Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters











Publication year range
1.
AoB Plants ; 16(4): plae039, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39114598

ABSTRACT

Climate change models predict increasing precipitation variability in the mid-latitude regions of Earth, generating a need to reduce the negative impacts of these changes on crop production. Despite considerable research on how cover crops support agriculture in a changing climate, understanding is limited of how climate change influences the growth of cover crops. We investigated the early development of two common cover crop species-crimson clover (Trifolium incarnatum) and rye (Secale cereale)-and hypothesized that growing them in the mixture would ameliorate stress from drought or waterlogging. This hypothesis was tested in a 25-day greenhouse experiment, where the two factors (species number and water stress) were fully crossed in randomized blocks, and plant responses were quantified through survival, growth rate, biomass production and root morphology. Water stress negatively influenced the early growth of these two species in contrasting ways: crimson clover was susceptible to drought while rye performed poorly under waterlogging. Per-plant biomass in rye was always greater in mixture than in monoculture, while per-plant biomass of crimson clover was greater in mixture under drought. Both species grew longer roots in mixture than in monoculture under drought, and total biomass of mixtures did not differ significantly from the more-productive monoculture (rye) in any water condition. In the face of increasingly variable precipitation, growing crimson clover and rye together has potential to ameliorate water stress, a possibility that should be further investigated in field experiments.

2.
Vavilovskii Zhurnal Genet Selektsii ; 28(4): 365-376, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027125

ABSTRACT

Triticum aestivum L. lines introgressed with alien chromosomes create a new genetic background that changes the gene expression of both wheat and donor chromosomes. The genes involved in meiosis regulation are localized on wheat chromosome 3B. The purpose of the present study was to investigate the effect of wheat chromosome 3B substituted with homoeologous rye chromosome 3R on meiosis regulation in disomically substituted wheat line 3R(3B). Employing immunostaining with antibodies against microtubule protein, α-tubulin, and the centromere-specific histone (CENH3), as well as FISH, we analyzed microtubule cytoskeleton dynamics and wheat and rye 3R chromosomes behavior in 3R(3B) (Triticum aestivum L. variety Saratovskaya 29 × Secale cereale L. variety Onokhoiskaya) meiosis. The results revealed a set of abnormalities in the microtubule dynamics and chromosome behavior in both first and second divisions. A feature of metaphase I in 3R(3B) was a decrease in the chiasmata number compared with variety Saratovskaya 29, 34.9 ± 0.62 and 41.92 ± 0.38, respectively. Rye homologs 3R in 13.18 % of meiocytes did not form bivalents. Chromosomes were characterized by varying degrees of compaction; 53.33 ± 14.62 cells lacked a metaphase plate. Disturbances were found in microtubule nucleation at the bivalent kinetochores and in their convergence at the spindle division poles. An important feature of meiosis was the asynchronous chromosome behavior in the second division and dyads at the telophase II in 8-13 % of meiocytes, depending on the anther studied. Considering the 3R(3B) meiotic phenotype, chromosome 3B contains the genes involved in the regulation of meiotic division, and substituting 3B3B chromosomes with rye 3R3R does not compensate for their absence.

