Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.208
Filter
1.
Methods Mol Biol ; 2827: 405-416, 2024.
Article in English | MEDLINE | ID: mdl-38985285

ABSTRACT

The engineering of plant cell cultures to produce high-value natural products is suggested to be a safe, low-cost, and environmentally friendly route to produce a wide range of chemicals. Given that the expression of heterologous biosynthetic pathways in plant tissue culture is limited by a lack of detailed protocols, the biosynthesis of high-value metabolites in plant cell culture is constrained compared with that in microbes. However, both Arabidopsis thaliana and Nicotiana benthamiana can be efficiently transformed with multigene constructs to produce high-value natural products in stable plant cell cultures. This chapter provides a detailed protocol as to how to engineer the plant cell culture as bio-factories for metabolite biosynthesis.


Subject(s)
Arabidopsis , Biological Products , Nicotiana , Biological Products/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Tissue Culture Techniques/methods , Plant Cells/metabolism , Metabolic Engineering/methods , Plants, Genetically Modified/genetics , Metabolome , Biosynthetic Pathways , Metabolomics/methods , Cell Culture Techniques/methods
2.
Nat Prod Res ; : 1-7, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992980

ABSTRACT

Two new aromatic compounds, namely gastupdin A (1), and gastupdin B (2), together with three known compounds, arundin(3), phomosines B (4) and monocillin IV (5), were isolated from the aerial parts of Gastrodia elata Blume. The structures of the new compounds were confirmed through spectral analyses including NMR, HR-ESI-MS, ECD, UV, and IR. All isolated compounds were evaluated for their neuroprotective effects against 6-hydroxydopamine-induced cell death in Human Neuroblastoma Cells, with curcumin as the positive control, however, the activity of all compounds was weaker than the positive control, showing no significant activity.

3.
bioRxiv ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39026795

ABSTRACT

Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In some of the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide and protects the beetle's eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from seven different host species within Lagriinae from five countries, to unravel the evolutionary history of this symbiotic relationship. In each host species, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster (BGC). Surprisingly, however, we did not find evidence for host-symbiont co-diversification, or for a monophyly of the lagriamide-producing symbionts. Instead, our analyses support at least four independent acquisition events of lagriamide-encoding symbionts and subsequent genome erosion in each of these lineages. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide BGC. In conclusion, our results reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by high degree of specificity. They highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.

4.
BMC Plant Biol ; 24(1): 662, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987668

ABSTRACT

BACKGROUND: Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS: The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION: Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.


Subject(s)
Beauveria , Droughts , Beauveria/physiology , Beauveria/genetics , Drought Resistance
5.
Microb Cell Fact ; 23(1): 201, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026318

ABSTRACT

BACKGROUND: Ethanol shock significantly affects expression of over 1200 genes in Streptomyces venezuelae NRRL B-65,442, including those involved in secondary metabolite biosynthesis and a cryptic gene pepX, which encodes a 19-amino acid peptide with an unknown function. RESULTS: To establish a possible correlation between the PepX peptide and secondary metabolism in S. venezuelae, its gene was deleted, followed by analyses of the transcriptome and secondary metabolome of the mutant. Although the secondary metabolome of the pepX mutant was not strongly affected, pepX deletion, similar to ethanol shock, mostly resulted in downregulated expression of secondary metabolite biosynthesis gene clusters (BGCs). At the same time, there was a reverse correlation between the expression of certain extracytoplasmic function sigma factors (ECFs) and several BGCs. Individual deletions of three selected ECF-coding genes conserved in Streptomyces that were upregulated upon both pepX deletion and ethanol shock, had a profound positive effect on the expression of BGCs, which also correlated with the overproduction of specific secondary metabolites. Deletion of one such ECF-coding gene in a marine sponge-derived Streptomyces sp. also significantly altered the secondary metabolite profile, suggesting an important role of this ECF in the regulation of secondary metabolism. CONCLUSIONS: These findings pave the way for the activation or upregulation of BGCs in Streptomyces bacteria harboring genes for ECFs homologous to those identified in this study, hereby assisting in the discovery of novel bioactive secondary metabolites.


Subject(s)
Secondary Metabolism , Sigma Factor , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Secondary Metabolism/genetics , Sigma Factor/genetics , Sigma Factor/metabolism , Gene Expression Regulation, Bacterial , Gene Deletion , Multigene Family , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ethanol/metabolism , Transcriptome
6.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891975

ABSTRACT

Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.


