Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 427
Filter
1.
Article in English | MEDLINE | ID: mdl-39007973

ABSTRACT

Vertical oxidation pond operated in sequencing batch mode (HRT: 1.25 day) with duckweed as the vegetation was used to acclimatize with simulated agricultural wastewater. The maximum removal rate of urea [371 g/(m3.d)] and COD [222.4 g/(m3.d)] were observed at moderate concentrations of urea (500 mg/L), N-P-K (60 mg/L), and pesticide (20 mg/L). Inhibition and toxicity posed by higher concentrations, decreased the removals of urea (83% to 61%), COD (81% to 51%), and TDS (76% to 50%) at the end of the acclimatization. Steady removal (> 99%) of PO43--P was observed during acclimatization. Effluent pH increased due to the generation of NH4+-N (maximum 370 ± 5 mg/L) from the assimilation of urea. Oxidation of ammonia led to the maximum generation of NO2--N and NO3--N of 10 mg/L and 9 mg/L, respectively. Particles less than 300 µm increased, and both specific gravity (from 2.62 to 2.42) and maximum dry density (from 1.73 to 1.30 g/cm3) of the base soil decreased with an increase in urea, N-P-K, and pesticide. Reactor biomass increased (1.42 to 1.90 g/L) up to initial concentrations of urea (500 mg/L), N-P-K (60 mg/L), and pesticide (20 mg/L), then decreased (1.68 g/L) with an increase in concentration.

2.
Environ Res ; : 119656, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39034021

ABSTRACT

This review explores recent progress in sequencing batch reactors (SBRs) and hybrid systems for wastewater treatment, emphasizing their adaptability and effectiveness in managing diverse wastewater compositions. Through extensive literature analysis from 1985 to 2024, the integration of advanced technologies like photocatalysis within hybrid systems is highlighted, showing promise for improved pollutant removal efficiencies. Insights into operational parameters, reactor design, and microbial communities influencing SBR performance are discussed. Sequencing batch biofilm reactors (SBBRs) demonstrate exceptional efficiency in Chemical Oxygen Demand, nitrogen, and phosphorus removal, while innovative anaerobic-aerobic-anoxic sequencing batch reactors (AOA-SBRs) offer effective nutrient removal strategies. Hybrid systems, particularly photocatalytic sequencing batch reactors (PSBRs), show potential for removing persistent pollutants like antibiotics and phenols, underscoring the significance of advanced oxidation processes. However, research gaps persist, including the need for comparative studies between different SBR types and comprehensive evaluations of long-term performance, environmental variability, and economic viability. Addressing these gaps will be vital for the practical deployment of SBRs and hybrid systems. Further exploration of synergies, economic considerations, and reactor stability will enhance the sustainability and scalability of these technologies for efficient and eco-friendly wastewater treatment.

3.
Bioresour Technol ; 406: 131081, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977037

ABSTRACT

Denitrifying phosphorus removal (DPR), which is dominated by denitrifying polyphosphate-accumulating organisms (DPAOs), is a promising process for nitrogen and phosphorus removal. Denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs typically coexist in the DPR sludge, complicating the study of DPAOs' denitrification capacity. In this study, two reactors were fed with nitrate and nitrite during the anoxic phase to cultivate nitrate-DPR and nitrite-DPR sludge. Both reactors yielded high and low DGAO abundance sludges, enabling the evaluation of the denitrification capacity of DPAOs. For the nitrate-DPR sludge, the nitrite reduction rate was 1.63 times higher than the nitrate reduction rate when DPAOs were the primary denitrifiers. For the nitrite-DPR sludge, the reduction rate of nitrite was more than three times that of nitrate, irrespective of DGAO abundance. These findings indicated that DPAOs preferred nitrite to nitrate and were well suited to reduce nitrite rather than reduce nitrate to supply nitrite.