3.
BMC Plant Biol ; 24(1): 534, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862913

ABSTRACT

BACKGROUND: Waterlogging stress (WS) negatively impacts crop growth and productivity, making it important to understand crop resistance processes and discover useful WS resistance genes. In this study, rye cultivars and wild rye species were subjected to 12-day WS treatment, and the cultivar Secale cereale L. Imperil showed higher tolerance. Whole transcriptome sequencing was performed on this cultivar to identify differentially expressed (DE) messenger RNAs (DE-mRNAs) and long non-coding RNAs (DE-lncRNAs) involved in WS response. RESULTS: Among the 6 species, Secale cereale L. Imperil showed higher tolerance than wild rye species against WS. The cultivar effectively mitigated oxidative stress, and regulated hydrogen peroxide and superoxide anion. A total of 728 DE-mRNAs and 60 DE-lncRNAs were discovered. Among these, 318 DE-mRNAs and 32 DE-lncRNAs were upregulated, and 410 DE-mRNAs and 28 DE-lncRNAs were downregulated. GO enrichment analysis discovered metabolic processes, cellular processes, and single-organism processes as enriched biological processes (BP). For cellular components (CC), the enriched terms were membrane, membrane part, cell, and cell part. Enriched molecular functions (MF) terms were catalytic activity, binding, and transporter activity. LncRNA and mRNA regulatory processes were mainly related to MAPK signaling pathway-plant, plant hormone signal transduction, phenylpropanoid biosynthesis, anthocyanin biosynthesis, glutathione metabolism, ubiquitin-mediated proteolysis, ABC transporter, Cytochrome b6/f complex, secondary metabolite biosynthesis, and carotenoid biosynthesis pathways. The signalling of ethylene-related pathways was not mainly dependent on AP2/ERF and WRKY transcription factors (TF), but on other factors. Photosynthetic activity was active, and carotenoid levels increased in rye under WS. Sphingolipids, the cytochrome b6/f complex, and glutamate are involved in rye WS response. Sucrose transportation was not significantly inhibited, and sucrose breakdown occurs in rye under WS. CONCLUSIONS: This study investigated the expression levels and regulatory functions of mRNAs and lncRNAs in 12-day waterlogged rye seedlings. The findings shed light on the genes that play a significant role in rye ability to withstand WS. The findings from this study will serve as a foundation for further investigations into the mRNA and lncRNA WS responses in rye.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Long Noncoding , RNA, Messenger , Secale , Stress, Physiological , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Secale/genetics , Secale/physiology , Stress, Physiological/genetics , RNA, Plant/genetics , Transcriptome
4.
BMC Plant Biol ; 24(1): 291, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632518

ABSTRACT

BACKGROUND: Leaf rust (LR) is among the most destructive fungal diseases of rye (Secale cereale L.). Despite intensive research using various analytical and methodological approaches, such as quantitative trait locus (QTL) mapping, candidate gene expression analysis, and transcriptome sequencing, the genetic basis of the rye immune response to LR remains unclear. RESULTS: A genome-wide association study was employed to detect QTLs controlling the immune response to LR of rye. A mapping population, G38A, was constructed by crossing two inbred lines: 723 (susceptible to LR) and JKI-NIL-Pr3 (a donor of the LR resistance gene Pr3). For genotyping, SNP-DArT and silico-DArT markers were used. Resistance phenotyping was conducted by visual assessment of the infection severity in detached leaf segments inoculated with two isolates of Puccinia recondita f. sp. secalis, namely, 60/17/2.1 (isolate S) in the main experiment and 86/n/2.1_5x (isolate N) in the validation experiment, at 10 and 17 days post-infection (dpi), respectively. In total, 42,773 SNP-DArT and 105,866 silico-DArT markers were included in the main analysis including isolate S, of which 129 and 140 SNP-DArTs and 767 and 776 silico-DArTs were significantly associated (p ≤ 0.001; - log10(p) ≥ 3.0) with the immune response to LR at 10 and 17 dpi, respectively. Most significant markers were mapped to chromosome 1R. The number of common markers from both systems and at both time points occupying common chromosomal positions was 37, of which 21 were positioned in genes, comprising 18 markers located in exons and three in introns. This gene pool included genes encoding proteins with a known function in response to LR (e.g., a NBS-LRR disease resistance protein-like protein and carboxyl-terminal peptidase). CONCLUSION: This study has expanded and supplemented existing knowledge of the genetic basis of rye resistance to LR by (1) detecting two QTLs associated with the LR immune response of rye, of which one located on the long arm of chromosome 1R is newly detected, (2) assigning hundreds of markers significantly associated with the immune response to LR to genes in the 'Lo7' genome, and (3) predicting the potential translational effects of polymorphisms of SNP-DArT markers located within protein-coding genes.


