Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.142
Filter
1.
Food Microbiol ; 123: 104589, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038894

ABSTRACT

To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust ß-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.


Subject(s)
Actinidia , Fermentation , Fruit , Odorants , Taste , Volatile Organic Compounds , Wine , Actinidia/microbiology , Wine/microbiology , Wine/analysis , Fruit/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Odorants/analysis , Humans , Polyphenols/metabolism , Polyphenols/analysis , Lactobacillales/metabolism , Yeasts/metabolism , Zygosaccharomyces/metabolism , Zygosaccharomyces/growth & development
2.
J Microbiol Biotechnol ; 34(8): 1-7, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39049474

ABSTRACT

Starter cultures used during the fermentation of malt wort can increase the sensory characteristics of the resulting beverages. This study aimed to explore the aroma composition and flavor recognition of malt wort beverages fermented with lactic acid bacteria (Levilactobacillus brevis WiKim0194) isolated from kimchi, using metabolomic profiling and electronic tongue and nose technologies. Four sugars and five organic acids were detected using high-performance liquid chromatography, with maltose and lactic acid present in the highest amounts. Additionally, etongue measurements showed a significant increase in the sourness (AHS), sweetness (ANS), and umami (NMS) sensors, whereas bitterness (SCS) significantly decreased. Furthermore, 20 key aroma compounds were identified using gas chromatography-mass spectrometry and 15 key aroma flavors were detected using an electronic nose. Vanillin, citronellol, and ß-damascenone exhibited significant differences in the flavor profile of the beverage fermented by WiKim0194, which correlated with floral, fruity, and sweet notes. Therefore, we suggest that an appropriate starter culture can improve sensory characteristics and predict flavor development in malt wort beverages.

3.
Int J Cosmet Sci ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049783

ABSTRACT

Emulsions in the form of creams, lotions, gels or foams are the most widely used personal care formulations to improve the condition and feel of the skin. Achieving an optimal balance between their performance, effectiveness and sensory profile is essential, with the sensory profile being a key factor in consumer satisfaction and the success of these products in the market. Well-established methods using highly trained and semi-trained panels (e.g. Spectrum descriptive analysis, Flash Profile method, Quantitative Descriptive Analysis method and 'Check-all-that-apply') are available and commonly used for the sensory assessment of personal care products. Nevertheless, a common drawback among all these methods is their inherent cost, both in terms of financial resources and time requirements. In recent years, research studies have emerged to address this limitation by investigating potential correlations between tactile sensory attributes and instrumental data associated with the physical characteristics of topical formulations. In other words, significant efforts have been invested in the development of robust instrumental methods specifically designed to accurately predict the sensory description that a panel of assessors could establish. These methods are not only faster, cheaper and more objective compared to traditional sensory testing, but they can also be applied to formulations that have not undergone extensive safety and toxicological testing. This review summarizes the most relevant findings, trends and current challenges in predicting tactile sensory attributes of personal care emulsions based on instrumental parameters.


Les émulsions sous forme de crèmes, lotions, gels ou mousses sont les formulations de soins personnels les plus largement utilisées pour améliorer l'état et la sensation de la peau. Il est essentiel de parvenir à un équilibre parfait entre leur performance, leur efficacité et leur profil sensoriel, ce dernier étant un facteur clé de la satisfaction des consommateurs et du succès de ces produits sur le marché. Des méthodes bien établies utilisant des panels hautement qualifiés et semi­qualifiés sont disponibles et couramment utilisées pour l'évaluation sensorielle des produits de soins personnels. Néanmoins, un inconvénient commun à toutes ces méthodes est leur coût inhérent, tant en termes de ressources financières que de temps. Ces dernières années, nous avons assisté à l'émergence d'études de recherche tentant de remédier à ces limites en étudiant les corrélations potentielles entre les descripteurs sensoriels tactiles et les données instrumentales associées aux caractéristiques physiques des formulations topiques. En d'autres termes, des efforts importants ont été déployés dans le développement de méthodes instrumentales robustes spécifiquement conçues pour prédire avec précision la description sensorielle qu'un panel d'évaluateurs pourrait établir. Ces méthodes sont non seulement plus rapides, moins coûteuses et plus objectives par rapport aux tests sensoriels traditionnels, mais elles peuvent également être appliquées à des formulations qui n'ont pas été entièrement testées en termes de sécurité et de profils toxicologiques. La présente revue résume les résultats, tendances et défis actuels les plus pertinents dans la prédiction des attributs sensoriels tactiles des émulsions de soins personnels à partir de paramètres instrumentaux.