Subject(s)
Bioreactors , Denitrification , Nitrates , Nitrites , Phosphorus , Sewage , Nitrites/metabolism , Phosphorus/metabolism , Nitrates/metabolism , Electrons , Biodegradation, Environmental
4.
Bioresour Technol ; 406: 131041, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925404

ABSTRACT

To effectively treat actual ammonia-rich Chinese medicine residue (CMR) resource utilization wastewater, we optimized an anaerobic-microaerobic two-stage expanded granular sludge bed (EGSB) and moving bed sequencing batch reactor (MBSBR) combined process. By controlling dissolved oxygen (DO) levels, impressive removal efficiencies were achieved. Microaeration, contrasting with anaerobic conditions, bolstered dehydrogenase activity, enhanced electron transfer, and enriched the functional microorganism community. The increased relative abundance of Synergistetes and Proteobacteria facilitated hydrolytic acidification and fostered nitrogen and phosphorus removal. Furthermore, we examined the impact of DO concentration in MBSBR on pollutant removal and microbial metabolic activity, pinpointing 2.5 mg/L as the optimal DO concentration for superior removal performance and energy conservation.


Subject(s)
Ammonia , Bioreactors , Oxygen , Wastewater , Wastewater/chemistry , Oxygen/metabolism , Water Purification/methods , Biodegradation, Environmental , Sewage , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Phosphorus , Drugs, Chinese Herbal/pharmacology , Nitrogen
5.
Water Sci Technol ; 89(11): 3007-3020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877627

ABSTRACT

To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.


Subject(s)
Comamonas , Denitrification , Nitrogen , Waste Disposal, Fluid , Wastewater , Nitrogen/metabolism , Comamonas/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Aerobiosis , Water Purification/methods , Water Pollutants, Chemical/metabolism
6.
J Environ Manage ; 363: 121315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850910

ABSTRACT

The rising generation of waste activated sludge (WAS) demands a fundamental shift towards resource reuse and recovery. The conventional methodologies used to manage this by-product derived from wastewater treatment plants are increasingly constrained due to stringent regulatory measures aimed at mitigating its adverse impacts on the environment and public health. Therefore, this work evaluated a promising strategy for the efficient management of WAS, transforming it into a valuable renewable source to produce high-value-added compounds, such as lipids and a slow-release fertilizer (struvite). Wet oxidation (WO) was identified as a suitable technique for solubilising WAS while generating short-chain fatty acids (primarily acetic acid). It was found that conducting WO at 200 °C for 120 min resulted in a 65% reduction of the total suspended solids (TSS) content and 87% of the volatile suspended solids (VSS) content. Additionally, under these conditions, 4440 ± 105 mg/L and 593 ± 21 mg/L of acetic and propionic acid were obtained, respectively, which were assimilated by Yarrowia lipolytica to produce biolipids. Furthermore, the rupture of WAS flocs also led to the solubilisation of 980 ± 8 mg/L of ammonium. During the struvite precipitation stage, a NH4:PO4:Mg ratio of 1:1.5:1.5 was found to be the most effective for removing soluble ammonium (97.4 ± 0.8%), resulting in a high-purity struvite formation, and enhancing the carbon/nitrogen (C/N) ratio of the oxidised WAS from 3 to 105. This improvement in the C/N ratio raised the lipid content from 36 ± 1% to 49 ± 1% during the cultivation of Y. lipolytica. The application of the sequencing batch culture strategy further increased lipid content to 59 ± 1%, with 6.0 ± 0.3 g/L as the final concentration after the fifth cycle. The lipids produced, mainly monounsaturated fatty acids with 40% of oleic acid, offer potential as biodiesel feedstock. This lipid composition led to biodiesel properties, including cetane number, iodine value, kinematic viscosity and density that met international standards. Therefore, this research presents a promising alternative not only for WAS management but also for harnessing valuable resources, thereby establishing a basis for large-scale studies.


