Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Medicines (Basel) ; 11(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38248717

ABSTRACT

Background: The objective of this study is to find novel antineoplastic agents that display greater toxicity to malignant cells than to neoplasms. In addition, the mechanisms of action of representative compounds are sought. This report describes the cytotoxicity of a number of dimers of 3,5-bis(benzylidene)-4-piperidones against human malignant cells (promyelocytic leukemia HL-60 and squamous cell carcinoma HSC-2, HSC-3, and HSC-4). Methods: Tumor specificity was evaluated by the selectivity index (SI), that is the ratio of the mean CC50 for human non-malignant oral cells (gingival fibroblasts, pulp cells, periodontal ligament fibroblasts) to that for malignant cells. Results: The compounds were highly toxic to human malignant cells. On the other hand, these molecules were less toxic to human non-malignant cells. In particular, a potent lead molecule, 3b, was identified. A QSAR study revealed that the placement of electron-releasing and hydrophilic substituents into the aryl rings led to increases in cytotoxic potencies. The modes of action of a lead compound discovered in this study designated 3b were the activation of caspases-3 and -7, as well as causing PARP1 cleavage and G2 arrest, followed by sub-G1 accumulation in the cell cycle. This compound also depolarized the mitochondrial membrane and generated reactive oxygen species in human colon carcinoma HCT116 cells. In conclusion, this study has revealed that, in general, the compounds described in this report are tumor-selective cytotoxins.

2.
Small ; 20(6): e2305375, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37771186

ABSTRACT

Nanoparticles (NPs) have been employed as drug delivery systems (DDSs) for several decades, primarily as passive carriers, with limited selectivity. However, recent publications have shed light on the emerging phenomenon of NPs exhibiting selective cytotoxicity against cancer cell lines, attributable to distinct metabolic disparities between healthy and pathological cells. This study revisits the concept of NPs selective cytotoxicity, and for the first time proposes a high-throughput in silico screening approach to massive targeted discovery of selectively cytotoxic inorganic NPs. In the first step, this work trains a gradient boosting regression model to predict viability of NP-treated cell lines. The model achieves mean cross-validation (CV) Q2 = 0.80 and root mean square error (RMSE) of 13.6. In the second step, this work develops a machine learning (ML) reinforced genetic algorithm (GA), capable of screening >14 900 candidates/min, to identify the best-performing selectively cytotoxic NPs. As proof-of-concept, DDS candidates for the treatment of liver cancer are screened on HepG2 and hepatocytes cell lines resulting in Ag NPs with selective toxicity score of 42%. This approach opens the door for clinical translation of NPs, expanding their therapeutic application to a wider range of chemical space of NPs and living organisms such as bacteria and fungi.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , Nanoparticles , Humans , Nanoparticles/chemistry , Machine Learning , Algorithms
3.
Sci Total Environ ; 892: 164541, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37263435

ABSTRACT

In this study, environmental behavior and toxicity of cyflumetofen (CYF) enantiomers were evaluated comprehensively in a soil-earthworm system. In the earthworm (Eisenia foetida), (+)-CYF was preferentially accumulated, and acute toxicity of Rac-CYF was greater than that of (+)-CYF and (-)-CYF, indicating that the combination of CYF enantiomers increased the toxicity. As a measure of chronic toxicity, compared with (-)-CYF-treated earthworms, malondialdehyde accumulation was higher in (+)-CYF-treated earthworms, indicating a more severe oxidative stress response. In a DNA comet plot, the trailing distance in the (+)-CYF treatment was 1.97 times greater than that in the (-)-CYF-treated, revealing more severe genotoxicity with (+)-CYF. However, (-)-CYF was more likely than (+)-CYF to activate the earthworm detoxification enzyme pathway. With (+)-CYF treatment, the number of differentially expressed genes (DEGs) involved in the pathogenic pathway increased significantly, whereas with (-)-CYF-treatment, more DEGs were involved in P450 and glutathione S-transferase (GST) detoxification metabolic pathways, including high expression of the genes chi-III, GST-S-1, and GST-alpha-5. The main metabolites of the CYF enantiomers were A-2, A-12, B-1, AB-1, AB-7, and B-3, which exhibited potential ecotoxicity. In general, CYF was stereoselective in the soil-earthworm ecosystem, with (+)-CYF causing a higher genotoxicity risk than that of (-)-CYF. The study provides insight into the selective toxicity mechanisms of chiral CYF and contributes to a theoretical basis for risk assessment of low-risk pesticides.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Oligochaeta/metabolism , Ecosystem , Bioaccumulation , Soil Pollutants/analysis , Soil
4.
Future Microbiol ; 18: 295-309, 2023 03.
Article in English | MEDLINE | ID: mdl-37097060

ABSTRACT

Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.