Subject(s)
Basidiomycota , Quantitative Trait Loci , Secale/genetics , Genome-Wide Association Study , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/microbiology , Basidiomycota/genetics
5.
Front Plant Sci ; 15: 1306591, 2024.
Article in English | MEDLINE | ID: mdl-38304738

ABSTRACT

Rye (Secale cereale L.) is an important cereal crop used for food, beverages, and feed, especially in North-Eastern Europe. While rye is generally more tolerant to biotic and abiotic stresses than other cereals, it still can be infected by several diseases, including scald caused by Rhynchosporium secalis. The aims of this study were to investigate the genetic architecture of scald resistance, to identify genetic markers associated with scald resistance, which could be used in breeding of hybrid rye and to develop a model for genomic prediction for scald resistance. Four datasets with records of scald resistance on a population of 251 hybrid winter rye lines grown in 2 years and at 3 locations were used for this study. Four genomic models were used to obtain variance components and heritabilities of scald resistance. All genomic models included additive genetic effects of the parental components of the hybrids and three of the models included additive-by-additive epistasis and/or dominance effects. All models showed moderate to high broad sense heritabilities in the range of 0.31 (SE 0.05) to 0.76 (0.02). The model without non-additive genetic effects and the model with dominance effects had moderate narrow sense heritabilities ranging from 0.24 (0.06) to 0.55 (0.08). None of the models detected significant non-additive genomic variances, likely due to a limited data size. A genome wide association study was conducted to identify markers associated with scald resistance in hybrid winter rye. In three datasets, the study identified a total of twelve markers as being significantly associated with scald resistance. Only one marker was associated with a major quantitative trait locus (QTL) influencing scald resistance. This marker explained 11-12% of the phenotypic variance in two locations. Evidence of genotype-by-environment interactions was found for scald resistance between one location and the other two locations, which suggested that scald resistance was influenced by different QTLs in different environments. Based on the results of the genomic prediction models and GWAS, scald resistance seems to be a quantitative trait controlled by many minor QTL and one major QTL, and to be influenced by genotype-by-environment interactions.

6.
Plants (Basel) ; 13(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276755

ABSTRACT

Diesel contamination of farming soils is of great concern because hydrocarbons are toxic to all forms of life and can potentially enter the food web through crops or plants used for remediation. Data on plant ability to uptake, translocate and accumulate diesel-derived compounds are controversial not only due to the probable diverse attitude of plant species but also because of the lack of a reliable method with which to distinguish petrogenic from biogenic compounds in plant tissues. The purpose of this study was to set up a GC-MS-based protocol enabling the determination of diesel-derived hydrocarbons in plants grown in contaminated soil for assessing human and ecological risks, predicting phytoremediation effectiveness and biomass disposal. To this end, two plant species, Vicia sativa L. and Secale cereale L., belonging to two diverse vascular plant families, were used as plant models. They were grown in soil spiked with increasing concentrations of diesel fuel, and the produced biomass was used to set up the hydrocarbon extraction and GC-MSD analysis. The developed protocol was also applied to the analysis of Typha latifolia L. plants, belonging to a different botanical family and grown in a long-time and highly contaminated natural soil. Results showed the possibility of distinguishing diesel-derived compounds from biogenic hydrocarbons in most terrestrial vascular plants, just considering the total diesel compounds in the n-alkanes carbon range C10-C26, where the interference of biogenic compounds is negligible. Diesel hydrocarbons quantification in plant tissues was strongly correlated (0.92 < r2 < 0.99) to the concentration of diesel in spiked soils, suggesting a general ability of the considered plant species to adsorb and translocate relatively low amounts of diesel hydrocarbons and the reliability of the developed protocol.

7.
BMC Plant Biol ; 24(1): 46, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216860

ABSTRACT

BACKGROUND: The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS: In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS: We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.


Subject(s)
Plant Proteins , Secale , Secale/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Genome, Plant/genetics , Gene Expression Regulation, Plant
8.
Plant J ; 116(5): 1462-1476, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37646760

ABSTRACT

Plant growth and morphogenesis are determined by the mechanical properties of its cell walls. Using atomic force microscopy, we have characterized the dynamics of cell wall elasticity in different tissues in developing roots of several plant species. The elongation growth zone of roots of all species studied was distinguished by a reduced modulus of elasticity of most cell walls compared to the meristem or late elongation zone. Within the individual developmental zones of roots, there were also significant differences in the elasticity of the cell walls of the different tissues, thus identifying the tissues that limit root growth in the different species. In cereals, this is mainly the inner cortex, whereas in dicotyledons this function is performed by the outer tissues-rhizodermis and cortex. These differences result in a different behaviour of the roots of these species during longitudinal dissection. Modelling of longitudinal root dissection using measured properties confirmed the difference shown. Thus, the morphogenesis of monocotyledonous and dicotyledonous roots relies on different tissues as growth limiting, which should be taken into account when analyzing the localization of associated molecular events. At the same time, no matrix polysaccharide was found whose immunolabelling in type I or type II cell walls would predict their mechanical properties. However, assessment of the degree of anisotropy of cortical microtubules showed a striking correlation with the elasticity of the corresponding cell walls in all species studied.


