Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38884257

ABSTRACT

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Subject(s)
Acetamides , Herbicides , Lactuca , Zea mays , Zea mays/drug effects , Herbicides/toxicity , Lactuca/drug effects , Lactuca/growth & development , Acetamides/toxicity , Germination/drug effects , Seeds/drug effects , Seeds/growth & development
2.
Plants (Basel) ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38502050

ABSTRACT

Little is known about the effect of nitrogen nutrition on seedling susceptibility to seed-borne pathogens. We have previously shown that seedlings grown under high nitrate (5 mM) conditions are less susceptible than those grown under low nitrate (0.1 mM) and ammonium (5 mM) in the Arabidopsis-Alternaria brassicicola pathosystem. However, it is not known how seedling metabolism is modulated by nitrogen nutrition, nor what is its response to pathogen infection. Here, we addressed this question using the same pathosystem and nutritive conditions, examining germination kinetics, seedling development, but also shoot ion contents, metabolome, and selected gene expression. Nitrogen nutrition clearly altered the seedling metabolome. A similar metabolomic profile was observed in inoculated seedlings grown at high nitrate levels and in not inoculated-seedlings. High nitrate levels also led to specific gene expression patterns (e.g., polyamine metabolism), while other genes responded to inoculation regardless of nitrogen supply conditions. Furthermore, the metabolites best correlated with high disease symptoms were coumarate, tyrosine, hemicellulose sugars, and polyamines, and those associated with low symptoms were organic acids (tricarboxylic acid pathway, glycerate, shikimate), sugars derivatives and ß-alanine. Overall, our results suggest that the beneficial effect of high nitrate nutrition on seedling susceptibility is likely due to nutritive and signaling mechanisms affecting developmental plant processes detrimental to the pathogen. In particular, it may be due to a constitutively high tryptophan metabolism, as well as down regulation of oxidative stress caused by polyamine catabolism.

3.
Protoplasma ; 261(3): 425-445, 2024 May.
Article in English | MEDLINE | ID: mdl-37963977

ABSTRACT

The germination and post-seminal development of Arecaceae are notably complex due to the microscopic dimensions of the embryonic axis, the occurrence of dormancy, and the diversity of reserve compounds. In-depth information on this subject is still limited, especially in terms of the basal sub-family Calamoideae. Mauritiella armata is widely distributed in the Amazon region and is considered a key species in flooded ecosystems (veredas) in the Cerrado biome. We sought to describe histogenesis and reserve compound dynamics during the germination of M. armata, as well as the changes in incubated seeds over time. Seeds with their operculum removed (the structure that limits embryonic growth) were evaluated during germination using standard methods of histology, histochemistry, and electron microscopy. Evaluations were also performed on intact seeds incubated for 180 days. The embryos show characteristics associated with recalcitrant seeds of Arecaceae: a high water content (>80%), differentiated vessel elements, and reduced lipid reserves. Both the embryo and endosperm store abundant reserves of proteins, neutral carbohydrates, and pectins. The completion of germination involves cell divisions and expansions in specific regions of the embryo, in addition to the mobilization of embryonic and endospermic reserves through symplastic and apoplastic flows. Intact seeds show dormancy (not germinating for 180 days), but exhibit continuous development associated with cell growth, differentiation, and reserve mobilization. The anatomical and histochemical characters of M. armata seeds indicate an association between recalcitrance and dormancy related to the species' adaptation to flooded environments.


Subject(s)
Arecaceae , Ecosystem , Seeds , Endosperm , Cell Cycle , Germination , Plant Dormancy
4.
Plant J ; 118(1): 141-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128030

ABSTRACT

The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Seedlings/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Plant Signal Behav ; 18(1): 2293405, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38104263

ABSTRACT

Similar to other orchid species, Paphiopedilum hirsutissimum (Lindl.ex Hook.) Stein, relies on nutrients provided by mycorrhizal fungus for seed germination and seedling development in the wild owing to a lack of endosperm in its seeds. Therefore, obtaining suitable and specialized fungi to enhance seed germination, seedling formation, and further development is considered a powerful tool for orchid seedling propagation, reintroduction, and species conservation. In this study, we investigated the diversity, abundance, and frequency of endophytic fungal strains in the root organs of P. hirsutissimum. One family and five genera of the fungi were isolated and identified through rDNA-ITS sequencing. The ability of isolated fungi to germinate in vitro from the seeds of this species was evaluated, and the development of P. hirsutissimum protocorm has been described. The findings showed that the treatments inoculated with endophytic fungal DYXY033 may successfully support the advanced developmental stage of seedlings up to stage 5. In addition, scanning electron microscopy (SEM) revealed that the mycelium of this strain began to invade from either end of the seeds up to the embryo, extending rapidly from the inside to the outside. Its lengthening resulted in the bursting of the seed coat to form protocorms, which developed into seedlings. The results showed that DYXY033 has a high degree of mycobiont specificity under in vitro symbiotic seed germination conditions and is a representative mycorrhizal fungus with ecological value for the species. In summary, this strain may particularly be significant for the protection of P. hirsutissimum species that are endangered in China. In the long run, it may also contribute to global efforts in reintroducing orchid species and in realizing in situ restorations of threatened orchid populations.