SAPs are enzymes that are important for fungi to cause infections and survive in the host body. This article explains how SAP helps fungi to change their morphology and form a protective layer called a biofilm. SAP also helps fungi invade host cells and break down proteins. Because SAP is present in every stage of fungal infections, it could be a target for new medicines that fight fungal infections and biofilms. By targeting SAP, scientists could stop fungi from adhering to the host, growing into long hyphae, forming biofilms, invading host cells and evading the host immune system. If scientists can develop treatments that target SAP, they may be able to treat a variety of fungal infections more effectively.


Subject(s)
Aspartic Acid Proteases , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Candida albicans/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Aspartic Acid Endopeptidases/metabolism , Virulence , Biofilms
5.
Mil Med Res ; 10(1): 8, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36829246

ABSTRACT

Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrobials have been developed that selectively target specific bacteria and fungi. The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review. This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi. Finally, recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed. These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.


Subject(s)
Anti-Infective Agents , Humans , Anti-Bacterial Agents , Bacteria
6.
Pestic Biochem Physiol ; 188: 105277, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36464382

ABSTRACT

The Varroa mite, Varroa destructor, poses one of the most serious threats to honey bees worldwide. Although coumaphos, an anticholinesterase pesticide, is widely used for varroa mite control, little information is available on the properties of Varroa mite acetylcholinesterases (VdAChEs). In this study, three putative VdAChEs were annotated and named VdAChE1, VdAChE2, and VdAChE3. All VdAChEs possessed most of the functionally important signature domains, suggesting that they are catalytically active. Phylogenetic analysis revealed that VdAChE1 was clustered into a clade containing most arthropod AChE1s, whereas VdAChE2 and VdAChE3 formed a unique clade with other arachnid AChEs. VdAChE1 was determined to be membrane-anchored, but both VdAChE2 and VdAChE3 are soluble, as judged by electrophoresis in conjunction with western blotting. Tissue-specific transcription profiling revealed that VdAChE1 was most predominantly expressed in the synganglion. In contrast, VdAChE2 was most predominantly expressed in the legs and cuticle. VdAChE3 showed negligible expression levels in all the tissues examined. In a kinetic analysis using recombinant VdAChEs, VdAChE1 exhibited the highest catalytic efficiency, followed by VdAChE2 and VdAChE3. Inhibition experiments revealed that VdAChE1 was most sensitive to all tested inhibitors. Taken together, VdAChE1 appears to be the major synaptic enzyme with a more toxicological relevance, whereas VdAChE2 is involved in other noncatalytic functions, including chemical defense against xenobiotics. Current findings contribute to a more detailed understanding of the evolutionary and functional traits of VdAChEs and to the design of novel anticholinesterase varroacides.


Subject(s)
Varroidae , Bees , Animals , Acetylcholinesterase/genetics , Kinetics , Cholinesterase Inhibitors , Phylogeny
7.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077085

ABSTRACT

The synthesis of alkyl 2-(4-hydroxyquinolin-2-yl) acetates and 1-phenyl-4-(phenylamino)pyridine-2,6(1H,3H)-dione was optimised. Starting from 4-hydroxyquinolines (4HQs), aminomethylation was carried out via the modified Mannich reaction (mMr) applying formaldehyde and piperidine, but a second paraformaldehyde molecule was incorporated into the Mannich product. The reaction also afforded the formation of bisquinoline derivatives. A new 1H-azeto [1,2-a]quinoline derivative was synthesised in two different ways; namely starting from the aminomethylated product or from the ester-hydrolysed 4HQ. When the aldehyde component was replaced with aromatic aldehydes, Knoevenagel condensation took place affording the formation of the corresponding benzylidene derivatives, with the concomitant generation of bisquinolines. The reactivity of salicylaldehyde and hydroxynaphthaldehydes was tested; under these conditions, partially saturated lactones were formed through spontaneous ring closure. The activity of the derivatives was assessed using doxorubicin-sensitive and -resistant colon adenocarcinoma cell lines and normal human fibroblasts. Some derivatives possessed selective toxicity towards resistant cancer cells compared to doxorubicin-sensitive cancer cells and normal fibroblasts. Cytotoxic activity of the benzylidene derivatives and the corresponding Hammett-Brown substituent were correlated.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Hydroxyquinolines , Antineoplastic Agents/pharmacology , Benzylidene Compounds , Cytotoxins , Doxorubicin/pharmacology , Humans
8.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889640

