Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
1.
J Environ Sci (China) ; 150: 297-308, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306405

ABSTRACT

Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive, hindering accurate assessment on environmental risks and effectiveness of remediation strategies. This study evaluated the feasibility of European Community Bureau of Reference (BCR) sequential extraction, Ca(NO3)2 extraction, and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime, magnesium hydroxide, corn stover biochar, and calcium dihydrogen phosphate. Moreover, the enriched isotope tracing technique (112Cd and 206Pb) was employed to evaluate the aging process of newly introduced Cd and Pb within 56 days' incubation. Results demonstrated that extractable pools by BCR and Ca(NO3)2 extraction were little impacted by amendments and showed little correlation with soil pH. This is notable because soil pH is closely linked to metal availability, indicating these extraction methods may not adequately reflect metal availability. Conversely, water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH (Pearson's r: -0.908 to -0.825, P < 0.001), suggesting water extraction as a more sensitive approach. Furthermore, newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools. Additionally, water-soluble concentrations of essential metals were impacted by soil amendments, raising caution on their potential effects on plant growth. These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability, which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies.


Subject(s)
Agriculture , Cadmium , Lead , Soil Pollutants , Soil , Soil Pollutants/analysis , Lead/analysis , Cadmium/analysis , Soil/chemistry , Agriculture/methods , Environmental Monitoring , Environmental Restoration and Remediation/methods
2.
J Agric Food Chem ; 72(39): 21475-21487, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354851

ABSTRACT

The effect of humic acid extracted from peat (AHt) on improving the struvite (STR) fertilizing efficiency is explored. To this end, a soil incubation study is correlated to plant assays comparing STR, STR-AHt, and superphosphate (SSP). Characterization techniques confirm the incorporation of the AHt into the STR. The P-pool distribution of STR and SSP is similar in the soil incubation, with STR-AHt presenting a higher labile P at 90 days passing from 10 to 15% P from SSP and STR to 25% P with STR-AHt. However, when applied to barley and tomato, STR yields more shoot P content, aboveground biomass, and residual P in soil than SSP. STR-AHt does not improve the STR results. The poor correlation observed between soil incubation and plant trials highlights the role of the rhizosphere in testing the fertilizer efficiency of STR. Mechanistic assays indicate the key role of rhizosphere pH. Finally, molecular modeling reveals a higher stabilization of STR with AHt, which could reduce P release decreasing the fertilizing potential of STR-AHt, as observed in the pot trials.


Subject(s)
Fertilizers , Humic Substances , Phosphates , Soil , Solanum lycopersicum , Struvite , Fertilizers/analysis , Soil/chemistry , Humic Substances/analysis , Struvite/chemistry , Phosphates/chemistry , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Hordeum/chemistry , Hordeum/growth & development , Hordeum/metabolism , Hydrogen-Ion Concentration , Phosphorus/chemistry , Phosphorus/analysis , Phosphorus/metabolism , Rhizosphere , Biomass
3.
Sci Total Environ ; 954: 176403, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304150

ABSTRACT

Pedogenesis entails profound changes in terrestrial phosphorus (P) dynamics, yet means to understand how time- and climate-induced soil weathering impacts P-cycling over geologic timescales remain relatively limited to space-for-time substitution approaches with multi-site chronosequences. We tested an alternative approach for evaluating terrestrial P dynamics described by the Walker-Syers model by measuring P pools in a ~ 450 ka loess-paleosol sequence. This vertical chronosequence reflects episodic proglacial loess deposition during multiple glaciations and interglacial soil development in central North America in a four-stage loess-paleosol sequence that initiated with the pre-Illinois Episode glaciation. Changes in P pools estimated by sequential fractionation aligned with the Walker-Syers P model for interglacial periods but not glacial periods, possibly reflecting limited soil weathering in cooler and drier conditions of the latter. Total P decreased from 797 to 328 mg/kg with depth and was higher in paleosols than underlying loess parent materials. During glacial periods, primary P increased due to loess deposition and decreased during interglacial periods concomitantly with increased non-occluded and occluded secondary P pools, the extent of which reflected differences in weathering environments of paleoclimatic conditions and loess accumulation rates. That P fractions reflected the Walker-Syers model demonstrates that single-site vertical chronosequences have potential for evaluating long-term soil P dynamics.