Subject(s)
Bacillus , Medicago sativa , Rhizosphere , Soil Microbiology , Medicago sativa/microbiology , Medicago sativa/growth & development , Bacillus/genetics , Bacillus/physiology , Alkalies , Microbiota , Stress, Physiological , Salt Tolerance , Soil/chemistry
7.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892087

ABSTRACT

Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea's pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea's biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus's secondary metabolism, with implications for biotechnology and crop disease management.


Subject(s)
Botrytis , Peptide Synthases , Polyketide Synthases , Secondary Metabolism , Botrytis/genetics , Botrytis/pathogenicity , Secondary Metabolism/genetics , Peptide Synthases/genetics , Peptide Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Computational Biology/methods , Multigene Family , Genes, Fungal
8.
Microb Cell Fact ; 23(1): 181, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890640

ABSTRACT

BACKGROUND: Volatile compounds are key elements in the interaction and communication between organisms at both interspecific and intraspecific levels. In complex bacterial communities, the emission of these fast-acting chemical messengers allows an exchange of information even at a certain distance that can cause different types of responses in the receiving organisms. The changes in secondary metabolism as a consequence of this interaction arouse great interest in the field of searching for bioactive compounds since they can be used as a tool to activate silenced metabolic pathways. Regarding the great metabolic potential that the Actinobacteria group presents in the production of compounds with attractive properties, we evaluated the reply the emitted volatile compounds can generate in other individuals of the same group. RESULTS: We recently reported that volatile compounds released by different streptomycete species trigger the modulation of biosynthetic gene clusters in Streptomyces spp. which finally leads to the activation/repression of the production of secondary metabolites in the recipient strains. Here we present the application of this rationale in a broader bacterial community to evaluate volatiles as signaling effectors that drive the activation of biosynthesis of bioactive compounds in other members of the Actinobacteria group. Using cocultures of different actinobacteria (where only the volatile compounds reach the recipient strain) we were able to modify the bacterial secondary metabolism that drives overproduction (e.g., granaticins, actiphenol, chromomycins) and/or de novo production (e.g., collismycins, skyllamycins, cosmomycins) of compounds belonging to different chemical species that present important biological activities. CONCLUSIONS: This work shows how the secondary metabolism of different Actinobacteria species can vary significantly when exposed in co-culture to the volatile compounds of other phylum-shared bacteria, these effects being variable depending on strains and culture media. This approach can be applied to the field of new drug discovery to increase the battery of bioactive compounds produced by bacteria that can potentially be used in treatments for humans and animals.


Subject(s)
Actinobacteria , Secondary Metabolism , Volatile Organic Compounds , Actinobacteria/metabolism , Actinobacteria/genetics , Volatile Organic Compounds/metabolism , Streptomyces/metabolism , Streptomyces/genetics , Multigene Family
9.
BMC Plant Biol ; 24(1): 541, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872084

ABSTRACT

BACKGROUND: The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS: By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS: Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Nicotiana , Trichomes , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
10.
mSystems ; 9(7): e0057624, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38904377

ABSTRACT

The metabolic intimacy of symbiosis often demands the work of specialists. Natural products and defensive secondary metabolites can drive specificity by ensuring infection and propagation across host generations. But in contrast to bacteria, little is known about the diversity and distribution of natural product biosynthetic pathways among fungi and how they evolve to facilitate symbiosis and adaptation to their host environment. In this study, we define the secondary metabolism of Escovopsis and closely related genera, symbionts in the gardens of fungus-farming ants. We ask how the gain and loss of various biosynthetic pathways correspond to divergent lifestyles. Long-read sequencing allowed us to define the chromosomal features of representative Escovopsis strains, revealing highly reduced genomes composed of seven to eight chromosomes. The genomes are highly syntenic with macrosynteny decreasing with increasing phylogenetic distance, while maintaining a high degree of mesosynteny. An ancestral state reconstruction analysis of biosynthetic pathways revealed that, while many secondary metabolites are shared with non-ant-associated Sordariomycetes, 56 pathways are unique to the symbiotic genera. Reflecting adaptation to diverging ant agricultural systems, we observe that the stepwise acquisition of these pathways mirrors the ecological radiations of attine ants and the dynamic recruitment and replacement of their fungal cultivars. As different clades encode characteristic combinations of biosynthetic gene clusters, these delineating profiles provide important insights into the possible mechanisms underlying specificity between these symbionts and their fungal hosts. Collectively, our findings shed light on the evolutionary dynamic nature of secondary metabolism in Escovopsis and its allies, reflecting adaptation of the symbionts to an ancient agricultural system.IMPORTANCEMicrobial symbionts interact with their hosts and competitors through a remarkable array of secondary metabolites and natural products. Here, we highlight the highly streamlined genomic features of attine-associated fungal symbionts. The genomes of Escovopsis species, as well as species from other symbiont genera, many of which are common with the gardens of fungus-growing ants, are defined by seven chromosomes. Despite a high degree of metabolic conservation, we observe some variation in the symbionts' potential to produce secondary metabolites. As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides with attine transitions in agricultural systems, we highlight the likely role of these metabolites in mediating adaptation by a group of highly specialized symbionts.


