ABSTRACT

The catalase from Scytalidium thermophilum is a homotetramer containing a heme d in each active site. Although the enzyme has a classical monofunctional catalase fold, it also possesses oxidase activity towards a number of small organics, including catechol and phenol. In order to further investigate this, the crystal structure of the complex of the catalase with the classical catalase inhibitor 3-amino-1,2,4-triazole (3TR) was determined at 1.95 Šresolution. Surprisingly, no binding to the heme site was observed; instead, 3TR occupies a binding site corresponding to the NADPH-binding pocket in mammalian catalases at the entrance to a lateral channel leading to the heme. Kinetic analysis of site-directed mutants supports the assignment of this pocket as the binding site for oxidase substrates.


Subject(s)
Binding Sites , Catalase/chemistry , Fungal Proteins/chemistry , Fungi/enzymology , Amitrole/metabolism , Catalase/antagonists & inhibitors , Catalytic Domain , Crystallography, X-Ray , Heme/analogs & derivatives , Heme/metabolism , NADP/metabolism , Oxidoreductases/metabolism
5.
Appl Biochem Biotechnol ; 185(1): 316-333, 2018 May.
Article in English | MEDLINE | ID: mdl-29150773

ABSTRACT

Enzyme reaction products and by-products from pretreatment steps can inhibit endoglucanases and are major factors limiting the efficiency of enzymatic lignocellulosic biomass hydrolysis. The gene encoding the endoglucanase from Scytalidium thermophilum (egst) was cloned and expressed as a soluble protein in Pichia pastoris GS115. The recombinant enzyme (Egst) was monomeric (66 kDa) and showed an estimated carbohydrate content of 53.3% (w/w). The optimum temperature and pH of catalysis were 60-70 °C and pH of 5.5, respectively. The enzyme was highly stable at pH 3.0-8.0 with a half-life in water of 100 min at 65 °C. The Egst presented good halotolerance, retaining 84.1 and 71.4% of the control activity in the presence of 0.5 and 2.0 mol L-1 NaCl, respectively. Hydrolysis of medium viscosity carboxymethylcellulose (CMC) by Egst was stimulated 1.77-, 1.84-, 1.64-, and 1.8-fold by dithiothreitol, ß-mercaptoethanol, cysteine, and manganese at 10, 10, 10, and 5 mmol L-1 concentration, respectively. The enzyme hydrolyzed CMC with maximal velocity and an apparent affinity constant of 432.10 ± 16.76 and 10.5 ± 2.53 mg mL-1, respectively. Furthermore, the Egst was tolerant to reaction products and able to act on pretreated fractions sugarcane bagasse demonstrating excellent properties for application in the hydrolysis of lignocellulosic biomass.


Subject(s)
Ascomycota , Fungal Proteins , Gene Expression , Glycoside Hydrolases , Ascomycota/enzymology , Ascomycota/genetics , Enzyme Stability , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Glycoside Hydrolases/biosynthesis , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Pichia/enzymology , Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
6.
J Biosci Bioeng ; 116(3): 362-5, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23597919

ABSTRACT

We successfully expressed the neutral ß-glucosidase (BGL4) from Scytalidium thermophilum in the thermotolerant yeast Candida glabrata. Compared to the strain expressing Aspergillus acidic ß-glucosidase (BGL1), the BGL4-expressing strain showed a higher cellobiose fermentation ability at pH 6.0 and 40°C, leading to a higher ethanol production from alkaline-pretreated rice straw.


Subject(s)
Ascomycota/enzymology , Candida glabrata/genetics , Candida glabrata/metabolism , Cellobiose/metabolism , Ethanol/metabolism , Oryza , beta-Glucosidase/metabolism , Ascomycota/genetics , Aspergillus/enzymology , Fermentation , Hydrogen-Ion Concentration , Mitosporic Fungi/enzymology , Mitosporic Fungi/genetics , Temperature , beta-Glucosidase/genetics
7.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 398-408, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23519415

ABSTRACT

Scytalidium thermophilum produces a catalase with phenol oxidase activity (CATPO) that catalyses the decomposition of hydrogen peroxide into oxygen and water and also oxidizes various phenolic compounds. A codon-optimized catpo gene was cloned and expressed in Escherichia coli. The crystal structures of native and recombinant S. thermophilum CATPO and two variants, H82N and V123F, were determined at resolutions of 2.7, 1.4, 1.5 and 1.9 Å, respectively. The structure of CATPO reveals a homotetramer with 698 residues per subunit and with strong structural similarity to Penicillium vitale catalase. The haem component is cis-hydroxychlorin γ-spirolactone, which is rotated 180° with respect to small-subunit catalases. The haem-binding pocket contains two highly conserved water molecules on the distal side. The H82N mutation resulted in conversion of the native d-type haem to a b-type haem. Kinetic studies of the H82N and V123F mutants indicate that both activities are likely to be associated with the haem centre and suggest that the secondary oxidase activity may be a general feature of catalases in the absence of hydrogen peroxide.