Subject(s)
Mycorrhizae , Orchidaceae , Seedlings , Germination , Seeds , Symbiosis , Orchidaceae/microbiology , China
6.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958835

ABSTRACT

Vacuolar sugar transporters transport sugar across the tonoplast, are major players in maintaining sugar homeostasis, and therefore play vital roles in plant growth, development, and biomass yield. In this study, we analyzed the physiological roles of the tonoplast monosaccharide transporter 2 (TMT2) in Arabidopsis. In contrast to the wild type (WT) that produced uniform seedlings, the tmt2 mutant produced three types of offspring: un-germinated seeds (UnG), seedlings that cannot form true leaves (tmt2-S), and seedlings that develop normally (tmt2-L). Sucrose, glucose, and fructose can substantially, but not completely, rescue the abnormal phenotypes of the tmt2 mutant. Abnormal cotyledon development, arrested true leaf development, and abnormal development of shoot apical meristem (SAM) were observed in tmt2-S seedlings. Cotyledons from the WT and tmt2-L seedlings restored the growth of tmt2-S seedlings through micrografting. Moreover, exogenous sugar sustained normal growth of tmt2-S seedlings with cotyledon removed. Finally, we found that the TMT2 deficiency resulted in growth defects, most likely via changing auxin signaling, target of rapamycin (TOR) pathways, and cellular nutrients. This study unveiled the essential functions of TMT2 for seed germination and initial seedling development, ensuring cotyledon function and mobilizing sugars from cotyledons to seedlings. It also expanded the current knowledge on sugar metabolism and signaling. These findings have fundamental implications for enhancing plant biomass production or seed yield in future agriculture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbohydrates , Germination , Glucose/metabolism , Membrane Transport Proteins/metabolism , Seedlings/metabolism
7.
Mol Breed ; 43(11): 77, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37916037

ABSTRACT

Pre-harvest sprouting (PHS) frequently occurs in rice due to the long spells of rainy weather, and causes severe yield loss and grain quality decrease. Here, we identified one PHS-related gene OsCNX1 cloned from rice PHS mutant, which encoded a molybdenum cofactor (MoCo) biosynthesis enzyme. Genetic complementation indicated OsCNX1 could rescue the PHS and seedling lethal phenotype of the mutant. Expression pattern showed that OsCNX1 was expressed in rice tissue including seedling shoot, culm, blade, and sheath of flag leaf, young panicle, and the seeds at different development stages. Overexpression of OsCNX1 significantly decreased the plant height, and the seed germination of the dormant seeds harvested from fresh panicles, comparing to the wild type (WT). In addition, 1492 differentially expressed genes (DEGs) were identified between OsCNX1-overexpressed line and WT by RNA-sequencing, which were mainly classified in plant-pathogen interaction, plant hormone signal transduction, and starch/sucrose metabolism. These results showed that OsCNX1 was not only necessary for rice seed germination, but also participated in plant development, indicating that OsCNX1 may be useful in rice breeding of PHS resistance and plant height. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01424-x.