4.
Compr Rev Food Sci Food Saf ; 23(4): e13391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39042376

ABSTRACT

Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.


Subject(s)
Chickens , Meat , Taste , Animals , Meat/analysis , Meat/standards , Humans
5.
Food Chem ; 460(Pt 1): 140496, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032290

ABSTRACT

Vinasse fish (VF), a traditional Chinese food, is unique in flavor. However, the key aroma compounds influencing consumer acceptance of VF remain unclear. In this study, the key aroma compounds in three types of VF were explored by a sensomics approach. The results indicated that a total of 50 aroma compounds were quantified, of which 22 compounds exhibited odor activity values ≥1 were key aroma contributors. Eleven key aroma compounds were further confirmed by recombination and omission experiments. Ethyl hexanoate, 1-octen-3-one, and trans-anethole were mutual key aromas, while eugenol, ethyl heptanoate, (2E)-2-nonenal, and hexanal were distinct aroma markers. Particularly, ethyl heptanoate, γ-nonalactone, and eugenol were newly identified as key aroma compounds in VF. Overall, this study revealed the key aroma compounds and their differences in three types of vinasse fish, which will provide profound insights for comprehensively exploring the formation and target regulation of unique flavor in vinasse fish.

6.
Food Sci Nutr ; 12(7): 5201-5219, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055225

ABSTRACT

The global demand for noodles continues to increase due to their convenience, wide appeal, and affordability. Instant noodles, in particular, are popular for their easy preparation. With annual consumption reaching 106 billion servings in 2019, there is a growing awareness of the importance of healthy food options. However, most noodle types currently available commercially are of low nutritional value. This study sought to develop a protocol for the production of functional noodles consisting of orange-fleshed sweet potatoes (OFSP) puree and biofortified bean powder (BBP). Response surface methodology (RSM) was used to optimize product formulation and processing parameters. Reduced quartic models were found to adequately represent the relationship between dependent variables (hardness, moisture, protein, dietary fiber, iron, and zinc content) and independent variables (dough thickness, drying temperature, and drying time). R 2 values were 0.86-0.99, with a nonsignificant lack-of-fit (p < .05). Using numerical optimization, the optimal protocol for the production of functional noodles was determined to include formulation consisting of wheat 73%, OFSP 21.5%, and BBP 5.5%; dough thickness of 2.0 mm; drying temperature and time of 80.0°C and 143.4 min, respectively. These conditions yielded noodles with 5.9% moisture, 11.0 N hardness, 34.5% protein, 11.9% dietary fiber, 86.9 ppm (parts per million) iron, and 50.53 ppm zinc, with a desirability value of 0.82. Experimental validation demonstrated no significant difference from predicted values. Sensory evaluation rated the noodles as acceptable to consumers, with an overall acceptability of 7.8 on a 9-point hedonic scale. These results show the potential of OFSP and BBP as ingredients for acceptable and nutrient-rich noodles.