4.
Int J Biol Macromol ; 280(Pt 2): 135632, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299435

ABSTRACT

Natural compounds promoting human health are the main focus of research nowadays. Fucoxanthin, fucoidan and alginate are such bioactive compounds that are extracted from marine brown algae. Extracting these 3 compounds through successive extraction enhances the commercial value of the brown algae biomass. There are studies on successive extraction of fucoidan and alginate but not with fucoxanthin which displays various biological bioactivities. Alginate, a polysaccharide presents 45 % in the cell wall of brown algae. Fucoidan, a sulphated polysaccharide proved showing various bioactivities. These bioproducts yield are vary depending on the species. Dictyota species recorded high fucoxanthin content of 7 %. Ascophyllum nodosum was found with high fucoidan of 16.08 % by direct extraction. Maximum alginate of 45.79 % was recorded from the brown alga Sargassum cymosum and by successive extraction 44 % was recorded from Ecklonia radiata. Fucoxanthin exits in two isomers as trans and cis forms. Based on linkage, fucoidan structure is found in 3 forms as 1,3- or 1,4- or alternating 1,3- and 1,4-linked fucose in the polysaccharide residues. Fucoidan composition varys depending on the degree of sulphation, composition of monosaccharides and location of collection. In alginate, its property relies on the mannuronic acid and guluronic acid composition. Biosynthesis of these 3 compounds is not much explored. Keeping this view which signify sequential extraction towards biomass valorisation, fucoxanthin, fucoidan and alginate extracted from the brown algae species focusing yield, extraction, characterisation, biosynthesis and biological activities were compiled and critically analysed and discussed in this review.

5.
J Hazard Mater ; 480: 135864, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39298968

ABSTRACT

The distribution characteristics of Cr(VI) species in contaminated soil is crucial for soil remediation; however, there is currently a lack of methods for analysing anionic Cr(VI) species in soil. This study has developed a novel sequential extraction method for speciation of Cr(VI) and Cr(III). Besides extraction experiments, simulated chromium species were prepared to verify the presence of proposed chromium species. The results show that Cr(VI) species in soil can be categorized into water-soluble Cr(VI), electrostatically adsorbed Cr(VI), Cr(VI) specifically adsorbed by minerals containing exchangeable Ca2+, Cr(VI) specifically adsorbed by hydrous metal oxides, calcium chromate Cr(VI) and stable complexed adsorption Cr(VI). These Cr(VI) species can be selectively extracted by specific solutions through ion exchange or weak acid dissolution. The most stable Cr(VI) species is Cr(VI) complexed by hydrous iron oxides through bidentate ligand binding; only by dissolution of hydrous iron oxides can this Cr(VI) species be leached. The distribution of Cr(VI) species is closely linked to particular soil compositions including exchangeable Ca2+ and hydrous iron oxides which determinate the Cr(VI) adsorption in soil. Cr(III) species comprise Fe-Cr coprecipitate hydroxides Cr(III), Fe-Mn oxide-bound Cr(III), organic matter-bound Cr(III) and residual Cr(III). Their distribution depends on the types of reductants present in the soil.

6.
Huan Jing Ke Xue ; 45(7): 4266-4278, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022972

ABSTRACT

Antimony (Sb) is a major pollutant that poses a serious threat to the environment in the mining and processing of nonferrous metals, coexisting with sulfide and oxide of arsenic (As). Microorganisms play an important role in the migration, transformation, and repair of metals in soil. The ecological effects of bioavailable Sb and As on the microbial community in antimony mining areas(mining and smelting areas)are still poorly understood. The Wenzel method and high-throughput 16S rDNA amplicon were used to characterize soil pollution characteristics in different functional areas, and the relationship between the bacterial community and bioavailable concentrations have been investigated comprehensively. The results showed that: Chemical speciation of Sb and As were amorphous, and poorly crystalline hydrous oxides of Fe and Al (F3) > well-crystallized hydrous oxides of Fe and Al (F4) > residual phases (F5) > specifically adsorbed (F2) > non-specifically adsorbed (F1). According to the estimation of the potential ecological risk index (RI) and geo-accumulation index (Igeo), the Sb pollution degree was: smelting area > mining area > contrast area, in which the smelting area showed serious pollution, and the mining area showed moderate to severe pollution. The As pollution degree was: mining area > smelting area > contrast area, in which the mining area and smelting area showed moderate to severe pollution. High-throughput 16S rDNA amplicon showed that Proteobacteria was the most abundant phylum in mining and smelting areas; Kaistobacter, Pseudomonas, Sphingomonas, and Lysobacter were the most abundant microbial genera; Geobacter and Luteolibacter had a high LDA score in mining areas; and Thiobacillus had a high LDA score in antimony-contaminated areas. Spearman correlation analysis, variation partitioning analysis (VPA), and random forest (RF) analysis showed that Sb, As, bioavailable antimony [Sb (Bio)], and bioavailable arsenic [As (Bio)]were the main factors affecting the microbial community structure in different functional areas of antimony ore. Redundancy analysis (RDA) indicated that Sb and its bioavailable concentrations showed uniformly negative associations with the relative abundance of bacteria Nitrospirae and showed a significant positive correlation with Thiobacillus (P<0.05). The in-depth research on the ecological effects of bioavailable Sb and As on the bacterial community provides references and new perspectives for environmental monitoring and management.