8.
J Environ Manage ; 348: 119305, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37866189

ABSTRACT

The application of biochar in soil provides various benefits that can vary in intensity as the pyrolysis temperature increases. However, its low density makes this material easily transportable and prone to being removed from the system. The objective of this study was to investigate the pyrolysis temperatures and compression pressure of densified biochar carrier capsules on the physiological quality of Schizolobium parahyba var. amazonicum seeds. Produced at three final pyrolysis temperatures (300, 600, and 900 °C), the biochar was characterized through bulk and true density analyses, immediate composition, pH, electrical conductivity, cation exchange capacity, water-soluble carbon, characterization of organic structures by FTIR, and PAH analysis. Subsequently, the biochar was compacted by briquetting at two compression pressures (50 and 200 psi) with one seed per capsule, and germination, emergence, and quality of generated seedlings were evaluated. After verifying residue normality and variance homogeneity, analysis of variance was conducted following a completely randomized design in a 3 × 2 factorial arrangement, with four replications per treatment and two additional control treatments. Upon identifying significant differences, regression model adjustments were performed. Cluster-based multivariate analysis was used to identify similarities among the studied treatments, both for capsules and controls. Pyrolysis temperature and compression pressure influenced seed germination, emergence, and initial seedling growth. Lower pressure favored shoot development, while higher pressure favored root development and generated seedlings of higher quality. The benefits of biochar to soil, combined with the implementation of seeds, make the production of densified biochar capsules an alternative to conventional seedings, potentially reducing high energy and financial costs and enabling the recovery of degraded areas, even in difficult-to-access regions.


Subject(s)
Carbon , Charcoal , Charcoal/chemistry , Soil/chemistry , Temperature , Seedlings
9.
Plants (Basel) ; 12(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37447103

ABSTRACT

The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane (OMM) of all eukaryotes, having an important role in the communication between mitochondria and cytosol. The plant VDAC family consists of a wide variety of members that may participate in cell responses to several environmental stresses. However, there is no experimental information about the members comprising the maize VDAC (ZmVDAC) family. In this study, the ZmVDAC family was identified, and described, and its gene transcription profile was explored during the first six days of germination and under different biotic stress stimuli. Nine members were proposed as bona fide VDAC genes with a high potential to code functional VDAC proteins. Each member of the ZmVDAC family was characterized in silico, and nomenclature was proposed according to phylogenetic relationships. Transcript levels in coleoptiles showed a different pattern of expression for each ZmVDAC gene, suggesting specific roles for each one during seedling development. This expression profile changed under Fusarium verticillioides infection and salicylic acid, methyl jasmonate, and gibberellic acid treatments, suggesting no redundancy for the nine ZmVDAC genes and, thus, probably specific and diverse functions according to plant needs and environmental conditions. Nevertheless, ZmVDAC4b was significantly upregulated upon biotic stress signals, suggesting this gene's potential role during the biotic stress response.

10.
J Toxicol Environ Health A ; 86(4): 119-134, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36744625

ABSTRACT

Agroecology, the application of ecological concepts to agricultural production, has been developing over the last years with consequent promotion for discovery of bioactive compounds to control pests and abolish crop diseases. In this context, algae from Nitella genus are characterized by high potential for bioeconomic applications due to (1) available biomass for harvesting or cultivation and (2) production of allelochemicals, which present a potential to protect field crops from insect infestation. Therefore, this study aimed to determine primary and secondary metabolites derived from aqueous and hydroethanolic extracts of Nitella furcata and to evaluate phytotoxic, cytogenotoxic, insecticidal, and pro-oxidative activities of these extracts. Determination of metabolites showed the presence predominantly of carbohydrates, proteins, phenols, and flavonoids in hydroethanolic extract. Both extracts of N. furcata interfered in the germination of seeds and development of seedlings of Lactuca sativa, with hydroethanolic extract exhibiting greater inhibition. Both extracts also interfered with meristematic cells of Allium cepa as evidenced by chromosomal alterations and higher pro-oxidative activity. Aqueous extract at 5 and 0 mg/ml produced 100% insect mortality. Further, hydroethanolic extract at 0 mg/ml was lethal immediately upon exposure. Therefore, results demonstrate that N. furcata is potential algae species to be considered for development of environmental and ecotoxicological studies as a source of compounds with potential use in agroecological strategies.


Subject(s)
Alkaloids , Insecticides , Nitella , Plant Extracts/toxicity , Plant Extracts/chemistry , Biomass , Insecticides/toxicity , Fresh Water
11.
J Sci Food Agric ; 103(7): 3510-3520, 2023 May.
Article in English | MEDLINE | ID: mdl-36725673