Subject(s)
Magnoliopsida , Plant Roots , Plant Roots/metabolism , Meristem , Zea mays/metabolism , Elasticity , Cell Wall/metabolism
9.
Data Brief ; 50: 109465, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37600596

ABSTRACT

The data described support the research article entitled "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems". Data were collected during the corn (Zea mays L.) phase from rotations with four different cover crop (CC) treatments. The study was conducted at the USDA research facility in Beltsville, MD from 2017 through 2020. The data are available from a repository at Ag Data Commons. Descriptions of crop rotations, soil water and temperature sensors, placement, and frequency of measurements are provided in the manuscript and repository. Hourly volumetric soil water content (m3 m-3) (VWC) and soil temperature (°C) data for each soil depth (0-12, 25-35, 50-60, 75-85 cm) are available from the repository. In the manuscript, daily values of soil water storage were used to estimate daily evapotranspiration (ET) and infiltration. A text file of meta information is provided in the repository describing data collection procedures, estimation of ET and infiltration, and methods used to replace sensor data having errors. Daily precipitation, maximum and minimum temperatures, net solar radiation, and windspeed collected at a nearby weather station are provided for estimating growing degree days and potential ET. Cover crop biomass (kg ha-1) prior to corn planting and corn yields are provided by replication and cover crop system treatment for the four years.

10.
Mol Breed ; 43(5): 40, 2023 May.
Article in English | MEDLINE | ID: mdl-37312750

ABSTRACT

Rye (Secale cereale L.) is an important genetic resource for improving the disease resistance of wheat. An increasing number of rye chromosome segments have been transferred into modern wheat cultivars via chromatin insertions. In this study, 185 recombinant inbred lines (RILs) derived from a cross between a wheat accession containing rye chromosomes 1RS and 3R and a wheat-breeding founder parent Chuanmai 42 from southwestern China were used to decipher the cytological and genetic effects of 1RS and 3R via fluorescence/genomic in situ hybridization and quantitative trait locus (QTL) analyses. Chromosome centromere breakage and fusion were detected in the RIL population. Additionally, the recombination of chromosomes 1BS and 3D from Chuanmai 42 was completely suppressed by 1RS and 3R in the RIL population. In contrast to chromosome 3D of Chuanmai 42, rye chromosome 3R was significantly associated with white seed coats and decreased yield-related traits, as revealed by QTL and single marker analyses, whereas it had no effect on stripe rust resistance. Rye chromosome 1RS did not affect yield-related traits and it increased the susceptibility of plants to stripe rust. Most of the detected QTLs that positively affected yield-related traits were from Chuanmai 42. The findings of this study suggest that the negative effects of rye-wheat substitutions or translocations, including the suppression of the pyramiding of favorable QTLs on paired wheat chromosomes from different parents and the transfer of disadvantageous alleles to filial generations, should be considered when selecting alien germplasm to enhance wheat-breeding founder parents or to breed new varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01386-0.

11.
BMC Plant Biol ; 23(1): 323, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328739

ABSTRACT

BACKGROUND: During domestication and subsequent improvement plants were subjected to intensive positive selection for desirable traits. Identification of selection targets is important with respect to the future targeted broadening of diversity in breeding programmes. Rye (Secale cereale L.) is a cereal that is closely related to wheat, and it is an important crop in Central, Eastern and Northern Europe. The aim of the study was (i) to identify diverse groups of rye accessions based on high-density, genome-wide analysis of genetic diversity within a set of 478 rye accessions, covering a full spectrum of diversity within the genus, from wild accessions to inbred lines used in hybrid breeding, and (ii) to identify selective sweeps in the established groups of cultivated rye germplasm and putative candidate genes targeted by selection. RESULTS: Population structure and genetic diversity analyses based on high-quality SNP (DArTseq) markers revealed the presence of three complexes in the Secale genus: S. sylvestre, S. strictum and S. cereale/vavilovii, a relatively narrow diversity of S. sylvestre, very high diversity of S. strictum, and signatures of strong positive selection in S. vavilovii. Within cultivated ryes we detected the presence of genetic clusters and the influence of improvement status on the clustering. Rye landraces represent a reservoir of variation for breeding, and especially a distinct group of landraces from Turkey should be of special interest as a source of untapped variation. Selective sweep detection in cultivated accessions identified 133 outlier positions within 13 sweep regions and 170 putative candidate genes related, among others, to response to various environmental stimuli (such as pathogens, drought, cold), plant fertility and reproduction (pollen sperm cell differentiation, pollen maturation, pollen tube growth), and plant growth and biomass production. CONCLUSIONS: Our study provides valuable information for efficient management of rye germplasm collections, which can help to ensure proper safeguarding of their genetic potential and provides numerous novel candidate genes targeted by selection in cultivated rye for further functional characterisation and allelic diversity studies.