Subject(s)
Antimony , Arsenic , Environmental Monitoring , Mining , Soil Microbiology , Soil Pollutants , China , Soil Pollutants/analysis , Bacteria/classification , Bacteria/genetics
7.
Environ Geochem Health ; 46(9): 348, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073658

ABSTRACT

The present study aimed to assess trace metal speciation trends in the water and sediments of Mazowe Dam, a typical sub-tropical dam ecosystem impacted by gold mining and agriculture in Zimbabwe. The elements studied include Al, As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, and Zn. Elemental speciation in the water column was determined using Visual MINTEQ version 3.1 geochemical computer modelling, while speciation in the sediment phase was determined using sequential extraction techniques. For each element, the data obtained were subjected to extensive correlation analysis to identify intra- and inter-metal species interactions in the water column and the sediment phase, as well as across the water-sediment interface. Possible mechanisms to account for the observed species interactions are proposed. In the water column, Co was predicted to have the highest number of chemical species (9), Cd and Zn (8), Mn and Fe (7), Ni (6), Pb (5), Al and Cu (3), Cr, Hg, and As have the least (2). In the sediment, Al, As, Co, Cr, Cu, Fe, Ni and Fe mainly exist in the residual fraction, while Zn and Mn concentrations in fractions vary per sampling site, with no fraction that is dominant across the sampling sites. Equilibrium exchange reactions across the water-sediment interface were observed e.g., for Cd species /FA2Cd (aq) and Co species /FACo+2G (aq), and /FA2Co (aq). This study is valuable in highlighting trace metal speciation in a tropical dam ecosystem in Africa and adds to the growing knowledge about the behaviour of trace metals in aquatic ecosystems in the region and globally.


Subject(s)
Agriculture , Ecosystem , Environmental Monitoring , Geologic Sediments , Gold , Mining , Water Pollutants, Chemical , Zimbabwe , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Environmental Monitoring/methods , Metals, Heavy/analysis , Trace Elements/analysis , Metals/analysis
8.
Environ Sci Technol ; 58(39): 17283-17294, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39066705

ABSTRACT

Biogeochemical processes of atmospherically deposited cadmium (Cd) in soils and accumulation in rice were investigated through a three-year fully factorial atmospheric exposure experiment using Cd stable isotopes and diffusive gradients in thin films (DGT). Our results showed that approximately 37-79% of Cd in rice grains was contributed by atmospheric deposition through root and foliar uptake during the rice growing season, while the deposited Cd accounted for a small proportion of the soil pools. The highly bioavailable metals in atmospheric deposition significantly increased the soil DGT-measured bioavailable fraction; yet, this fraction rapidly aged following a first-order exponential decay model, leading to similar percentages of the bioavailable fraction in soils exposed for 1-3 years. The enrichment of light Cd isotopes in the atmospheric deposition resulted in a significant shift toward lighter Cd isotopes in rice plants. Using a modified isotopic mass balance model, foliar and root uptake of deposited Cd accounted for 47-51% and 28-36% in leaves, 41-45% and 22-30% in stems, and 45-49% and 26-30% in grains, respectively. The implications of this study are that new atmospheric deposition disproportionately contributes to the uptake of Cd in rice, and managing emissions thus becomes very important versus remediation of impacted soils.