Subject(s)
Lipids , Sewage , Yarrowia , Yarrowia/metabolism , Lipids/chemistry , Waste Disposal, Fluid/methods , Nutrients/metabolism , Fertilizers/analysis
7.
J Environ Manage ; 359: 121075, 2024 May.
Article in English | MEDLINE | ID: mdl-38723502

ABSTRACT

Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.


Subject(s)
Biofilms , Bioreactors , Denitrification , Nitrification , Nitrogen , Wastewater , Nitrogen/metabolism , Waste Disposal, Fluid/methods , Salinity , Oxygen/metabolism
8.
Environ Res ; 252(Pt 3): 118917, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38636642

ABSTRACT

Ammonia removal by nitrifiers at the extremely high salinity poses a great challenge for saline wastewater treatment. Sequencing batch reactor (SBR) was conducted with a stepwise increase of salinity from 10 to 40 g-NaCl·L-1, while sequencing batch biofilm reactor (SBBR) with one-step salinity enhancement, their nitrification performance, microbial structure and interaction were evaluated. Both SBR and SBBR can achieve high-efficiency nitrification (98% ammonia removal) at 40 g-NaCl·L-1. However, SBBR showed more stable nitrification performance than SBR at 40 g-NaCl·L-1 after a shorter adaptation period of 4-15 d compared to previous studies. High-throughput sequencing and metagenomic analysis demonstrated that the abundance and capability of conventional ammonia-oxidizing bacteria (Nitrosomonas) were suppressed in SBBR relative to SBR. Gelidibacter, Anaerolineales were the predominant genus in SBBR, which were not found in SBR. NorB and nosZ responsible for reducing NO to N2O and reducing N2O to N2 respectively had s strong synergistic effect in SBBR. This study will provide a valuable reference for the startup of nitrification process within a short period of time under the extremely high NaCl salinity.


Subject(s)
Bioreactors , Nitrification , Salinity , Bioreactors/microbiology , Sodium Chloride/pharmacology , Waste Disposal, Fluid/methods , Ammonia/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/drug effects , Biofilms/drug effects
9.
Environ Res ; 252(Pt 3): 118985, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38663668

ABSTRACT

The biofilm sequencing batch reactor (BSBR) technique has been deployed in the laboratory to enrich phosphorus from simulated wastewater, but it is still not clear what its performance will be when real world sewage is used. In this work, the effluent from the multi-stage anoxic-oxic (AO) activated sludge process at a sewage plant was used as the feed water for a BSBR pilot system, which had three reactors operating at different levels of dissolved oxygen (DO). The phosphorus adsorption and release, the biofilm growth, and the extracellular polymeric substances (EPS) components and contents were examined. The microbial communities and the signaling molecules N-acyl-l-homoserine lactones (AHLs) were also analyzed. Gratifyingly, the BSBR process successfully processed the treated sewage, and the biofilm developed phosphorus accumulation capability within 40 days. After entering stable operation, the system concentrated phosphate from 2.59 ± 0.77 mg/L in the influent to as much as 81.64 mg/L in the recovery liquid. Sludge discharge had profound impacts on all aspects of BSBR, and it was carried out successfully when the phosphorus absorption capacity of the biofilm alone was comparable to that of the reactor containing the activated sludge. Shortly after the sludge discharge, the phosphate concentration of the recovery liquid surged from 50 to 140 mg/L, the biofilm thickness grew from 20.56 to 67.32 µm, and the diversity of the microbial population plunged. Sludge discharge stimulated Candidatus competibacter to produce a large amount of AHLs, which was key in culturing the biofilm. Among the AHLs, both C10-HSL and 3OC12-HSL were significantly positively correlated with EPS and the abundance of Candidatus competibacter. The current results demonstrated BSBR as a viable option to enrich phosphorus from real world sewage with low phosphorus content and fluctuating chemistry. The mechanistic explorations also provided theoretical guidance for cultivating phosphorus-accumulating biofilms.