Subject(s)
Plant Breeding , Secale , Secale/genetics , Seeds , Phenotype , Cytoplasm
12.
J Exp Bot ; 74(12): 3488-3502, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36929394

ABSTRACT

The rye genome has a large size with a high level of cytosine methylation, which makes it particularly convenient for studying the occurrence of potential cytosine demethylation intermediates. Levels of global 5-hydroxymethylcytosine (5hmC) were analysed by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry in four rye species: Secale cereale, Secale strictum, Secale sylvestre, and Secale vavilovii. The amount of 5hmC showed interspecific variation, and was also variable among organs, i.e. coleoptiles, roots, leaves, stems, and caryopses. 5-Formylcytosine (5fC), 5-carboxycytosine (5caC), and 5-hydroxymethyluracil (5hmU) were also found to be present in the DNA of all species; their global level varied among species and organs. The 5hmC level clearly correlated with the 5-methylcytosine (5mC) quantity. The mass spectrometry analysis carried out on the 5mC enriched fraction supported this relationship. Highly methylated sequences also contained higher amounts of 5fC and most of all 5hmU, but not 5caC. The analysis of the distribution of 5hmC in chromosomes distinctly indicated the co-localization of 5mC with 5hmC in the same chromosomal regions. The regularities in the levels of 5hmC and other rare modifications of bases in the DNA may indicate that they play a role in the regulation of the rye genome.


Subject(s)
5-Methylcytosine , Secale , Secale/genetics , Cytosine/analysis , Cytosine/chemistry , DNA/chemistry , DNA/metabolism , DNA Methylation , Chromosomes/chemistry , Chromosomes/metabolism
13.
Plant Dis ; 107(8): 2453-2459, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36724028

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease that seriously threatens wheat yield and quality. To control this disease, host resistance is the preferred measure. However, wheat breeding is a complex process with elusive exchange and recombination of the traits from their parents. Increased resistance often leads to a decline in other key traits, such as yield and quality. Developing breakthrough germplasms with harmonious powdery mildew resistance and other key breeding traits is attractive in wheat breeding. In this study, we developed an ideal wheat breeding line AL46 that pyramided its hexaploid triticale parent-derived desirable yield traits and its wheat parent-derived powdery mildew resistance gene Pm2. Sequential genomic in situ hybridization (GISH), multicolor GISH, multicolor fluorescence in situ hybridization, and molecular marker analyses revealed that AL46 was a wheat-rye T1RS·1BL translocation line. Genetic analysis combined with function marker detection and sequence alignment were used to confirm that AL46 carried the Pm2 gene. Then, we evaluated the powdery mildew resistance and comprehensive traits of AL46, and just as we designed, AL46 showed harmonious powdery mildew resistance with some key breeding traits. This study not only developed an ideal wheat germplasm resource but also provided a successful example for pyramiding breeding, which could be a promising direction for wheat improvement in the future.