ABSTRACT

BACKGROUND: Reclaimed wastewater is a potential source for irrigation, although its effect on seed germination and plant growth has not been widely investigated. The present study focused on treating wastewater by vermifiltration and investigating the effect on seed germination and seedling development of Zea mays, Triticum aestivum and Sorghum bicolor and their morphological, physiological and biochemical developments. A filter bed was constructed using indigenous and improved materials. The constituents used to develop the filter bed consist of matrix of garden soil, lateritic hardpan gravels and coconut coir inoculated with Eisenia fetida. RESULTS: The wastewater was obtained from a public septic tank toilet facility and contained 35-40% dry matter with high concentrations of total dissolve solids (TDS), total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (Ntot ) and phosphorus (Pavail ). Portable water was used as the control. Vermifiltration of the wastewater was shown to be effective for the removal of 52-65% TDS, 56-62% TSS, 34-40% COD, 48-52% BOD, 56-62% Ntot and 53-58% Pavail . The results showed that the morphological, physiological and biochemical processes in Z. mays, T. aestivum and S. bicolor improved when seeds were subjected to treated wastewater. CONCLUSION: The present study demonstrated that a potential reuse of vermifiltered wastewater as a source of irrigation water with continuous monitoring of the water quality is productive and sustainable. © 2023 Society of Chemical Industry.


Subject(s)
Sorghum , Wastewater , Germination , Zea mays , Triticum , Seeds , Waste Disposal, Fluid/methods
12.
Chemosphere ; 322: 138167, 2023 May.
Article in English | MEDLINE | ID: mdl-36804253

ABSTRACT

The widespread employment of plastics in recent decades has resulted in the accumulation of plastic residues in all ecosystems. Their presence and degradation into small particles such as microplastics (MPs) may have a negative effect on plant development and therefore on crop production. In this study, the effects of two types of polyethylene MPs on Zea mays seedlings cultured in vitro were analysed. In addition, four organic pollutants (ibuprofen, simazine, sertraline, and amoxicillin) were adsorbed by the MPs to evaluate their capacity as other contaminant vectors. The development of the plants was negatively affected by MPs alone or with the organic compounds. The strongest effect was observed in the W-MPs treatments, with a reduction in leaf and root length near 70%. Chlorophyll content was also differentially affected depending on the treatment. Transcriptome analysis showed that MPs affected gene expression in the roots of maize seedlings. As observed in the physiological parameters analysed, some gene expression changes were associated with specific treatments, such as changes in sugar transport genes in the B-MIX treatment. These results contribute to a better understanding of the molecular mechanisms of plants in regard to plastic stress responses.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Microplastics/toxicity , Microplastics/metabolism , Plastics/chemistry , Zea mays/metabolism , Environmental Pollutants/metabolism , Seedlings/metabolism , Transcriptome , Polyethylene/metabolism , Ecosystem , Gene Expression Profiling , Water Pollutants, Chemical/analysis
13.
Plants (Basel) ; 12(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679079

ABSTRACT

Soil salinization become worse in the last decades, leading to reduced crop yields, especially in the Mediterranean basin. Eruca sativa is a common species cultivated in this area with remarkable economic importance. This study aimed at investigating the effect of salinity on this plant, focusing on (i) seedling development in terms of variations in germination and growth parameters and (ii) anatomical and ultra-structural changes in the morphology of cotyledons. For this reason, seeds were treated with different salinity levels ranging from 137 to 548 mM NaCl. Seed germination was delayed by all the concentrations tested, but only above 137 mM seedling growth was impaired. Results showed a high occurrence of lipid bodies within the mesophyll cells of cotyledons of seedlings exposed to salt concentrations above 137 mM, suggesting an impairment in lipid mobilization caused by salinity during plant development. The cotyledons of treated seedlings showed reduced intercellular spaces and ultrastructural changes in chloroplasts and peroxisomes. Moreover, salt-induced autophagic processes were present in samples grown at the highest NaCl levels. Interestingly, at 137 mM NaCl, seedlings showed the highest values of mesophyll thickness and fresh weight, implying a possible mechanism of salt adaptation during germination.

14.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232362

ABSTRACT

Increased salinity is one of the major consequences of climatic change affecting global crop production. The early stages in the barley (Hordeum vulgare L.) life cycle are considered the most critical phases due to their contributions to final crop yield. Particularly, the germination and seedling development are sensitive to numerous environmental stresses, especially soil salinity. In this study, we aimed to identify SNP markers linked with germination and seedling development at 150 mM NaCl as a salinity treatment. We performed a genome-wide association study (GWAS) using a panel of 208 intermedium-spike barley (H. vulgare convar. intermedium (Körn.) Mansf.) accessions and their genotype data (i.e., 10,323 SNPs) using the genome reference sequence of "Morex". The phenotypic results showed that the 150 mM NaCl salinity treatment significantly reduced all recorded germination and seedling-related traits compared to the control treatment. Furthermore, six accessions (HOR 11747, HOR 11718, HOR 11640, HOR 11256, HOR 11275 and HOR 11291) were identified as the most salinity tolerant from the intermedium-spike barley collection. GWAS analysis indicated that a total of 38 highly significantly associated SNP markers under control and/or salinity traits were identified. Of these, two SNP markers on chromosome (chr) 1H, two on chr 3H, and one on chr 4H were significantly linked to seedling fresh and dry weight under salinity stress treatment. In addition, two SNP markers on chr 7H were also significantly associated with seedling fresh and dry weight but under control condition. Under salinity stress, one SNP marker on chr 1H, 5H and 7H were detected for more than one phenotypic trait. We found that in most of the accessions exhibiting the highest salinity tolerance, most of the salinity-related QTLs were presented. These results form the basis for detailed studies, leading to improved salt tolerance breeding programs in barley.