ABSTRACT

Various nano-delivery systems have been designed to deliver synthetic/botanical pesticides for improved bioactivity. However, the enhanced toxicity of nanocarrier-loaded pesticides may injure the natural enemies, and their selective toxicity should be evaluated before the large-scale application. In this context, a star polymer (SPc)-based cyantraniliprole (CNAP) nano-delivery system was constructed, and its selective toxicity was evaluated using pest Frankliniella occidentalis (WFT) and predator Orius sauteri. The amide NH of CNAP could assemble with carbonyl groups or tertiary amines of SPc through hydrogen bonds to form CNAP/SPc complex spontaneously. The above self-assembly decreased the particle size of CNAP from 808 to 299 nm. With the help of SPc, the lethal concentration 50 (LC50) values of CNAP decreased from 99 to 54 mg/L and 230 to 173 mg/L toward WFTs and O. sauteri due to the enhancement of broad-spectrum bioactivity. Interestingly, the toxicity selective ratio (TSR) of CNAP increased from 2.33 to 3.23 with the help of SPc, revealing the higher selectivity of SPc-loaded CNAP. To our knowledge, it was the first successful exploration of the selective toxicity of nanocarrier-loaded pesticides, and the higher selective toxicity of SPc-loaded CNAP was beneficial for alleviating the negative impacts on predators.

9.
Medicines (Basel) ; 9(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35736248

ABSTRACT

A series of 3,5-bis(benzylidene)-1-dichloroacetyl-4-piperidones 1a-l was evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas. Virtually all of the compounds displayed potent cytotoxicity, with 83% of the CC50 values being submicromolar and several CC50 values being in the double digit nanomolar range. The compounds were appreciably less toxic to human HGF, HPLF, and HPC non-malignant cells, which led to some noteworthy selectivity index (SI) figures. From these studies, 1d,g,k emerged as the lead molecules in terms of their potencies and SI values. A Quantitative Structure-Activity Relationship (QSAR) study revealed that cytotoxic potencies and potency-selectivity expression figures increased when the magnitude of the sigma values in the aryl rings was elevated. The modes of action of the representative cytotoxins in Ca9-22 cells were found to include G2/M arrest and stimulation of the cells to undergo mitosis and cause poly(ADP-ribose) polymerase (PARP) and procaspase 3 cleavage.

10.
Methods Mol Biol ; 2451: 505-520, 2022.
Article in English | MEDLINE | ID: mdl-35505028

ABSTRACT

Photosensitizers have recently been conjugated to nanobodies for targeted photodynamic therapy (PDT) to selectively kill cancer cells. The success of this approach relies on nanobody-photosensitizer conjugates that bind specifically to their targets with very high affinities (kD in low nM range). Subsequently, upon illumination, these conjugates are very toxic and selective to cells overexpressing the target of interest (EC50 in low nM range). In this chapter, protocols are described to determine the binding affinity of the nanobody-photosensitizer conjugates and assess the toxicity and selectivity of the conjugates when performing in vitro PDT studies. In addition, and because the efficacy of PDT also depends on the (subcellular) localization of the conjugates at the time of illumination, assays are described to investigate the uptake and the intracellular degradation of the nanobody-photosensitizer conjugates.


Subject(s)
Photochemotherapy , Single-Domain Antibodies , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology
11.
Med Chem ; 18(9): 1001-1012, 2022.
Article in English | MEDLINE | ID: mdl-35319387