7.
Food Sci Technol Int ; : 10820132241266103, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056315

ABSTRACT

Herbal teas are ingested for various purposes and by diverse populations across the globe. There is a growing recognition among individuals of the advantages associated with the use of this beverage, leading to a heightened demand for the manufacture of herbal tea derived from therapeutic plants. Spices on the other hand add flavour to food but could pose harm if it is high in phytates and oxalates. The objective of this study was to develop natural spices and herbal tea with health beneficial properties using Solanum nigrum and Solanum torvum berries. Herbal tea samples from S. nigrum were prepared by sorting berries, maceration, divided into two (fermenting at 18 °C and non-fermenting) and dried at 60 °C for 12 h in a hot oven. Spices from S. torvum and S. nigrum were prepared by removing the berries from the stalk, freeze-drying and smooth milling into fine powder. In addition, antinutrient, phytochemical and sensory evaluation studies were conducted on these spices and herbal teas. A nine-point hedonic scale was utilized for the purpose of conducting a consumer acceptability sensory evaluation test using 101 untrained panelists. Data was then analyzed by t-test, one-way analysis of variance (ANOVA) and the level of significance (p < 0.05) was assessed using Tukey's and Dunnett's multiple comparison tests. The panellists expressed a favourable perception towards Solanum nigrum unripe unfermented green herbal tea (6.65 ± 2.08) as compared to the other formulated teas due to the components working together in a way that produces a nice tea sample. Both Solanum nigrum and Solanum torvum spices contained various levels of catechins, saponins, flavonoids, oxalates, phytates and tannins comparable to literature. The herbal tea samples exhibited a range of catechin content, varying from 0.255 to 0.756 mg/g. The antioxidant activity of the various herbal tea samples ranged from 66.37 ± 0.24 to 78.53 ± 0.18 µg/mL GAE as determined by the DPPH free radical assay Fermented black herbal teas recorded higher total phenols (2.80 ± 0.09d), total flavonoids (21.84 ± 1.84c) and showed greater antioxidant activity (78.53 ± 0.18a) as compared to the unfermented green herbal teas. The process of fermentation resulted in a decrease in pH from 7.22 to 6.53 within a period of 12 h. The Total Titratable Acidity (TTA) grew as the fermentation period progressed, whereas the Total Soluble Solids (TSS) decreased. Phytates were the least antinutrients among the two Solanum species accounting for 0.02 mg/100 g and 0.03 mg/100 g in S. torvum berries (STBs) and (S. nigrum berries) SNBs respectively.

8.
J Food Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004805

ABSTRACT

Walnut oil is an edible oil with high nutritional value, and the roasting process influences its quality and flavor. This study aimed to investigate the effects of roasting on the fatty acid composition, bioactive compounds (tocopherols, polyphenols, and phytosterols), and antioxidant capacity of walnut oil. Additionally, the aroma compounds and sensory characteristics were evaluated to comprehensively assess the variations in walnut oil after roasting. Roasting resulted in no notable impact on the fatty acid composition of walnut oil but increased the content of tocopherols and polyphenols in walnut oil, increasing its antioxidant capacity. Heavy roasting (160°C/20 min) reduced the phytosterol content in walnut oil by 2.3%. In total, 146 volatile compounds were detected in both cold-pressed and roasted walnut oil using headspace solid-phase microextraction-gas chromatography-mass spectrometry, and 32 key aroma compounds were identified. Aromatic aldehydes, aliphatic aldehydes, and heterocyclic compounds significantly contributed to fragrant walnut oil. Furthermore, the principal component analysis based on quality characteristics and sensory evaluation indicated that moderate roasting (130°C/20 min, 130°C/30 min, and 160°C/10 min) provided walnut oil with a sweet, nutty, and roasted aroma, as well as high levels of linoleic acid, phytosterols, and γ-tocopherol. Although heavy roasting (160°C/15 min and 160°C/20 min) enhanced the antioxidant capacities of walnut oils due to high levels of polyphenols, the oils exhibited an unpleasant burnt aroma. This study showed that roasting promoted the quality and flavor of walnut oil, and moderate conditions endowed walnut oil with a characteristic-rich flavor while maintaining excellent quality.