Subject(s)
Biofilms , Bioreactors , Phosphates , Sewage , Biofilms/growth & development , Bioreactors/microbiology , Sewage/microbiology , Sewage/chemistry , Phosphates/metabolism , Phosphates/analysis , Waste Disposal, Fluid/methods , Phosphorus/analysis , Phosphorus/metabolism
10.
Sci Total Environ ; 928: 172408, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38608880

ABSTRACT

This study investigated the mechanisms of microbial growth and metabolism during biofilm cultivation in the biofilm sequencing batch reactor (BSBR) process for phosphate (P) enrichment. The results showed that the sludge discharge was key to biofilm growth, as it terminated the competition for carbon (C) source between the nascent biofilm and the activated sludge. For the tested reactor, after the sludge discharge on 18 d, P metabolism and C source utilization improved significantly, and the biofilm grew rapidly. The P concentration of the recovery liquid reached up to 157.08 mg/L, which was sufficient for further P recovery via mineralization. Meta-omics methods were used to analyze metabolic pathways and functional genes in microbial growth during biofilm cultivation. It appeared that the sludge discharge activated the key genes of P metabolism and inhibited the key genes of C metabolism, which strengthened the polyphosphate-accumulating metabolism (PAM) as a result. The sludge discharge not only changed the types of polyphosphate-accumulating organisms (PAOs) but also promoted the growth of dominant PAOs. Before the sludge discharge, the necessary metabolic abilities that were spread among different microorganisms gradually concentrated into a small number of PAOs, and after the sludge discharge, they further concentrated into Candidatus_Contendobacter (P3) and Candidatus_Accumulibacter (P17). The messenger molecule C-di-GMP, produced mostly by P3 and P17, facilitated P enrichment by regulating cellular P and C metabolism. The glycogen-accumulating organism (GAO) Candidatus_Competibacter secreted N-Acyl homoserine lactones (AHLs), which stimulated the secretion of protein in extracellular polymeric substances (EPS), thus promoting the adhesion of microorganisms to biofilm and improving P metabolism via EPS-based P adsorption. Under the combined action of the dominant GAOs and PAOs, AHLs and C-di-GMP mediated QS to promote biofilm development and P enrichment. The research provides theoretical support for the cultivation of biofilm and its wider application.


Subject(s)
Acyl-Butyrolactones , Biofilms , Cyclic GMP , Cyclic GMP/analogs & derivatives , Phosphates , Waste Disposal, Fluid , Acyl-Butyrolactones/metabolism , Phosphates/metabolism , Cyclic GMP/metabolism , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology
11.
Water Sci Technol ; 89(7): 1725-1740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619899

ABSTRACT

The algal-bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal-bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.


Subject(s)
Ammonia , Nitrogen , Nitrogen/analysis , Denitrification , Seasons , Bioreactors/microbiology , Wastewater
12.
J Hazard Mater ; 469: 133983, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38471376

ABSTRACT

The transient chlorophenol shock under some emergency conditions might directly affect the pollutant removal of bioreactor. Therefore, the recovery of bioreactor performance after transient chlorophenol shock is a noteworthy issue. In the present research, the performance, antioxidant response, microbial succession and functional genes of sequencing batch reactor (SBR) were evaluated under transient 2,4,6-trichlorophenol (2,4,6-TCP) shock. The chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) removal efficiencies decreased sharply in the first 4 days after 60 mg/L 2,4,6-TCP shock for 24 h and gradually recovered to normal in the subsequent 8 days. The nitrogen removal rates and their corresponding enzymatic activities rapidly decreased after transient 2,4,6-TCP shock and then gradually increased to normal. The increase of antioxidant enzymatic activity, Cu-Zn SOD genes and Fe-Mn SOD genes contributed to the recovery of SBR performance. The abundance of genes encoding ammonia monooxygenase and hydroxylamine dehydrogenase decreased after transient 2,4,6-TCP shock, including amoA, amoC and nxrA. Thauera, Dechloromonas and Candidatus_Competibacter played key roles in the restorative process, which provided stable abundances of narG, norB , norC and nosZ. The results will deeply understand into the effect of transient 2,4,6-TCP shock on bioreactor performance and provide theoretical basis to build promising recoveries strategy of bioreactor performance.