Subject(s)
Ants , Genome, Fungal , Hypocreales , Phylogeny , Secondary Metabolism , Symbiosis , Ants/microbiology , Animals , Secondary Metabolism/genetics , Hypocreales/genetics , Hypocreales/metabolism , Evolution, Molecular , Genomics , Biosynthetic Pathways/genetics
11.
mSystems ; 9(7): e0033424, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38916306

ABSTRACT

Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.


Subject(s)
Microcystis , Secondary Metabolism , Microcystis/genetics , Microcystis/metabolism , Secondary Metabolism/genetics , Multigene Family/genetics , Lakes/microbiology , Microcystins/metabolism , Microcystins/genetics , Microcystins/biosynthesis , Metabolome , Metabolomics , Harmful Algal Bloom , Genome, Bacterial/genetics
13.
Front Microbiol ; 15: 1383545, 2024.
Article in English | MEDLINE | ID: mdl-38846577

ABSTRACT

Introduction: Soil salinization poses a significant environmental challenge affecting plant growth and agricultural sustainability. This study explores the potential of salt-tolerant endophytes to mitigate the adverse effects of soil salinization, emphasizing their impact on the development and resistance of Arachis hypogaea L. (peanuts). Methods: The diversity of culturable plant endophytic bacteria associated with Miscanthus lutarioriparius was investigated. The study focused on the effects of Bacillus tequilensis, Staphylococcus epidermidis, and Bacillus siamensis on the development and germination of A. hypogaea seeds in pots subjected to high NaCl concentrations (200 mM L-1). Results: Under elevated NaCl concentrations, the inoculation of endophytes significantly (p < 0.05) enhanced seedling germination and increased the activities of enzymes such as Superoxide dismutase, catalase, and polyphenol oxidase, while reducing malondialdehyde and peroxidase levels. Additionally, endophyte inoculation resulted in increased root surface area, plant height, biomass contents, and leaf surface area of peanuts under NaCl stress. Transcriptome data revealed an augmented defense and resistance response induced by the applied endophyte (B. tequilensis, S. epidermidis, and B. siamensis) strain, including upregulation of abiotic stress related mechanisms such as fat metabolism, hormones, and glycosyl inositol phosphorylceramide (Na+ receptor). Na+ receptor under salt stress gate Ca2+ influx channels in plants. Notably, the synthesis of secondary metabolites, especially genes related to terpene and phenylpropanoid pathways, was highly regulated. Conclusion: The inoculated endophytes played a possible role in enhancing salt tolerance in peanuts. Future investigations should explore protein-protein interactions between plants and endophytes to unravel the mechanisms underlying endophyte-mediated salt resistance in plants.

14.
Front Cell Infect Microbiol ; 14: 1415790, 2024.
Article in English | MEDLINE | ID: mdl-38863834

ABSTRACT

Probiotics are defined as living or dead bacteria and their byproducts that maintain the balance of the intestinal microbiome. They are non-toxic, non-pathogenic, and do not release any toxins either within or outside the body. Adequate consumption of probiotics can enhance metabolite production, increase immunity, maintain a balanced intestinal flora, and stimulate growth. Probiotics do not have negative antibiotic effects and help maintain the natural flora in animals in a balanced state or prevent dysbacteriosis. Heyndrickxia coagulans (H. coagulans) is a novel probiotic species that is gradually being used for the improvement of human health. Compared to commonly used probiotic lactic acid bacteria, H. coagulans can produce spores, which provide the species with high resistance to adverse conditions. Even though they are transient residents of the gut, beneficial bacteria can have a significant impact on the microbiota because they can outnumber harmful germs, and vice versa. This article discusses the probiotic mechanisms of H. coagulans and outlines the requirements for a substance to be classified as a probiotic. It also addresses how to assess strains that have recently been discovered to possess probiotic properties.