ABSTRACT

BACKGROUND: The incidence of cancer has been increasing worldwide. Unfortunately, the drugs used in cancer chemotherapy are toxic to both neoplasms and normal tissues, while many available medications have low potencies. Conjugated α,ß-unsaturated ketones differ structurally from contemporary anticancer medications , some of which have noteworthy antineoplastic properties. OBJECTIVES: This study aimed to design and synthesize highly potent cytotoxins with far greater toxicity to neoplasms than to non-malignant cells. METHODS: A series of N-acyl-3,5-bis(benzylidene)-4-piperidone hydrochlorides 4a-n were prepared and evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas as well as against HGF, HPLF, and HPC non-malignant cells. QSAR and western blot analyses were performed. RESULTS: The majority of compounds display submicromolar CC50 values towards the neoplasms; the figures for some of the compounds are below 10-7 M. In general, 4a-n have much lower CC50 values than those of melphalan, 5-fluorouracil, and methotrexate, while some compounds are equitoxic with doxorubicin. The compounds are far less toxic to the non-malignant cells, giving rise to substantial selectivity index (SI) figures. A QSAR study revealed that both potency and the SI data were controlled to a large extent by the electronic properties of the substituents in the arylidene aryl rings. Two representative compounds, 4f and 4g, caused apoptosis in HSC-2 cells. CONCLUSION: The compounds in series 4 are potent cytotoxins displaying tumor-selective toxicity. In particular, 4g with an average CC50 value of 0.04 µM towards four malignant cell lines and a selectivity index of 46.3 is clearly a lead molecule that should be further evaluated.


Subject(s)
Antineoplastic Agents , Neoplasms , Piperidones , Antineoplastic Agents/toxicity , Apoptosis , Cell Line, Tumor , Cytotoxins/toxicity , Drug Screening Assays, Antitumor , Piperidones/toxicity , Structure-Activity Relationship
12.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638988

ABSTRACT

Endometriosis is characterized by the formation and development of endometrial tissues outside the uterus, based on an imbalance between proliferation and cell death, leading to the uncontrolled growth of ectopic foci. The potential target for the regulation of these processes is the endocannabinoid system, which was found to be involved in the migration, proliferation, and survival of tumor cells. In this paper, we investigated the effect of endocannabinoid-like compounds from the N-acyl dopamine (NADA) family on the viability of stromal cells from ectopic and eutopic endometrium of patients with ovarian endometriosis. N-arachidonoyldopamine, N-docosahexaenoyldopamine, and N-oleoyldopamine have been shown to have a five-times-more-selective cytotoxic effect on endometrioid stromal cells. To study the mechanisms of the toxic effect, inhibitory analysis, measurements of caspase-3/9 activity, reactive oxygen species, and the mitochondrial membrane potential were performed. It was found that NADA induced apoptosis via an intrinsic pathway through the CB1 receptor and downstream serine palmitoyltransferase, NO synthase activation, increased ROS production, and mitochondrial dysfunction. The higher selectivity of NADA for endometriotic stromal cells and the current lack of effective drug treatment can be considered positive factors for further research of these compounds as possible therapeutic agents against endometriosis.


Subject(s)
Apoptosis/drug effects , Arachidonic Acids/pharmacology , Dopamine/analogs & derivatives , Endometriosis/metabolism , Endometrium/metabolism , Stromal Cells/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Survival/drug effects , Cells, Cultured , Dopamine/pharmacology , Endometriosis/pathology , Endometrium/drug effects , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects
13.
Int J Mol Sci ; 22(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576271

ABSTRACT

Three aromatic heptaene macrolide antifungal antibiotics, Candicidin D, Partricin A (Gedamycin) and Partricin B (Vacidin) were subjected to controlled cis-trans→ all trans photochemical isomerization. The obtained all-trans isomers demonstrated substantially improved in vitro selective toxicity in the Candida albicans cells: human erythrocytes model. This effect was mainly due to the diminished hemotoxicity. The molecular modeling studies on interactions between original antibiotics and their photoisomers with ergosterol and cholesterol revealed some difference in free energy profiles of formation of binary antibiotic/sterol complexes in respective membrane environments. Moreover, different geometries of heptaene: sterol complexes and variations in polyene macrolide molecule alignment in cholesterol-and ergosterol-containing membranes were found. None of these effects are of the crucial importance for the observed improvement of selective toxicity of aromatic heptaene antifungals but each seems to provide a partial contribution.