Subject(s)
Antioxidants , Chlorophenols , Bioreactors , Nitrogen , Sewage , Waste Disposal, Fluid
13.
Bioresour Technol ; 395: 130411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309670

ABSTRACT

Microbial communities in hybrid linear flow channel reactors and anaerobic sequencing batch reactors operated in series for remediation and beneficiation of tannery wastewater were assessed. Despite concurrent sulfidogenesis, more intensive pre-treatment in hybrid linear flow channel reactors reduced methanogenic inhibition usually associated with anaerobic digestion of tannery effluent and promoted efficiency (max 321 mLCH4/gCODconsumed, 59% biogas CH4). Nitrification and biological sulfate reduction were key metabolic pathways involved in overall and sulfate reducing bacterial community selection, respectively, during pre-treatment. Taxonomic selection could be explained by the proteinaceous and saline character of tannery effluent, with dominant genera being protein and/or amino acid degrading, halotolerant and/or ammonia tolerant. Complete oxidizers dominated the sulfidogenic populations during pre-treatment, while aceticlastic genera dominated the methanogenic populations during anaerobic digestion. With more intensive pre-treatment, the system shows promise for remediation and recovery of biogas and sulfur from tannery wastewater in support of a bio-circular economy.


Subject(s)
Microbiota , Wastewater , Biofuels , Bacteria/metabolism , Anaerobiosis , Sulfates/metabolism , Bioreactors/microbiology , Methane/metabolism
14.
Sci Total Environ ; 914: 169813, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38184258

ABSTRACT

The research focused on benzotriazole ultraviolet stabilizers (BUVs) which are commonly used compounds despite being found dangerous, e.g. promoting breast cancer cell proliferation, damaging vital organs such as hearts, brains livers and kidneys. The aim of the study was to analyse the efficiency and removal rate of BUVs from wastewater depending on the quantity of tested compounds and SBR anaerobic-aerobic conditions. The study was conducted in sequencing batch reactors (SBRs - 17 L) with real flocculent activated sludge (8 L) and model wastewater (5 L) containing UV-326, UV-327, UV-328, UV-329 and UV-P from 50 to 600 µg∙L-1. The SBR were operated in 390 cycles of 7 h and 10 min over 130 days. The similarity of the technological parameters of the treatment process to those used in a real wastewater treatment plant was maintained. Efficiency removal of individual BUVs was strictly dependent on the dose of compounds introduced into wastewater and ranged from 68.2 to 97 %. Removal of UV-329 occurred with lowest efficiency (from 68.2 to 85.2 %) while UV-326 was most efficiently removed from the wastewater (from 94.1 to 97 %). UV-329 was removed from wastewater with the lowest (0.0968-0.9524 µg∙L-1∙min-1) average removal rate while UV-327 with the highest (0.16-1.3357 µg∙L-1∙min-1), irrespective of BUVs dose in the influent. Secondary release of BUVs into the wastewater occurred in SBR during the settling phase and was dependent on the type and concentration of the BUVs in the raw wastewater. This occurrence was noted for UV-326 ≥ 100; UV-327 = 600; UV-328 ≥ 200; UV-329 ≥ 50 and UV-P ≥ 100 µg∙L-1. The settling phase needs to be shortened to the required minimum. This is an important conclusion for WWTPs in regards to SBR cycle duration and technological parameters of the treatment process.