9.
Animals (Basel) ; 14(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998092

ABSTRACT

The rising interest in healthier meat options prompted the exploration of alternatives to traditional pork-based products, incorporating meat from different livestock species, feeding regimens, and functional ingredients. This study investigates the production of healthier meat products by examining the physicochemical traits, fatty acid profile, and sensory properties of mortadella made with Cinisara meat of four young bulls and four adult cows, and four females of the Nebrodi Black Pig. All the animals were fed principally on natural resources. Nutritional analysis revealed different levels of moisture, protein, fat, and ash in raw materials, with pistachios contributing to a healthy fatty acid profile rich in monounsaturated and polyunsaturated fatty acids. Formulations using cow meat exhibited higher fat content and caloric value, resulting in sensory attributes such as more intense color, improved fat cube adhesion, and pronounced odors compared to young bull and control mortadella. Fatty acid analysis demonstrated distinctive profiles influenced by the meat type used and, as expected, bovine products showed higher contents of rumenic and other conjugated linoleic acids. Pork mortadella displayed greater ω6 and ω3 values, with a healthier ω6/ω3 ratio comparable to those found in cow products. Young bull mortadella showed the worse atherogenic and thrombogenic indices. The findings underscore the impact of raw materials on the nutritional and sensory attributes of mortadella, emphasizing the necessity for interventions to enhance fatty acid composition in processed meat products.

10.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998512

ABSTRACT

Heat stress has received growing concerns regarding the impact on seafood quality. However, the effects of heat stress on the sensory properties of seafood remain unknown. In this study, the sensory properties of fresh oyster (Crassostrea ariakensis) treated with chronic heat stress (30 °C) for 8 weeks were characterized using electronic nose, electronic tongue, sensory evaluation, HS-SPME-GC-MS, LC-MS and transcriptomics. Overall, chronic heat stress reduced the overall sensory properties of oysters. The metabolic network constructed. based on enrichment results of 423 differential metabolites and 166 differentially expressed genes, showed that the negative effects of chronic heat stress on the sensory properties of oysters were related to oxidative stress, protein degradation, lipid oxidation, and nucleotide metabolism. The results of the study provide valuable insights into the effects of heat stress on the sensory properties of oysters, which are important for ensuring a sustainable supply of high-quality seafood and maintaining food safety.

11.
Foods ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998654

ABSTRACT

The aim of this study was to assess the nutraceutical qualities of extra virgin olive oil (EVOO) samples obtained from three Sicilian olive cultivars: Nocellara, Biancolilla, and Cerasuola. We also evidenced the relationship among biophenols, base parameters and panel test scores, and evaluated the stability of the biophenols in EVOO. The assessment also took into consideration variations in olive harvesting periods and the influence of four different milling methods. A statistical analysis of the collected data revealed that the cultivar and harvesting period were the primary factors influencing the bio-phenol content, while the milling methods employed did not significantly affect the levels of biophenols in the oils. The panel test results were also illuminating as they were strongly related to the cultivar and polyphenol content. Following the criteria outlined in EC Regulation 432/2012, we selected three samples, each representing one of the cultivars, which exhibited the highest bio-phenol content to evaluate the biophenol stability during a time span of 16 months.

12.
Nutrients ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999732

ABSTRACT

Low wholegrain food consumption is a leading dietary risk for avoidable morbidity and mortality globally, with limited sensory acceptability suggested to be a challenge for changing behaviour. This study aimed to evaluate the sensory acceptability of both wholegrain (brown) and refined (white) rice in common preparations. Four brown- and white-rice-containing dishes (Garlic Rice, Rice and Beans, Jollof Rice, and Rice Pudding) were tested. Quantitative (five-point scales) and qualitative (open question responses) sensory information were collected for dish appearance, aroma, taste, and texture. All four characteristics were scored equally acceptable in Rice and Beans and Rice Pudding (p > 0.05) between paired comparisons for brown and white rice. Scores were significantly lower for all characteristics for Jollof Rice (p ≤ 0.002), and lower for Aroma (median (lower quartile-upper quartile)) for brown (3.5 (3-4)) vs. white rice (4 (4-5)), p = 0.006). Appearance (brown (3 (3-4)) vs. white rice (4 (3.25-5)), p = 0.012), and Texture (brown 3 (2.25-4) vs. white rice (4 (4-5)), p < 0.001) for Garlic Rice. Familiarity and appealingness were qualitative themes aligned with the higher acceptability of white-rice-containing dishes. Certain dishes appear to mask key negative sensory attributes of wholegrain foods, possibly representing a means to increase wholegrain ingredient acceptability, thereby potentially improving individual/population-level intake.