Subject(s)
Anti-Bacterial Agents/pharmacology , Candicidin/analogs & derivatives , Candicidin/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Cholesterol/chemistry , Chromatography, High Pressure Liquid , Drug Design , Ergosterol/chemistry , Erythrocytes/drug effects , Erythrocytes/microbiology , Hemolysis , Humans , Isomerism , Macrolides , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Photochemistry , Polyenes/pharmacology , Sterols/chemistry
14.
Antibiotics (Basel) ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34572684

ABSTRACT

Partricin is a heptaene macrolide antibiotic complex that exhibits exceptional antifungal activity, yet poor selective toxicity, in the pathogen/host system. It consists of two compounds, namely partricin A and B, and both of these molecules incorporate two cis-type bonds within their heptaenic chromophores: 28Z and 30Z. In this contribution, we have proven that partricins are susceptible to a chromophore-straightening photoisomerization process. The occurring 28Z→28E and 30Z→30E switches are irreversible in given conditions, and they are the only structural changes observed during the experiment. The obtained all-trans partricin's derivatives, namely iso-partricins A and B, exhibit very promising features, potentially resulting in the improvement of their selective toxicity.

15.
Elife ; 102021 07 12.
Article in English | MEDLINE | ID: mdl-34263722

ABSTRACT

The Varroa destructor mite is a devastating parasite of Apis mellifera honeybees. They can cause colonies to collapse by spreading viruses and feeding on the fat reserves of adults and larvae. Amitraz is used to control mites due to its low toxicity to bees; however, the mechanism of bee resistance to amitraz remains unknown. In this study, we found that amitraz and its major metabolite potently activated all four mite octopamine receptors. Behavioral assays using Drosophila null mutants of octopamine receptors identified one receptor subtype Octß2R as the sole target of amitraz in vivo. We found that thermogenetic activation of octß2R-expressing neurons mimics amitraz poisoning symptoms in target pests. We next confirmed that the mite Octß2R was more sensitive to amitraz and its metabolite than the bee Octß2R in pharmacological assays and transgenic flies. Furthermore, replacement of three bee-specific residues with the counterparts in the mite receptor increased amitraz sensitivity of the bee Octß2R, indicating that the relative insensitivity of their receptor is the major mechanism for honeybees to resist amitraz. The present findings have important implications for resistance management and the design of safer insecticides that selectively target pests while maintaining low toxicity to non-target pollinators.


Subject(s)
Bees/physiology , Mites/drug effects , Receptors, Biogenic Amine/drug effects , Receptors, Biogenic Amine/physiology , Toluidines/toxicity , Varroidae/physiology , Animals , Drosophila melanogaster , Female , HEK293 Cells , Humans , Rhipicephalus
16.
Pest Manag Sci ; 77(10): 4770-4784, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34148282

ABSTRACT

BACKGROUND: Low toxin doses that do not affect mean responses in plant populations can still change the growth of subpopulations. Studies covering vegetative stages ascribed fast-growing plants higher thresholds for growth stimulation and inhibition, compared with the rest of the population. We hypothesized that such selective effects also play a role after reproduction; that is, the offspring of glyphosate-treated tolerant, fast-growing phenotypes is more tolerant than the offspring of untreated plants. An experimental, high-density barley population was exposed to a range of glyphosate concentrations in the greenhouse, and reproduction and final growth were analyzed for selective effects. Therefore, F0, F1 treated and F1 non-treated offspring were re-exposed to glyphosate. RESULTS: Low doses of glyphosate inhibited the growth and reproduction of slow-growing plants at concentrations that did not change the population mean. Concentrations that inhibited average-sized plants hormetically increased the biomass and seed yield of fast-growing plants. Compared with F0 and F1 non-treated offspring, F1-treated offspring from hormetically stimulated fast-growing plants were more glyphosate tolerant. Hence, a pesticide can shape the reproductive pattern of a plant population and alter offspring tolerance at concentrations that have no effect on average yield. CONCLUSIONS: Toxin levels that do not change the population mean still alter the reproductive output of individuals. Sensitive phenotypes suffer, whereas the reproduction of tolerant phenotypes is boosted compared with toxin-free conditions. Because glyphosate is one of the leading herbicides in the world, tolerant phenotypes may benefit from current agricultural practices. If these results apply to other toxicants, low toxin doses may increase the fitness of tolerant phenotypes in a way not previously anticipated. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Herbicides , Hordeum , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/pharmacology , Humans , Reproduction , Glyphosate
17.
Mater Sci Eng C Mater Biol Appl ; 123: 111970, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812598