Subject(s)
Triazoles , Waste Disposal, Fluid , Wastewater , Bioreactors , Sewage/analysis , Nitrogen/analysis
15.
Sci Total Environ ; 913: 169721, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38171461

ABSTRACT

The textile industry is one of the most chemical-intensive processes, resulting in the unquestionable pollution of more than a quarter of the planet's water bodies. The high recalcitrant properties of some these pollutants resulted on the development of treatment technologies looking at the larger removal efficiencies, due to conventional systems are not able to completely remove them in their effluents. However, safeguarding the environment also implies taking into account indirect pollution from the use of chemicals and energy during treatment. On the other hand, the emerged technologies need to be economically attractive for investors and treatment managers. Therefore, the costs should be kept under control. For this reason, the present study focuses on a comparative Life Cycle Assessment and Life Cycle Costing of four scale-up scenarios aiming at mono and di-azo reactive dyes removal from textile wastewater. Two reactors (sequencing batch reactor and two-phase partitioning) were compared for different reaction environments (i.e., single anaerobic and sequential anaerobic-aerobic) and conditions (different pH, organic loading rates and use of polymer). In accordance with the results of each scenario, it was found that the three technical parameters leading to a change in the environmental profiles were the removal efficiency of the dyes, the type of dye eliminated, and the pollutant influent concentration. The limitation of increasing organic loading rates related to the biomass inhibition could be overcame through the use of a novel two-phased partitioning bioreactor. The use of a polymer at this type of system may help restore the technical performance (84.5 %), reducing the toxic effects of effluents and consequently decreasing the environmental impact. In terms of environmental impact, this is resulting into a reduction of the toxic effects of textile effluents in surface and marine waters compared to the homologous anaerobic-aerobic treatment in a sequencing batch reactor. However, the benefits achieved for the nature comes with an economic burden related to the consumption of the polymer. It is expected that the cost of investment of the treatment with the two-phase partitioning bioreactor rises 0.6-8.3 %, depending on market prices, compared to the other analyzed sequential anaerobic-aerobic technologies. On the other side, energy and chemical consumption did not prove to be limiting factors for economic feasibility.


Subject(s)
Wastewater , Water Pollutants, Chemical , Humans , Coloring Agents , Azo Compounds , Polymers , Bioreactors , Textiles , Waste Disposal, Fluid/methods
16.
Water Res ; 251: 121151, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38246075

ABSTRACT

The discovery of complete ammonium oxidation (comammox) has subverted the traditional perception of two-step nitrification, which plays a key role in achieving biological nitrogen removal from wastewater. Floccular sludge-based treatment technologies are being applied at the majority of wastewater treatment plants in service where detection of various abundances and activities of comammox bacteria have been reported. However, limited efforts have been made to enrich and subsequently characterize comammox bacteria in floccular sludge. To this end, a lab-scale sequencing batch reactor (SBR) in the step-feeding mode was applied in this work to enrich comammox bacteria through controlling appropriate operational conditions (dissolved oxygen of 0.5 ± 0.1 g-O2/m3, influent ammonium of 40 g-N/m3 and uncontrolled longer sludge retention time). After 215-d operation, comammox bacteria gradually gained competitive advantages over counterparts in the SBR with a stable nitrification efficiency of 92.2 ± 2.2 %: the relative abundance of Nitrospira reached 42.9 ± 1.3 %, which was 13 times higher than that of Nitrosomonas, and the amoA gene level of comammox bacteria increased to 7.7 ± 2.1 × 106 copies/g-biomass, nearly 50 times higher than that of conventional ammonium-oxidizing bacteria. The enrichment of comammox bacteria, especially Clade A Candidatus Nitrospira nitrosa, in the floccular sludge led to (i) apparent affinity constants for ammonium and oxygen of 3.296 ± 0.989 g-N/m3 and 0.110 ± 0.004 g-O2/m3, respectively, and (ii) significantly low N2O and NO production, with emission factors being 0.136 ± 0.026 % and 0.023 ± 0.013 %, respectively.