Subject(s)
Cadmium , Oryza , Soil Pollutants , Soil , Oryza/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Isotopes
9.
Food Chem ; 458: 140225, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38970951

ABSTRACT

Solid Phase Microextraction (SPME) is a commonly used, robust method for characterization of aroma profiles in food matrices. However, challenges such as saturation, swelling, and competition can occur when sampling such complex matrices, resulting in decreased accuracy in the quantitation of polar compounds. In this study, sequential thin film micro-extraction (TFME) was employed to study the aroma profile of sparkling wine, with a focus to evaluate the displacement of polar analytes at extraction times longer than their corresponding equilibrium time. This investigation also describes advancements in the production of TFME devices, specifically the overcoating of hydrophilic-lipophilic balance/polydimethylsiloxane (HLB/PDMS) thin films to increase their matrix compatibility. Sequential thin film micro-extraction and overcoated HLB/PDMS thin films were evaluated for characterization of sparkling wine samples. The results were encouraging, showing that these advancements can decrease competition phenomena and increase the calibration linearity range compared to traditional micro-extraction approaches more commonly used for the characterization of such samples. In addition, multiphase equilibria investigation involving micellar systems enabled by the microextraction technology provides better understanding between wine aroma and its composition.


Subject(s)
Odorants , Solid Phase Microextraction , Wine , Wine/analysis , Solid Phase Microextraction/instrumentation , Solid Phase Microextraction/methods , Odorants/analysis , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Gas Chromatography-Mass Spectrometry , Dimethylpolysiloxanes/chemistry
10.
J Environ Manage ; 366: 121788, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013315

ABSTRACT

Considering the significant impact of potentially toxic elements (PTEs) on the ecosystem and human health, this paper, investigated the contamination level of four PTEs (Zn, Cu, Mo and Pb) and their mobility in sediments of Mahabad dam and river. Choosing the most effective machine learning algorithms is very important in accurately predicting bioavailability of PTEs. Therefore, four machine learning (ML) models including decision tree regression (DTR), random forest regression (RFR), multi-layer perceptron regression (MLPR) and support vector regression (SVR), were used and compared for estimating the selected PTEs bioavailability. For these models, 9 variables (total concentration, pH, EC, OM and five chemical forms F1 to F5 obtained by sequential extraction) in 100 sediment samples were considered. The results showed that contamination level decreases from Zn and Cu to Pb and Mo, but the order of the mobility coefficient of the elements in the sediment follows the trend of zinc > copper > molybdenum > lead, and variation coefficient indicated more variability of spatial distribution for Zn and Cu. Among the four tested models, DTR and RFR performed the best for predicting PTEs bioavailability variations (with roc_auc>0.9, R2 > 0.8 and MSE>0.5), followed by MLPR and SVR. Furthermore, the relevance of the factors controlling the metals availability, evaluated using the RFR-based feature importance method and Pearson correlation, revealed that the most important physicochemical property for Zn, Cu and Mo bioavailability was pH, whereas for Pb, EC was the determinant factor. In the case of chemical speciation, F5 had an inverse correlation with the target, while F1 and F2 had a direct correlation. These fractions contributed significantly to the prediction results. This study represents the potential successful application of ML to PTEs risk control in sediments and early warning for the surrounding water PTEs contamination.


Subject(s)
Geologic Sediments , Machine Learning , Rivers , Rivers/chemistry , Geologic Sediments/chemistry , Geologic Sediments/analysis , Iran , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Biological Availability
11.
Water Sci Technol ; 89(10): 2812-2822, 2024 May.
Article in English | MEDLINE | ID: mdl-38822616

ABSTRACT

The sequential extraction routes of biogenic materials from sewage sludge (SS) were investigated. Physical methods (ultrasound, heating) and chemical methods (sodium hydroxide, sodium carbonate) were used to extract extracellular polymeric substances (EPS) and alginate-like extracellular polymers (ALEs) from SS. The residues after extraction were further subjected to physical methods (heating) and chemical methods (sulfuric acid, sodium hydroxide) for protein extraction. A comparison was made between sequential extraction routes and direct extraction of biomaterials from sludge in terms of extraction quantity, material properties, and applicability. The results showed that sequential extraction of biomaterials is feasible. The highest extraction quantities were obtained when using sodium carbonate for EPS and ALE extraction and sodium hydroxide for protein, reaching 449.80 mg/gVSS, 109.78 mg/gVSS, and 5447.08 mg/L, respectively. Sequential extraction procedures facilitate the extraction of biomaterials. Finally, suitable extraction methods for different application scenarios were analyzed.