Subject(s)
Oryza , Taste , Oryza/chemistry , Humans , Female , Male , Adult , Whole Grains , Middle Aged , Young Adult , Food Preferences , Odorants/analysis , Consumer Behavior
13.
Heliyon ; 10(13): e33147, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040394

ABSTRACT

This study addresses the challenge of enhancing gamma-aminobutyric acid (GABA) content in soy sauce through optimized fermentation condition. Using a multiple starter culture, consisting of Aspergillus oryzae strain NSK, Bacillus cereus strain KBC and Tetragenococcus halophilus strain KBC, the incubation conditions including the percentage of bacterial inoculum (10, 15 and 20 %), pH (3, 5 and 7) and agitation speed (100, 150 and 200 rpm) were optimized through Response Surface Methodology (RSM). Under the optimal conditions (20 % inoculum, pH 7 and stirring at 100 rpm), the multiple starter culture generated 128.69 mg/L of GABA after 7 days and produced 239.08 mg/L of GABA after 4 weeks of fermentation, which is 36 % higher than under non-optimized conditions (153.48 mg/L). Furthermore, sensory analysis revealed high consumer acceptance of the fermented soy sauce than the control (soy sauce without any treatment and additional bacteria) and commercial soy sauce. Consumers indicated that the starter culture offered an improved umami taste and reduced bitter, sour and salty flavours compared to the commercial product. Under optimal fermentation conditions determined by RSM statistical analysis, the multiple starter culture is able to produce high levels of GABA and is more likely to be accepted by consumers. The findings of this research have the potential to impact the food sector by offering a functional soy sauce with added health benefits and also being well-received by consumers.

14.
Foods ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928750

ABSTRACT

This study aimed to investigate the aroma effects of key volatile compounds in a new type of mulberry leaf Fu brick teas (MTs) and traditional Fu brick teas (FTs). Headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and chemometrics were used to determine the differences in key flavour qualities between the two. The results showed that a total of 139 volatile components were identified, with aldehydes, ketones, and alcohols dominating. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) combined with the odour activity value (OAV) showed that seven aroma compounds had an OAV > 10, including 2-(4-methylcyclohex-3-en-1-yl) propan-2-ol with floral and fruity aroma and green attributes, 6-methylhept-5-en-2-one, (E)-6,10-dimethyl-5,9-Undecadien-2-one, (3E,5E)-octa-3,5-dien-2-one, Benzaldehyde, and (E)-3,7,11,15-tetramethylhexadec-2-en-1-ol, which were more abundant in MTs than FTs; Cedrol with sweet aroma attributes was more consistent in MTs than FTs, and we suggest that these odour compounds are important aroma contributors to MTs. Taken together, these findings will provide new insights into the mechanism of formation of the characteristic attributes of aroma in MTs.

15.
Poult Sci ; 103(8): 103823, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38848633

ABSTRACT

The interplay between genetics and economics is important in understanding how crossbreeding can be harnessed to optimize sustainable poultry production, meat quality, and economic viability. This study was conducted to investigate the effect of crossbreeding on growth performance, meat quality, and production economics. A total of 451 unsexed day-old chicks were raised for 12 wk in a pure (Sasso X Sasso [SS]; Wassachie X Wassachie [WW]) and reciprocal cross (Sasso X Wassachie [SW]; Wassachie X Sasso [WS]) design. Data was collected on growth performance, meat quality, sensory evaluation, proximate analysis, and production economics. Genotype did not affect (P > 0.05) moisture, dry matter, ash, sensory evaluation, pH, and meat temperature. The carcass weights, final body weight, and cumulative weight gain of the hybrids were intermediate while the SS recorded the highest (P < 0.05) values. Drip loss between the WW and the reciprocal crosses was similar (P > 0.05) but lower (P < 0.05) than the SS genotype. Protein contents between the purebreds were similar likewise the crossbreds (P > 0.05). The SW cross recorded a higher (P < 0.05) lipid content compared to the WW cross while the WS recorded a higher (P < 0.05) protein content compared to the SS. The SS incurred higher feeding costs, and gross and net returns followed by the SW and then the WS with the WW having the lowest values. Crossbreeding improved growth performance, carcass traits, meat quality, chemical composition, and the gains in the crossbreds with the SW genotype having better results. The SW cross is recommended for better performance.