Subject(s)
Ascomycota/enzymology , Ascomycota/genetics , Catalase/chemistry , Gene Expression Regulation, Fungal , Monophenol Monooxygenase/chemistry , Catalase/genetics , Catalase/metabolism , Crystallography, X-Ray , Enzyme Activation/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Mutagenesis, Site-Directed , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
8.
Braz. j. microbiol ; 39(2): 344-352, Apr.-June 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-487716

ABSTRACT

Two strains (15.1 and 15.8) of the thermophilic fungus Scytalidium thermophilum produced high levels of intracellular glucoamylases, with potential for industrial applications. The isoform I of the glucoamylase produced by 15.1 strain was sequentially submitted to DEAE-Cellulose and CM-Cellulose chromatography, and purified 141-fold, with 5.45 percent recovery. The glucoamylase of strain 15.8 was purified 71-fold by CM-Cellulose and Concanavalin A-Sepharose chromatography, with 7.38 percent recovery. Temperature and pH optima were in the range of 50-60ºC and 5.0-6.0, respectively, using starch and maltose as substrates. The glucoamylase of S. thermophilum 15.8 was more stable (t50 > 60 min) than that of S. thermophilum 15.1 (t50= 11-15 min), at 60ºC. The glucoamylase activities were enhanced by several ions (e.g. Mn2+ and Ca2+) and inhibited by β-mercaptoethanol. The glucoamylase from 15.1 strain showed a Km of 0.094 mg/ml and 0.029 mg/ml and Vmax of 202 U/mg prot and 109 U/mg prot, for starch and maltose, respectively. The hydrolysis products of starch and maltose, analyzed by TLC, demonstrated glucose as end product and confirming the character of the enzyme as glucoamylase. Differences were observed in relation to the products formed with maltose as substrate between the two strains studied. S. thermophilum 15.8 formed maltotriose in contrast with S. thermophilum 15.1.


Duas linhagens (15.1 e 15.8) do fungo termofílico Scytalidium thermophilum se mostraram produtoras de grandes quantidades de glucoamilases, com potencial aplicação industrial. A isoforma I de glucoamilase produzida pela linhagem 15.1 foi submetida seqüencialmente a cromatografia em colunas de DEAE-celulose e CM-celulose, sendo purificada 141 vezes com porcentagem de recuperação de 5,45 por cento. A glucoamilase da linhagem 15.8 foi purificada 71 vezes através do uso de colunas de cromatografia de CM-celulose e Concanavalina A-sepharose com porcentagem de recuperação de 7,38 por cento. Temperatura e pH ótimo foram de 50-60ºC e 5,0-6,0 respectivamente, utilizando-se amido e maltose como substratos. A glucoamilase de S. thermophilum 15.8 se mostrou mais estável (t50 > 60 min) que a de S. thermophilum 15.1 (t50 =11-15min) a 60ºC. As glucoamilases tiveram suas atividades enzimáticas aumentadas na presença de vários íons (ex: Mn2+, e Ca2+) e inibidas por β-mercaptoetanol. A glucoamilase da linhagem 15.1 apresentou um Km de 0,094 mg/ml e 0,029 mg/ml and Vmax de 202U/mg prot e 109U/mg prot, para amido e maltose respectivamente. A análise do produto da hidrólise de amido e maltose por TLC, demonstrou que o produto final era glucose, confirmando as características da enzima como glucoamilase. Diferenças entre as duas linhagens foram observadas com relação aos produtos formados tendo maltose como susbstrato, a linhagem 15.8 de S. thermophilum produziu maltotriose como produto final em contrate com a linhagem 15.1.


Subject(s)
Clinical Enzyme Tests , Enzymes/analysis , Fungi , /analysis , In Vitro Techniques , Industrial Microbiology , Chromatography , Culture Media , Hydrolysis , Methods
9.
Braz J Microbiol ; 39(2): 344-52, 2008 Apr.
Article in English | MEDLINE | ID: mdl-24031228

ABSTRACT

Two strains (15.1 and 15.8) of the thermophilic fungus Scytalidium thermophilum produced high levels of intracellular glucoamylases, with potential for industrial applications. The isoform I of the glucoamylase produced by 15.1 strain was sequentially submitted to DEAE-Cellulose and CM-Cellulose chromatography, and purified 141-fold, with 5.45% recovery. The glucoamylase of strain 15.8 was purified 71-fold by CM- Cellulose and Concanavalin A-Sepharose chromatography, with 7.38% recovery. Temperature and pH optima were in the range of 50-60°C and 5.0-6.0, respectively, using starch and maltose as substrates. The glucoamylase of S. thermophilum 15.8 was more stable (t50 > 60 min) than that of S. thermophilum 15.1 (t50= 11-15 min), at 60°C. The glucoamylase activities were enhanced by several ions (e.g. Mn(2+) and Ca(2+)) and inhibited by ß- mercaptoethanol. The glucoamylase from 15.1 strain showed a Km of 0.094 mg/ml and 0.029 mg/ml and Vmax of 202 U/mg prot and 109 U/mg prot, for starch and maltose, respectively. The hydrolysis products of starch and maltose, analyzed by TLC, demonstrated glucose as end product and confirming the character of the enzyme as glucoamylase. Differences were observed in relation to the products formed with maltose as substrate between the two strains studied. S. thermophilum 15.8 formed maltotriose in contrast with S. thermophilum 15.1.

SELECTION OF CITATIONS
SEARCH DETAIL
...