Subject(s)
Secale , Triticum , Triticum/genetics , In Situ Hybridization, Fluorescence , Secale/genetics , Disease Resistance/genetics , Plant Breeding , Erysiphe/genetics
14.
Plants (Basel) ; 12(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36678994

ABSTRACT

Fifty years ago Susumu Ohno formulated the famous C-value paradox, which states that there is no correlation between the physical sizes of the genome, i.e., the amount of DNA, and the complexity of the organism, and highlighted the problem of genome redundancy. DNA that does not have a positive effect on the fitness of organisms has been characterized as "junk or selfish DNA". The controversial concept of junk DNA remains viable. Rye is a convenient subject for yet another test of the correctness and scientific significance of this concept. The genome of cultivated rye, Secale cereale L., is considered one of the largest among species of the tribe Triticeae and thus it tops the average angiosperm genome and the genomes of its closest evolutionary neighbors, such as species of barley, Hordeum (by approximately 30-35%), and diploid wheat species, Triticum (approximately 25%). The review provides an analysis of the structural organization of various regions of rye chromosomes with a description of the molecular mechanisms contributing to their size increase during evolution and the classes of DNA sequences involved in these processes. The history of the development of the concept of eukaryotic genome redundancy is traced and the current state of this problem is discussed.

15.
J Appl Genet ; 64(1): 65-70, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36178587

ABSTRACT

Powdery mildew (PM), a common cereal disease in cultivated areas, including Europe and other temperate regions, is caused by the fungus Blumeria graminis. While PM is one of the most important wheat leaf diseases globally, rye is highly tolerant to PM. It has been reported that in barley infected with PM, polyamine oxidase (PAO) activity related to the production of hydrogen peroxide (H2O2) has increased, which may promote defense against biotrophic or hemibiotrophic pathogens. The current study aimed to assess the relationship between the segregation of the polymorphic marker for rye PAO (ScPAO) and the level of PM infection in plants. The genetic mapping in two interline populations shows that ScPAO is located on chromosome 7R. Further analysis comparing ScPAO location to mapped wheat (Triticum aestivum L.) PAO duplicates suggests the ScPAO homology with TaPAO6 or TaPAO7. A possible association of ScPAO from 7R with PM resistance is demonstrated in the recombinant inbred lines (RIL)-L population phenotyped for PM infection. Finally, three novel QTLs for PM resistance on the 7R chromosome of rye are detected.


Subject(s)
Hydrogen Peroxide , Secale , Secale/genetics , Chromosome Mapping , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Polyamine Oxidase
16.
Plants (Basel) ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36235531

ABSTRACT

Rye is the only cross-pollinating small-grain cereal. The unique reproduction biology results in an exceptional complexity concerning genetic improvement of rye by breeding. Rye is a close relative of wheat and has a strong adaptation potential that refers to its mating system, making this overlooked cereal readily adjustable to a changing environment. Rye breeding addresses the emerging challenges of food security associated with climate change. The systematic identification, management, and use of its valuable natural diversity became a feasible option in outbreeding rye only following the establishment of hybrid breeding late in the 20th century. In this article, we review the most recent technological advances to improve yield and yield stability in winter rye. Based on recently released reference genome sequences, SMART breeding approaches are described to counterbalance undesired linkage drag effects of major restorer genes on grain yield. We present the development of gibberellin-sensitive semidwarf hybrids as a novel plant breeding innovation based on an approach that is different from current methods of increasing productivity in rye and wheat. Breeding of new rye cultivars with improved performance and resilience is indispensable for a renaissance of this healthy minor cereal as a homogeneous commodity with cultural relevance in Europe that allows for comparatively smooth but substantial complementation of wheat with rye-based diets, supporting the necessary restoration of the balance between human action and nature.

17.
Front Plant Sci ; 13: 992016, 2022.
Article in English | MEDLINE | ID: mdl-36061779

ABSTRACT

Stripe rust and powdery mildew are devastating diseases that have severe effects on wheat production. Introducing resistant genes/loci from wheat-related species into the wheat genome is an important method to improve wheat resistance. Rye (Secale cereale L.) is a cross-pollinating plant and is the most important related species for wheat genetic improvement. In this study, we developed three 6RS ditelosomic addition lines, three 6RL ditelosomic addition lines, and two 6R disomic addition lines by crossing common wheat cultivar Chuannong 25 and rye inbred line QL2. The chromosome composition of all new lines was confirmed by non-denaturing fluorescence in situ hybridization (ND-FISH) and molecular marker analyses. Disease responses to different Puccinia striiformis f. sp. tritici (Pst) races and Blumeria graminis f. sp. tritici (Bgt) isolates and cytogenetic analysis showed that the resistance of the new lines was derived from the rye chromosome 6R of QL2, and both arms (6RS and 6RL) may harbor resistance genes against Pst and Bgt. These new lines could be used as a promising bridging parent and valuable genetic resource for wheat disease resistance improvement.