16.
Food Chem ; 456: 139979, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38852441

ABSTRACT

Pulsed light (PL) is a prospective non-thermal technology that can improve the degradation of ginkgolic acid (GA) and retain the main bioactive compounds in Ginkgo biloba leaves (GBL). However, only using PL hasn't yet achieved the ideal effect of reducing GA. Fermentation of GBL to make ginkgo dark tea (GDT) could decrease GA. Because different microbial strains are used for fermentation, their metabolites and product quality might differ. However, there is no research on the combinative effect of PL irradiation fixation and microbial strain fermentation on main bioactive compounds and sensory assessment of GDT. In this research, first, Bacillus subtilis and Saccharomyces cerevisiae were selected as fermentation strains that can reduce GA from the five microbial strains. Next, the fresh GBL was irradiated by PL for 200 s (fluences of 0.52 J/cm2), followed by B. subtilis, S. cerevisiae, or natural fermentation to make GDT. The results showed that compared with the control (unirradiated and unfermented GBL) and the only PL irradiated GBL, the GA in GDT using PL + B. subtilis fermentation was the lowest, decreasing by 29.74%; PL + natural fermentation reduced by 24.53%. The total flavonoid content increased by 14.64% in GDT using PL + B. subtilis fermentation, whose phenolic and antioxidant levels also increased significantly. Sensory evaluation showed that the color, aroma, and taste of the tea infusion of PL + B. subtilis fermentation had the highest scores. In conclusion, the combined PL irradiation and solid-state fermentation using B. subtilis can effectively reduce GA and increase the main bioactive compounds, thus providing a new technological approach for GDT with lower GA.


Subject(s)
Bacillus subtilis , Fermentation , Flavonoids , Ginkgo biloba , Ginkgolides , Saccharomyces cerevisiae , Salicylates , Taste , Ginkgo biloba/chemistry , Ginkgo biloba/metabolism , Ginkgo biloba/microbiology , Salicylates/metabolism , Salicylates/analysis , Saccharomyces cerevisiae/metabolism , Bacillus subtilis/metabolism , Flavonoids/analysis , Flavonoids/metabolism , Humans , Ginkgolides/metabolism , Ginkgolides/analysis , Light , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Food Irradiation
17.
Food Microbiol ; 122: 104536, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839216

ABSTRACT

The aim of this study was to develop a novel and healthier fermented meat product by replacing pork fat with avocado pulp (AVP) during salami production. Experimental salamis were produced under laboratory conditions by substituting pork fat with AVP partially (10-AVP) and totally (20-AVP), while control salamis (CTR) remained AVP-free. The microbial composition of control and experimental salamis was assessed using a combined culture-dependent and -independent approach. Over a 20-days ripening period, lactic acid bacteria, coagulase-negative staphylococci, and yeasts dominated the microbial community, with approximate levels of 9.0, 7.0 and 6.0 log CFU/g, respectively. Illumina technology identified 26 taxonomic groups, with leuconostocs being the predominant group across all trials [constituting 31.26-59.12 % of relative abundance (RA)]. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed changes in fatty acid composition and volatile organic compounds due to the substitution of pork fat with AVP. Specifically, monounsaturated fatty acids and terpene compounds increased, while saturated fatty acids and lipid oxidation products decreased. Although AVP influenced the sensory characteristics of the salamis, the highest overall satisfaction ratings were observed for the 10-AVP salamis. Consequently, substituting pork fat with AVP emerges as a viable strategy for producing healthier salamis and diversifying the meat product portfolio.