Subject(s)
Sewage , Sewage/chemistry , Sodium Hydroxide/chemistry , Chemical Fractionation/methods , Carbonates/chemistry , Feasibility Studies
12.
J Environ Manage ; 365: 121247, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909573

ABSTRACT

Clarifying the occurrence and morphological characteristics of petroleum hydrocarbons (PHs) in soil can facilitate a comprehensive understanding of their migration and transformation patterns in soil/sediment. Additionally, by establishing the dynamic transformation process of each occurrence state, the ecological impact and environmental risk associated with PHs in soil/sediment can be assessed more precisely. The adsorption experiments and closed static incubation experiments was carried out to explore the PHs degradation and fraction distribution in aged contaminated soil under two remediation scenarios of natural attenuation (NA) and bioaugmentation (BA) by exogenous bacteria through a new sequential extraction method based on Tenax-TA, Hydroxypropyl-ß-cyclodextrin and Rhamnolipid (HPCD/RL), accelerated solvent extractor (ASE) unit and alkaline hydrolysis extraction. The adsorption experiment results illustrated that bioaugmentation could promote the desorption of PHs in the adsorption phase, and the soil-water partition coefficient Kd decreased from 0.153 L/g to 0.092 L/g. The incubation experiment results showed that compared with natural attenuation, bioaugmentation could improve the utilization of PHs in aged soil and promote the generation of non-extractable hydrocarbons. On the 90th day of the experiment, the concentrations of weakly adsorbed hydrocarbons in the natural attenuation and bioaugmentation experimental groups decreased by 46.44% and 87.07%, respectively, while the concentrations of strongly adsorbed hydrocarbons and non-extractable hydrocarbons increased by 77.93%, 182.14%, and 80.91%, and 501.19%, respectively, compared their initial values. We developed a novel dynamic model and inverted the kinetic parameters of the model by the parameter scanning function and the Markov Chain Monte Carlo (MCMC) method based on the Bayesian approach in COMSOL Multiphysics® finite element software combined with experimental data. There was a good linear relationship between experimental interpolation data and model prediction data. The R2 for the concentrations of weakly adsorbed hydrocarbons ranged from 0.9953 to 0.9974, for strongly adsorbed hydrocarbons from 0.9063 to 0.9756, and for non-extractable hydrocarbons from 0.9931 to 0.9982. These extremely high correlation coefficients demonstrate the high accuracy of the parameters calculated using the Bayesian inversion method.


Subject(s)
Biodegradation, Environmental , Hydrocarbons , Petroleum , Soil Pollutants , Soil , Soil Pollutants/metabolism , Petroleum/metabolism , Hydrocarbons/metabolism , Soil/chemistry , Adsorption , Glycolipids
13.
Int J Biol Macromol ; 268(Pt 2): 132014, 2024 May.
Article in English | MEDLINE | ID: mdl-38697443

ABSTRACT

Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS). Comprehensive analysis revealed low methyl-esterification in all fractions. LP-SA and LP-SS displayed characteristics of rhamnogalacturonan-I type pectin, while LP-EDTA mainly consisted of homogalacturonan pectin. Notably, LP-SA formed self-aggregated particles with rough surfaces, LP-EDTA showed interlocking linear structures with smooth planes, and LP-SS exhibited branch chain structures with smooth surfaces. Bioactivity analysis indicated that LP-SA had significant apparent viscosity and ABTS radical scavenging activity, while both LP-EDTA and LP-SS showed excellent thermal stability according to thermogravimetric analysis (TGA). Furthermore, LP-SS exhibited remarkable gel-forming ability and significant hydroxyl free radicals scavenging activity. In conclusion, this study presents a novel method for extracting various lemon pectin fractions with unique structural and bioactive properties, contributing insights for advanced applications in the food and pharmaceutical sectors.


Subject(s)
Antioxidants , Citrus , Pectins , Pectins/chemistry , Pectins/isolation & purification , Citrus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Chemical Phenomena , Viscosity , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
J Hazard Mater ; 473: 134712, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795492