ABSTRACT

Nanoparticles have a great potential to increase the therapeutic efficiency of several cancer therapies. This research examines the potential for silver-doped lanthanum manganite nanoparticles to enhance radiation therapy to target radioresistant brain cancer cells, and their potential in combinational therapy with magnetic hyperthermia. Magnetic and structural characterisation found all dopings of nanoparticles (NPs) to be pure and single phase with an average crystallite size of approximately 15 nm for undoped NPs and 20 nm for silver doped NPs. Additionally, neutron diffraction reveals that La0.9Ag0.1MnO3 (10%-LAGMO) NPs exhibit residual ferromagnetism at 300 K that is not present in lower doped NPs studied in this work, indicating that the Curie temperature may be manipulated according to silver doping. This radiobiological study reveals a completely cancer-cell selective treatment for LaMnO3, La0.975Ag0.025MnO3 and La0.95Ag0.05MnO3 (0, 2.5 and 5%-LAGMO) and also uncovers a potent combination of undoped lanthanum manganite with orthovoltage radiation. Cell viability assays and real time imaging results indicated that a concentration of 50 µg/mL of the aforementioned nanoparticles do not affect the growth of Madin-Darby Canine Kidney (MDCK) non-cancerous cells over time, but stimulate its metabolism for overgrowth, while being highly toxic to 9L gliosarcoma (9LGS). This is not the case for 10%-LAGMO nanoparticles, which were toxic to both non-cancerous and cancer cell lines. The nanoparticles also exhibited a level of toxicity that was regulated by the overproduction of free radicals, such as reactive oxygen species, amplified when silver ions are involved. With the aid of fluorescent imaging, the drastic effects of these reactive oxygen species were visualised, where nucleus cleavage (an apoptotic indicator) was identified as a major consequence. The genotoxic response of this effect for 9LGS and MDCK due to 10%-LAGMO NPs indicates that it is also causing DNA double strand breaks within the cell nucleus. Using 125 kVp orthovoltage radiation, in combination with an appropriate amount of NP-induced cell death, identified undoped lanthanum manganite as the most ideal treatment. Real-time imaging following the combination treatment of undoped lanthanum manganite nanoparticles and radiation, highlighted a hinderance of growth for 9LGS, while MDCK growth was boosted. The clonogenic assay following incubation with undoped lanthanum manganite nanoparticles combined with a relatively low dose of radiation (2 Gy) decreased the surviving fraction to an exceptionally low (0.6 ± 6.7)%. To our knowledge, these results present the first biological in-depth analysis on silver-doped lanthanum manganite as a brain cancer selective chemotherapeutic and radiation dose enhancer and as a result will propel its first in vivo investigation.


Subject(s)
Metal Nanoparticles , Silver , Animals , Dogs , Lanthanum/toxicity , Manganese Compounds , Metal Nanoparticles/toxicity
18.
Chemosphere ; 274: 129778, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33548640

ABSTRACT

Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment or at the source, is essential. Here, we report that alkyltrimethylammonium (ATMA) surfactants, such as octadecyltrimethylammonium (ODTMA) bromide, act as cyanocides that efficiently inhibit photosynthesis and growth of cyanobacteria. Green algae were found less sensitive than cyanobacteria to ATMA compounds. Fluorescence measurements and microscopic observations demonstrated that cyanobacteria cells (Aphanizomenon or Microcystis) disintegrate and lose their metabolic activity (photosynthesis) upon exposure to ATMA bromides (estimated ED50(1hr) ranged between 1.5 and 7 µM for ODTMA-Br or hexadecyltrimethylammonium (HDTMA) bromide). Other ATMA compounds, such as tetradecyltrimethylammonium (TDTMA) or dodecyltrimethylammonium (DDTMA) bromides had similar inhibitory effect but their toxicity to cyanobacteria (measured as ED50(1hr) for photosynthetic efficiency) decreased, as the length of the alkyl chain decreased. All ATMA compounds used in this study showed lower toxicity to green algae than to cyanobacteria. A toxicity mechanism for ATMA cations is proposed, based on real time fluorescence signals and on alteration of cell ultra-structure revealed by electron microscopy. The present study sheds light on the toxic effect of ATMA surfactants on cyanobacteria and its potential application for controlling the occurrence of cyanobacterial bloom in lakes, reservoirs or rivers to secure the safety of drinking water and to mitigate and manage bloom events.