Subject(s)
Ammonium Compounds , Sewage , Sewage/microbiology , Ammonia , Bacteria , Nitrification , Oxidation-Reduction , Oxygen , Phylogeny , Archaea
17.
Bioresour Technol ; 396: 130380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281551

ABSTRACT

In response to the challenges of limited nutrient removal and the difficulty in forming aerobic granular sludge (AGS) with low carbon to nitrogen (C/N) ratios, a novel two-stage sequencing batch reactors (SBRs) (R1 and R2) system with added iron shavings was proposed and established. The results showed that AGS was developed and nitrogen (82.8 %) and phosphorus (94.7 %) were effectively removed under a C/N ratio at 1.7 ± 0.5. The average size of R1 and R2 increased from 45.3 µm to 138.7 µm and 132.8 µm. Under high biological selective pressure, phosphorus accumulating organisms like Comamonadaceae (14.8 %) and Chitinophagales (5.7 %) experienced enrichment in R1. Furthermore, R2 exhibited an increased abundance of nitrifying bacteria (2.3 %) and a higher proportion of nitrogen removal through autotrophic denitrification (>17.5 %). Overall, this study introduces an innovative two-stage SBRs with added iron shavings, offering a novel approach for the treatment of low C/N ratios wastewater.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Waste Disposal, Fluid/methods , Nitrogen/analysis , Carbon , Aerobiosis , Bioreactors/microbiology , Phosphorus
18.
Appl Biochem Biotechnol ; 196(1): 537-557, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37155003

ABSTRACT

The technological development for efficient nutrient removal from liquid dairy manure is critical to a sustainable dairy industry. A nutrient removal process using a two-step fed sequencing batch reactor (SBR) system was developed in this study to achieve the applicability of simultaneous removal of phosphorus, nitrogen, and chemical oxygen demand from anaerobically digested liquid dairy manure (ADLDM). Three operating parameters, namely anaerobic time:aerobic time (min), anaerobic DO:aerobic DO (mg L-1), and hydraulic retention time (days), were systematically investigated and optimized using the Taguchi method and grey relational analysis for maximum removal efficiencies of total phosphorus (TP), ortho-phosphate (OP), ammonia-nitrogen (NH3-N), total nitrogen (TN), and chemical oxygen demand (COD) simultaneously. The results demonstrated that the optimal mean removal efficiencies of 91.21%, 92.63%, 91.82%, 88.61%, and 90.21% were achieved for TP, OP, NH3-N, TN, and COD at operating conditions, i.e., anaerobic:aerobic time of 90:90 min, anaerobic DO:aerobic DO of 0.4:2.4 mg L-1, and HRT of 3 days. Based on analysis of variance, the percentage contributions of these operating parameters towards the mean removal efficiencies of TP and COD were ranked in the order of anaerobic DO:aerobic DO > HRT > anaerobic time:aerobic time, while HRT was the most influential parameter for the mean removal efficiencies of OP, NH3-N, and TN followed by anaerobic time:aerobic time and anaerobic DO:aerobic DO. The optimal conditions obtained in this study are beneficial to the development of pilot and full-scale systems for simultaneous biological removal of phosphorus, nitrogen, and COD from ADLDM.


Subject(s)
Manure , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Manure/analysis , Biological Oxygen Demand Analysis , Bioreactors , Phosphorus , Phosphates , Nitrogen
19.
Sci Total Environ ; 913: 169694, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160842