Subject(s)
Hordeum , Genome-Wide Association Study , Germination/genetics , Hordeum/genetics , Plant Breeding , Salt Tolerance/genetics , Seedlings/genetics , Sodium Chloride/pharmacology , Soil
15.
Trends Plant Sci ; 27(12): 1266-1282, 2022 12.
Article in English | MEDLINE | ID: mdl-36057533

ABSTRACT

A germinating seedling incorporates environmental signals such as light into developmental outputs. Light is not only a source of energy, but also a central coordinative signal in plants. Traditionally, most research focuses on aboveground organs' response to light; therefore, our understanding of photomorphogenesis in roots is relatively scarce. However, root development underground is highly responsive to light signals from the shoot and understanding these signaling mechanisms will give a better insight into early seedling development. Here, we review the central light signaling hubs and their role in root growth promotion of Arabidopsis thaliana seedlings.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Roots/metabolism , Light , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Seedlings , Gene Expression Regulation, Plant/genetics
16.
J Toxicol Environ Health A ; 85(21): 881-895, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35891612

ABSTRACT

The development of agroecology has promoted the discovery of new bioactive compounds that might act as biocides to control infections and microbial contamination. Algae belonging to Lyngbya genus produce several allelochemicals, which are compounds with crop protection potential. The present study aimed to examine primary and secondary compounds derived from Lyngbya sp. extracts (aqueous and hydroethanolic) on phytotoxic, cytogenotoxic, and insecticidal activities. Determination of compounds indicated the presence predominantly of proteins and flavonoids. The extracts presented physicochemical characteristics that produced (1) 89% germination inhibition using hydroethanolic extract and (2) diminished development of seedlings of L. sativa by hydroethanolic extract as evidenced by reduced radicles length in 83.54%. Aqueous and hydroethanolic Lyngbya sp. extracts significantly interfered with meristematic cells of A. cepa, as evidenced by chromosomal alterations and aberrant mitotic phases in cells. Extracts also exhibited pro-oxidative activity and a potent insecticidal potential on S. zeamais, indicating that the hydroethanolic extract produced 100% insect mortality at 75 mg/ml after 48 hr while the aqueous extract initiated 90% mortality at the same concentration after 82 hr. Therefore, data demonstrate that Lyngbya genus provides basic information for new environmental and ecotoxicological studies to seek a possible source of proteins and flavonoids to be used in agroecological management.


Subject(s)
Insecticides , Lyngbya , Flavonoids/chemistry , Fresh Water , Insecticides/chemistry , Lyngbya/chemistry , Plant Extracts/chemistry
17.
Front Plant Sci ; 13: 780335, 2022.
Article in English | MEDLINE | ID: mdl-35463450

ABSTRACT

Pecan bacterial leaf scorch, caused by Xylella fastidiosa subsp. multiplex, is an economically significant disease of pecan with known detrimental effects on the yield of susceptible cultivars. In this study, endosperm was harvested from developing pecan seeds, and direct qPCR and sequencing were used to detect and confirm the presence of X. fastidiosa. DNA was isolated from mature seeds originating from seven trees, revealing a positivity rate up to 90%, and transmission of X. fastidiosa from infected seed to the germinated seedlings was found to be over 80%. Further epidemiological analyses were performed to determine where X. fastidiosa localizes in mature seed and seedlings. The highest concentrations of X. fastidiosa DNA were found in the hilum and outer integument of the seeds and the petioles, respectively. High-, medium-, and low-density seeds were harvested to determine the impact of the bacterium on seed density and seedling growth rate. The growth rate of seedlings originating from low-density seeds was significantly reduced compared to the medium- and high-density seeds. Despite the increased growth and germination rates, the high-density seed group had a greater proportion of samples that tested positive for the presence of X. fastidiosa by qPCR. The results demonstrate the ability of X. fastidiosa to colonize developing seeds and be efficiently transmitted from well-developed seeds to germinated seedlings. Continued research is needed to understand the plant-microbe interactions involved in the colonization of pecan seeds by X. fastidiosa and to develop effective phytosanitary approaches to reduce the risks posed by seed transmission.