Subject(s)
Bacillus coagulans , Gastrointestinal Microbiome , Probiotics , Humans , Animals
15.
Front Cell Infect Microbiol ; 14: 1392249, 2024.
Article in English | MEDLINE | ID: mdl-38915922

ABSTRACT

In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.


Subject(s)
Biological Products , Gastrointestinal Microbiome , Hydrolases , Biological Products/metabolism , Biological Products/pharmacology , Humans , Hydrolases/metabolism , Animals , Glycoside Hydrolases/metabolism , Bacteria/metabolism , Bacteria/enzymology
16.
Environ Sci Pollut Res Int ; 31(26): 38265-38273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801610

ABSTRACT

Controlling and mitigating the toxicity of herbicides to non-target plants is of significant importance in reducing ecological risks. The development of green and natural herbicide control technologies has become an urgent necessity. In this paper, how 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) and baicalein alleviated oxidative stress induced by imazethapyr (IM) in wheat seedlings was investigated. We found that DIMBOA and baicalein enhanced the antioxidant enzyme activities in wheat seedlings exposed to IM and reduced the excessive reactive oxygen species due to IM stress by 21.3% and 23.5%, respectively. DIMBOA and baicalein also restored the iron content reduced by IM and effectively mitigated Fe2+ overload by alleviating the response of heme oxygenase 1 to IM stress. The antioxidant and iron homeostatic maintenance properties of DIMBOA and baicalein enhanced the defenses of wheat seedlings against IM stress. Our results highlight the potential implication of secondary metabolites as natural products to modulate herbicide toxicity to non-target plants.


Subject(s)
Flavanones , Herbicides , Seedlings , Triticum , Triticum/drug effects , Triticum/metabolism , Seedlings/drug effects , Seedlings/metabolism , Herbicides/toxicity , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Antioxidants/metabolism , Nicotinic Acids
17.
Plant Physiol Biochem ; 211: 108718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733939

ABSTRACT

Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.


Subject(s)
Plants , RNA, Plant , RNA, Untranslated , Secondary Metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Secondary Metabolism/genetics , Plants/metabolism , Plants/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
18.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786667

ABSTRACT

The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.

19.
J Fungi (Basel) ; 10(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786694

ABSTRACT

wetA, one of the conidiation center regulatory genes in many filamentous fungi, plays an important role in promoting asexual spores (conidia) maturation. Our recent research has found that knocking out or overexpressing MrwetA (a homolog of wetA) in Monascus ruber M7 does not affect the development of its asexual spores like other fungi, but both repress the development of its sexual spores (ascospores). However, the mechanism remains unclear. In this study, the function of MrwetA on sexual reproduction and secondary metabolism in M. ruber M7 was confirmed by a complementary experiment. Moreover, the regulatory roles of MrwetA in modulating the expression of genes involved in sexual reproduction, meiosis, and biosynthesis of Monascus pigment and citrinin were analyzed based on the transcriptional data. These results not only contribute to clarifying the regulation of the reproduction and secondary metabolism of Monascus spp., but also to enriching the regulation molecular mechanism of reproduction in filamentous fungi.

20.
J Exp Bot ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767602

ABSTRACT

Medicinal plants are rich in a variety of secondary metabolites with therapeutic value. However, the yields of these metabolites are generally very low, making their extraction both time- and labour-consuming. Transcription factor (TF)-targeted secondary metabolic engineering can efficiently regulate the biosynthesis and accumulation of secondary metabolites in medicinal plants. v-Myb avian myeloblastosis viral oncogene homolog (MYB) TFs are involved in regulating various morphological and developmental processes, responses to stress, and the biosynthesis of secondary metabolites in plants. This review discusses the biological functions and transcription regulation mechanisms of MYB TFs and summarises the research progress concerning MYB TFs involved in the biosynthesis of representative active components. In the transcriptional regulatory network, MYB TFs regulate multiple synthase genes to mediate active ingredient biosynthesis. This study will serve as a reference for the in-depth analysis of the MYB TF family in medicinal plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...