Subject(s)
Cyanobacteria , Microcystis , Lakes , Photosynthesis , Surface-Active Agents/toxicity
19.
Ecotoxicol Environ Saf ; 213: 112061, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33636466

ABSTRACT

Maize seed treatment with chemicals to control underground pests is a common agricultural practice, but inappropriate use of insecticides poses a considerable threat to plant development and soil nontarget organisms. In this study, the availability of tetraniliprole seed dressing to control the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae) in the maize seeding stage and its safety to earthworms (Eisenia fetida) were investigated. The selective toxicity (ST) of tetraniliprole between E. fetida and A. ipsilon was greater than 4000. No significant adverse effect of tetraniliprole seed treatment on the germination of maize seeds was observed at concentrations of 2.4-9.6 g a.i. /kg seed. Compared with the untreated control, seed treatment with tetraniliprole at 9.6 g a.i. /kg seed greatly reduced the percentage of damaged plants from 88.73% to 26.67%, and achieved the highest control effect of 69.91%. Tetraniliprole of 2.4 g a.i. /kg seed can effectively inhibit A. ipsilon until 14 days after seed germination, with the lowest mortality rate of 44.44%. During the entire exposure period, the maximum residual concentration of tetraniliprole detected in the soil (5.86 mg/kg) was considerably lower than the LC50 value of tetraniliprole to E. fetida (>4000 mg/kg). According to the low-tier risk assessment, the highest risk quotient (RQ) of tetraniliprole seed treatment to earthworms at test concentrations was 2.8 × 10-3, which was evaluated as acceptable. This study provided data support for tetraniliprole seed treatment to control underground pests in maize fields.


Subject(s)
Insecticides/toxicity , Pyrazoles/toxicity , Pyridines/toxicity , Soil Pollutants/toxicity , Tetrazoles/toxicity , Animals , Insecticides/analysis , Moths , Oligochaeta , Pyrazoles/analysis , Pyridines/analysis , Risk Assessment , Seeds/chemistry , Soil/chemistry , Soil Pollutants/analysis , Tetrazoles/analysis , Zea mays
20.
Infection ; 49(1): 29-56, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33367978

ABSTRACT

BACKGROUND: Selective toxicity antibacteribiotics is considered to be due to interactions with targets either being unique to bacteria or being characterized by a dichotomy between pro- and eukaryotic pathways with high affinities of agents to bacterial- rather than eukaryotic targets. However, the theory of selective toxicity oversimplifies the complex modes of action of antibiotics in pro- and eukaryotes. METHODS AND OBJECTIVE: This review summarizes data describing multiple modes of action of antibiotics in eukaryotes. RESULTS: Aminoglycosides, macrolides, oxazolidinones, chloramphenicol, clindamycin, tetracyclines, glycylcyclines, fluoroquinolones, rifampicin, bedaquillin, ß-lactams inhibited mitochondrial translation either due to binding to mitosomes, inhibition of mitochondrial RNA-polymerase-, topoisomerase 2ß-, ATP-synthesis, transporter activities. Oxazolidinones, tetracyclines, vancomycin, ß-lactams, bacitracin, isoniazid, nitroxoline inhibited matrix-metalloproteinases (MMP) due to chelation with zinc and calcium, whereas fluoroquinols fluoroquinolones and chloramphenicol chelated with these cations, too, but increased MMP activities. MMP-inhibition supported clinical efficacies of ß-lactams and daptomycin in skin-infections, and of macrolides, tetracyclines in respiratory-diseases. Chelation may have contributed to neuroprotection by ß-lactams and fluoroquinolones. Aminoglycosides, macrolides, chloramphenicol, oxazolidins oxazolidinones, tetracyclines caused read-through of premature stop codons. Several additional targets for antibiotics in human cells have been identified like interaction of fluoroquinolones with DNA damage repair in eukaryotes, or inhibition of mucin overproduction by oxazolidinones. CONCLUSION: The effects of antibiotics on eukaryotes are due to identical mechanisms as their antibacterial activities because of structural and functional homologies of pro- and eukaryotic targets, so that the effects of antibiotics on mammals are integral parts of their overall mechanisms of action.


Subject(s)
Anti-Bacterial Agents , Aminoglycosides/metabolism , Aminoglycosides/pharmacology , Aminoglycosides/toxicity , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Cells, Cultured , Fluoroquinolones/metabolism , Fluoroquinolones/pharmacology , Fluoroquinolones/toxicity , Humans , Macrolides/metabolism , Macrolides/pharmacology , Macrolides/toxicity , Mammals , Matrix Metalloproteinases/drug effects , Matrix Metalloproteinases/metabolism , Mitochondria/drug effects , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...