18.
Plants (Basel) ; 11(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406827

ABSTRACT

The cuticle is the plant's outermost layer that covers the surfaces of aerial parts. This structure is composed of a variety of aliphatic molecules and is well-known for its protective role against biotic and abiotic stresses in plants. Mutants with a permeable cuticle show developmental defects such as organ fusions and altered seed germination and viability. In this study, we identified a novel maize mutant, stocky1, with unique features: lethal at the seedling stage, and showing a severely dwarfed phenotype, due to a defective cuticle. For the first time, the mutant was tentatively mapped to chromosome 5, bin 5.04. The mutant phenotype investigated in this work has the potential to contribute to the elucidation of the role of the cuticle during plant development. The possibility of controlling this trait is of relevance in the context of climate change, as it may contribute to tolerance to abiotic stresses.

19.
New Phytol ; 235(1): 126-140, 2022 07.
Article in English | MEDLINE | ID: mdl-35313031

ABSTRACT

Photomorphogenic remodelling of seedling growth is a key developmental transition in the plant life cycle. The α/ß-hydrolase signalling protein KARRIKIN-INSENSITIVE2 (KAI2), a close homologue of the strigolactone receptor DWARF14 (D14), is involved in this process, but it is unclear how the effects of KAI2 on development are mediated. Here, using a combination of physiological, pharmacological, genetic and imaging approaches in Arabidopsis thaliana (Heynh.) we show that kai2 phenotypes arise because of a failure to downregulate auxin transport from the seedling shoot apex towards the root system, rather than a failure to respond to light per se. We demonstrate that KAI2 controls the light-induced remodelling of the PIN-mediated auxin transport system in seedlings, promoting a reduction in PIN7 abundance in older tissues, and an increase of PIN1/PIN2 abundance in the root meristem. We show that removing PIN3, PIN4 and PIN7 from kai2 mutants, or pharmacological inhibition of auxin transport and synthesis, is sufficient to suppress most kai2 seedling phenotypes. We conclude that KAI2 regulates seedling morphogenesis by its effects on the auxin transport system. We propose that KAI2 is not required for the light-mediated changes in PIN gene expression but is required for the appropriate changes in PIN protein abundance within cells.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Furans , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Pyrans , Seedlings
20.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163496

ABSTRACT

CCCH zinc finger proteins are a large protein family and are classified as either tandem CCCH zinc finger (TZF) or non-TZF proteins. The roles of TZF genes in several plants have been well determined, whereas the functions of many non-TZF genes in plants remain uncharacterized. Herein, we describe biological and molecular functions of AtC3H12, an Arabidopsis non-TZF protein containing three CCCH zinc finger motifs. AtC3H12 has orthologs in several plant species but has no paralog in Arabidopsis. AtC3H12-overexpressing transgenic plants (OXs) germinated slower than wild-type (WT) plants, whereas atc3h12 mutants germinated faster than WT plants. The fresh weight (FW) and primary root lengths of AtC3H12 OX seedlings were lighter and shorter than those of WT seedlings, respectively. In contrast, FW and primary root lengths of atc3h12 seedlings were heavier and longer than those of WT seedlings, respectively. AtC3H12 was localized in the nucleus and displayed transactivation activity in both yeast and Arabidopsis. We found that the 97-197 aa region of AtC3H12 is an important part for its transactivation activity. Detection of expression levels and analysis of Arabidopsis transgenic plants harboring a PAtC3H12::GUS construct showed that AtC3H12 expression increases as the Arabidopsis seedlings develop. Taken together, our results demonstrate that AtC3H12 negatively affects seed germination and seedling development as a nuclear transcriptional activator in Arabidopsis. To our knowledge, this is the first report to show that non-TZF proteins negatively affect plant development as nuclear transcriptional activators.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Germination , Seedlings , Seeds , Trans-Activators , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Plant , Models, Biological , Mutation/genetics , Promoter Regions, Genetic/genetics , Protein Domains , Protein Transport , Protoplasts/metabolism , Saccharomyces cerevisiae/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seeds/growth & development , Seeds/metabolism , Subcellular Fractions/metabolism , Time Factors , Trans-Activators/chemistry , Trans-Activators/metabolism , Transcriptional Activation/genetics , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...