ABSTRACT

Mercury (Hg) emitted from East Asian has increased the risk of Hg in China Marginal Seas for decades. However, the speciation of Hg (especially the bioavailable Hg) in these regions remains unclear. To address this problem, we analyzed total Hg (THg) and methylmercury (MeHg) in the sediment and porewater of Yellow sea (YS) and East China Sea (ECS) and determined the speciation of Hg using both improved BCR sequential extraction and isotope dilution (ID) techniques. Nearshore areas of YS and ECS exhibited higher THg levels in sediments and porewater, suggesting the significant contribution of terrestrial inputs. The spatial distribution of MeHg showed similar trends with THg, but the sites with higher MeHg concentrations did not align with those of THg. The improved BCR sequential extraction method showed the residual fraction dominated Hg content (∼44 %) in both systems, with a minor bioavailable carbonate fraction (1 %). The Spearman correlation analysis indicates that Eh and pH are the two factors significantly affected Hg bioavailability in the sediment. The bioavailability of Hg (estimated by the BCR method) showed a significant positive correlation with MeHg levels in the sediment (R²=0.47, P < 0.05), suggesting that BCR can be used to estimate the potential of Hg methylation in the sediment. However, the extent of bioavailable Hg in BCR and ID method were 1.15 ± 0.38 % and 29.5 ± 14.8 %, respectively, implying that Hg bioavailability may be underestimated by BCR techniques compared to ID methods (T-test, P < 0.01).


Subject(s)
Geologic Sediments , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Geologic Sediments/chemistry , Mercury/analysis , China , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Biological Availability , Oceans and Seas
15.
Environ Geochem Health ; 46(6): 207, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767770

ABSTRACT

This study is on the outskirts of the rapidly growing city of Jaipur, located in the semiarid region of India and gateway to the 'Great Indian Thar' desert, and focused on potentially toxic elements (PTE) pollution in the farmlands around the city. Concentrations of PTE, along with associated soil parameters such as pH, available nitrogen, organic carbon, phosphorus, and potassium, were estimated in agricultural soil samples near an industrial region on the outskirts of the capital city of the largest state of India. The PTE concentrations in the soil were in the following order: Mn > Pb > Ni > Cr > Cu > Cd. Soil pollution indices, such as the geochemical accumulation index (Igeo), contamination factor (CF), and ecological risk index (ERI), indicated that the soil was moderately to highly polluted. The result of BCR extraction techniques showed Cd is found mainly in the exchangeable and residual fractions, Pb, Mn were found in the reducible as well as residual fractions, while other PTE were mostly bound to residual fraction. All other PTEs are primarily found in the residual fraction, tightly linked with the silicate lattice of soil minerals. Multivariate analysis and the Pearson correlation matrix indicate a common source apportionment for Pb and Cd. Cd, and Pb concentrations in agricultural soil indicate ecological harm that warrants immediate attention and policy-level intervention.


Subject(s)
Agriculture , Environmental Monitoring , Metals, Heavy , Soil Pollutants , Soil , India , Soil Pollutants/analysis , Risk Assessment , Environmental Monitoring/methods , Metals, Heavy/analysis , Soil/chemistry , Cities
16.
Environ Sci Technol ; 58(23): 10095-10107, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38805386

ABSTRACT

Land use change from native vegetation to cropping can significantly affect the quantity and quality of soil organic matter (SOM). However, it remains unclear how the chemical composition of SOM is affected by such changes. This study employed a sequential chemical extraction to partition SOM from an Oxisol into several distinct fractions: water-soluble fractions (ultrapure water (W)), organometal complexes (sodium pyrophosphate (PP)), short-range ordered (SRO) oxides (hydroxylamine-HCl (HH)), and well-crystalline oxides (dithionite-HCl (DH)). Coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), the impact of land use change on the molecular composition of different OM fractions was investigated. Greater amounts of OM were observed in the PP and HH fractions compared to other fractions, highlighting their importance in SOM stabilization. The composition of different OM fractions varied based on extracted phases, with lignin-like and tannin-like compounds being prevalent in the PP and HH fractions, while aliphatic-like compounds dominated in the DH fraction. Despite changes in the concentration of each OM fraction from native vegetation to cropping, there was little influence of land use change on the molecular composition of OM associated with different mineral phases. No significant selective loss or preservation of organic carbon compounds was observed, indicating the composition of SOM remained unchanged.