Subject(s)
Fermentation , Meat Products , Persea , Persea/microbiology , Persea/chemistry , Animals , Swine , Meat Products/microbiology , Meat Products/analysis , Fatty Acids/analysis , Fatty Acids/metabolism , Humans , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Fruit/microbiology , Fruit/chemistry , Food Microbiology , Taste , Lactobacillales/metabolism , Lactobacillales/classification , Lactobacillales/growth & development
18.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893413

ABSTRACT

Beer is a popular alcoholic beverage worldwide. However, limited research has been conducted on identifying key odor-active components in lager-type draft beers for the Chinese market. Therefore, this study aims to elucidate the odor characteristics of the four most popular draft beer brands through a sensory evaluation and an electronic nose. Subsequently, the four draft beers were analyzed through solid-phase microextraction and liquid-liquid extraction using a two-dimensional comprehensive gas chromatography-olfactometry-mass spectrometry analysis (GC×GC-O-MS). Fifty-five volatile odor compounds were detected through GC×GC-O-MS. Through an Aroma Extract Dilution Analysis, 22 key odor-active compounds with flavor dilution factors ≥ 16 were identified, with 11 compounds having odor activity values > one. An electronic nose analysis revealed significant disparities in the odor characteristics of the four samples, enabling their distinct identification. These findings help us to better understand the flavor characteristics of draft beer and the stylistic differences between different brands of products and provide a theoretical basis for objectively evaluating the quality differences between different brands of draft beer.


Subject(s)
Beer , Gas Chromatography-Mass Spectrometry , Odorants , Volatile Organic Compounds , Beer/analysis , Odorants/analysis , Volatile Organic Compounds/analysis , China , Solid Phase Microextraction/methods , Humans , Olfactometry , Electronic Nose , Liquid-Liquid Extraction/methods , Flavoring Agents/analysis
19.
Foods ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38890924

ABSTRACT

Millet products have garnered global recognition for their exceptional nutritional profile, appealing to various age demographics, and, therefore, fortifying such products with minerals can ensure nutritional security. This research explores the feasibility of utilizing millet as a substitute for refined wheat flour in biscuit production. Three distinct millet varieties were investigated: finger, pearl, and buckwheat. Employing response surface methodology (RSM), the optimal ratio of these flours was determined, resulting in a blend of 1.5:1:1, respectively. The optimized multi-millet biscuits were further enhanced with calcium fortification and subjected to comprehensive physico-chemical analysis. Proximate composition analysis revealed favorable levels of protein (5.472 ± 0.31%), ash (2.80 ± 0.57 g/100 g), and energy density (5.8015 ± 0.004 kcal/g), indicating a significantly higher protein content, enriched mineral profile, and high energy density as compared to refined wheat flour products. Sensory evaluation encompassing attributes such as color and texture and organoleptic assessment using a nine-point hedonic scale demonstrated favorable acceptance. Additionally, the overall acceptability of the biscuits remained consistently high throughout storage, ranging from 8.263 ± 0.65 (day 0) to 8.053 ± 0.85 (day 14). This study underscores the potential of multi-millet biscuits as a nutritious and palatable alternative to traditional wheat-based snacks, offering an avenue for diversifying dietary options and promoting healthier food choices.

20.
Foods ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38890998

ABSTRACT

The fruit and beverage industry faces challenges related to waste management and environmental pollution due to rapid industrial expansion. Fruit industry waste, such as blueberry pomace, holds the promise of enhancing gut health and providing valuable antioxidants. Concurrently, buttermilk, a prominent dairy product, offers nutritional and technological benefits but remains underutilized. This study aimed to evaluate the incorporation of blueberry pomace (0%, 2%, 4%, 6%, 8%, and 10%) into buttermilk at varying levels and assess its impact on the physicochemical, antioxidant, microbiological, and sensory characteristics of the buttermilk. Buttermilk samples were supplemented with different concentrations of blueberry pomace and subjected to analysis over a two-week storage period (4 ± 1 °C). The addition of blueberry pomace led to alterations in the pH, dry matter, water holding capacity, color parameters, total phenolic content, and antioxidant activity. Microbiological analysis revealed the absence of Enterobacteriaceae, yeast, or molds. Sensory evaluation indicated significant differences among samples, with the highest scores observed for the buttermilk supplemented with 2% and 4% blueberry pomace. Incorporating blueberry pomace improved the overall acceptability and sensory properties. This research highlights the potential of fruit industry by-products to enhance the functionality and health benefits of dairy products, which is a promising way to effectively utilize waste.

SELECTION OF CITATIONS
SEARCH DETAIL
...