ABSTRACT

In contrast to nitrification-denitrification microorganisms that convert ammonia nitrogen in hypersaline wastewater into nitrogen for discharge, this research utilizes sludge enriched with salt-tolerant assimilation bacteria (STAB) to assimilate organic matter and ammonia nitrogen in hypersaline wastewater into ectoine - a biomass with high economic value and resistance to external osmotic pressure. The study investigates the relationship between the synthesis of ectoine and nitrogen removal efficiency of STAB sludge in three sequencing batch reactors (SBR) operated at different salinities (50, 75, and 100 g/L) and organic matter concentrations. The research reveals that, under low concentration carbon sources (TOC/N = 4, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of SBR reactors increased by 14.51 % and 17.25 % within 5 d and 2 d, respectively, when salinity increased from 50 g/L to 75 g/L and 100 g/L. Under high concentration carbon sources (TOC/N = 8, NH4+-N = 60 mg/L), the ammonia nitrogen removal efficiency of STAB sludge in the three reactors stabilized at 80.20 %, 76.71 %, and 72.87 %, and the total nitrogen removal efficiency was finally stabilized at 80.47 %, 73.15 %, and 65.53 %, respectively. The nitrogen removal performance by ammonium-assimilating of STAB sludge is more sustainable under low salinity, while it is more short-term explosive under high salinity. Moreover, the intracellular ectoine concentration of STAB sludge was found to be related to this behavior. Empirical formulas confirm that STAB sludge synthesizes ectoine from nutrients in wastewater through assimilation, and intracellular ectoine has a threshold defect (150 mg/gVss). The ectoine metabolism pathways of STAB sludge was constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The ammonia nitrogen in sewage is converted into glutamic acid under the action of assimilation genes. It then undergoes a tricarboxylic acid cycle to synthesize the crucial precursor of ectoine - aspartic acid. Subsequently, ectoine is produced through ectoine synthase. The findings suggest that when the synthesis of intracellular ectoine reaches saturation, it inhibits the continuous nitrogen removal performance of STAB sludge under high salinity. STAB sludge does not actively release ectoine through channels under stable external osmotic pressure.


Subject(s)
Amino Acids, Diamino , Sewage , Wastewater , Sewage/microbiology , Ammonia/metabolism , Nitrification , Nitrogen/analysis , Bacteria/metabolism , Carbon , Bioreactors/microbiology , Denitrification
20.
Environ Res ; 238(Pt 2): 117237, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37793587

ABSTRACT

The biofilm sequencing batch reactor (BSBR) process has higher phosphate recovery efficiency and enrichment multiple when the phosphorus load is lower, but the mechanism of phosphate enrichment at low phosphorus load remains unclear. In this study, we operated two BSBR operating under low and high phosphorus load (0.012 and 0.032 kg/(m3·d)) respectively, and used metagenomic, metatranscriptomic, and proteomics methods to analyze the community structure of the phosphorus accumulating organisms (PAOs) in the biofilm, the transcription and protein expression of key functional genes and enzymes, and the metabolism of intracellular polymers. Compared with at high phosphorus load, the BSBR at low phosphorus load have different PAOs and fewer types of PAOs, but in both cases the PAOs must have the PHA, PPX, Pst, and acs genes to become dominant. Some key differences in the metabolism of PAOs from the BSBR with different phosphorus load can be identified as follows. When the phosphorus load is low, the adenosine triphosphoric acid (ATP) and NAD(P)H in the anaerobic stage come from the TCA cycle and the second half of the EMP pathway. The key genes that are upregulated include GAPDH, PGK, ENO, ppdk in the EMP pathway, actP in acetate metabolism, phnB in polyhydroxybutyrate (PHB) synthesis, and aceA, mdh, sdhA, and IDH1 in the TCA cycle. In the meantime, the ccr gene in the PHV pathway is inhibited. As a result, the metabolism of the PAOs features low glycogen with high PHB, Pupt, Prel, and low PHV. That is, more ATP and NAD(P)H flow to phosphorus enrichment metabolism, thus allowing the highly efficient enrichment of phosphorus from low concentration phosphate thanks to the higher abundance of PAOs. The current results provide theoretical support and a new technical option for the enrichment and recovery of low concentrations of phosphate from wastewater by the BSBR process.


Subject(s)
NAD , Proteomics , Phosphorus , Biofilms , Adenosine Triphosphate , Bioreactors , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...