18.
Dent J (Basel) ; 10(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36005241

ABSTRACT

Gingivitis and periodontitis are inflammatory disorders caused by dental plaque and calculus. These disorders often lead to tooth loss if not treated properly. Although antibiotics can be used, it is hard to treat them due to the difficulty in supplying effective doses of antibiotics to lesion areas and side effects associated with long-term use of antibiotics. In the present study, attempts were made to provide in vitro and in vivo evidence to support anti-inflammatory activities of TEES-10®, a mixture of ethanol extracts of Ligularia stenocephala (LSE) and Secale cereale L. sprout (SCSE) toward gingivitis and periodontitis by performing the following experiments. TEES-10® with a ratio of 6:4 (LSE:SCSE) showed the best effects in both stimulating the viability and inhibiting the cytotoxicity. In in vitro experiments, TEES-10® showed an ability to scavenge 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals and remove ROS generated in periodontal ligament cells treated with lipopolysaccharide. TEES-10® also enhanced the viability of stem cells from human exfoliated deciduous teeth and stimulated the osteogenic differentiation of deciduous teeth cells. In in vivo experiments using rats with induced periodontitis, TEES-10® significantly decreased inflammatory cell infiltration and the numbers of osteoclasts, increased alveolar process volume and the numbers of osteoblasts, decreased serum levels of IL-1ß and TNF-α (pro-inflammatory cytokines), and increased serum levels of IL-10 and IL-13 (anti-inflammatory cytokines). These results strongly support the theory that TEES-10® has the potential to be developed as a health functional food that can treat and prevent gingival and periodontal diseases and improve dental health.

19.
Front Plant Sci ; 13: 889494, 2022.
Article in English | MEDLINE | ID: mdl-35646041

ABSTRACT

Rye (Secale cereale L.), a naturally cross-pollinating relative of wheat, is a tertiary gene donor and of substantial value in wheat improvement. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), which seriously affects yield and quality worldwide. Identifying and transferring new, effective resistance genes against powdery mildew from rye is important for wheat breeding. The current study developed a wheat-rye line YT2 resistant to powdery mildew by crossing, backcrossing, and self-pollination for multiple generations between octoploid triticale 09R2-100 and common wheat cultivar Shixin 616. YT2 was confirmed to be a 6R disomic addition and T1RS⋅1BL translocation line by genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), multicolor-GISH (mc-GISH), and molecular marker analyses. Disease responses to different Bgt isolates and genetic analysis showed that the powdery mildew resistance gene of YT2 was derived from the rye chromosome 6R of 09R2-100, which differed from the previously reported Pm genes from rye including Pm20 on 6RL. Resistance phenotype of different translocation lines and deletion lines derived from YT2 combined with newly developed 6RL-specific markers analysis suggested that the powdery mildew resistance gene of YT2 was localized to the region in chromosome 6RL: 890.09-967.51 Mb and flanked by markers XM189 and X4M19, corresponding to the reference genome of Weining rye. Therefore, YT2 could be used as a promising bridging parent for wheat disease resistance improvement.

20.
Mitochondrial DNA B Resour ; 7(6): 959-960, 2022.
Article in English | MEDLINE | ID: mdl-35692639

ABSTRACT

Weedy rye (Secale cereale subsp. segetale Zhukov 1928) is a problematic weed species in wheat field. However, it can potentially provide valuable genetics resources to increase the genetic variations and introduce desirable genes for rye and wheat breeding. Here, we assembled the complete chloroplast genome of S. cereale subsp. segetale. The chloroplast genome is 137,051 bp in length, containing a large single copy region (81,090 bp), a small single copy region (12,795 bp) and two separated inverted repeat regions (21,583 bp). A total of 131 unique genes were annotated, consisting of 82 protein-coding genes, 41 tRNA genes, and 8 rRNA genes. The phylogenetic analysis showed that Secale cereale subsp. segetale (weedy rye) and S. cereale subsp. cereale (rye) clustered together as sisters to other Secale species.

SELECTION OF CITATIONS
SEARCH DETAIL