Subject(s)
Soil , Soil/chemistry , Organic Chemicals/analysis
17.
Environ Sci Pollut Res Int ; 31(25): 37444-37464, 2024 May.
Article in English | MEDLINE | ID: mdl-38776023

ABSTRACT

Phosphorus (P), a crucial macronutrient, is essential in the maintenance of ecosystem productivity and the biogeochemical processes of other biogenic substances found in marine settings. The aim of the present study is to quantify the different geochemical fractions, bioavailability, and ecological risk of phosphorus in surface and core sediment of mangroves, Gulf of Kachchh (GoK). To better understand the P dynamics, sequential chemical extraction techniques were used to study sediment P pool distribution such as exchangeable P; Fe-bound P; authigenic P; detrital P; and organic P. The total sedimentary P ranged from 539.51 to 7217.24 mg/kg in pre-monsoon and 487.04 to 7180.26 mg/kg in post-monsoon, and was primarily composed of inorganic P. Authigenic P and Fe-bound P were the dominant fractions of P in surface and core sediments, exhibiting a significant long-term P reservoir. Sources such as riverine inputs, industrial and sewage discharge, aquaculture farms, and seaport operations all have an impact on the P dynamics in GoK. Furthermore, organic matter, pH, ORP, and diagenetic processes in sedimentary environment have influenced P retention and release. FeBD:Fe-P ratio indicates the presence of Fe matrices, having strong adsorption potential for P, with the availability of a surplus of Fe(III) (oxy)hydroxides serving as a significant P pool, governing the P dynamics. The P enrichment index (PEI) showed that sediments were highly impacted by anthropogenic P and could cause a high ecological risk. Bioavailable phosphorus (BAP) suggests the availability of an ample amount of bioavailable P fractions (average of 49.70% post-monsoon and 44.64% post-monsoon) in surface sediments. Sites 3, 13, 14, 20, 21, and 26 exhibited considerably higher BAP. Core 1 comprised significantly higher BAP (60.52%). Thus, sediments of GoK could act as a source of P to the overlying water if released from sediments.


Subject(s)
Environmental Monitoring , Geologic Sediments , Phosphorus , Water Pollutants, Chemical , Phosphorus/analysis , Geologic Sediments/chemistry , India , Water Pollutants, Chemical/analysis , Wetlands , Biological Availability
18.
Toxics ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787105

ABSTRACT

Artisanal small-scale gold mining (ASGM), an increasingly prevalent activity in South America, generates mercury-contaminated tailings that are often disposed of in the environment, leading to the introduction of mercury into ecosystems and the food web, where it bioaccumulates. Therefore, studying the geochemical processes involved in the desorption and dissolution of mercury in these tailings is essential for critical risk evaluations in the short and long term. For this purpose, sequential extraction procedures (SEPs) can be useful because they help to identify the phases to which Hg is associated, although they also have limitations such as a lack of selectivity and specificity. In this work, we propose a modified four-step SEP: exchangeable mercury (F1), oxidizable mercury (F2), mercury bound to Fe oxides (F3), and strongly bound mercury (F4). To test this adapted sequential extraction method, we evaluated the Hg contamination in mercury-contaminated tailings of the Amazon basin. The results revealed a total mercury concentration of 103 ± 16 mg·kg-1 in the tailings, with a significant portion in F1 (28% of the total), where Hg was bioavailable. The large Hg concentration in F3 (36%) suggested that Fe oxides likely contribute to mercury retention. Together, the SEP results emphasize the urgent need for improved surveillance of gold mining activities and responsible tailings management practices to mitigate environmental contamination and safeguard the health of the Amazon ecosystem.

19.
Int J Biol Macromol ; 271(Pt 1): 132489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777004

ABSTRACT

Rice husks are a low value byproduct, even though it possesses molecules with great potential, such as arabinoxylans, proteins, and silica. These molecules can be used to improve mechanical and physicochemical properties of materials for food packaging. In this work, hydrothermal treatment was used for a sustainable extraction of the valuable molecules present in rice husks. Various extraction temperatures (180, 200, and 220 °C) were performed targeting to extract fractions with distinct compositions. The water extract obtained at 220 °C demonstrated the highest extraction yield, 3 times superior to conventional hot water extraction. These extracts exhibited high content of proteins, phenolic compounds, and carbohydrates, particularly arabinoxylans. This extract was incorporated in chitosan-based films in different ratios, 1:0.1, 1:0.3, and 1:0.5 (chitosan:extract, w:v). The film with the lowest extract ratio presented the highest flexibility (higher elongation and lower Young's modulus) when compared to the pristine chitosan film. The antioxidant capacity was also increased, achieving an antioxidant capacity of >10-fold in comparison to control film. The results revealed that hydrothermal extraction emerges as an environmentally friendly and sustainable methodology for extracting valuable compounds from rice industry byproducts. This method exhibits significant potential to impart flexible and antioxidant properties to biobased materials.


Subject(s)
Antioxidants , Chitosan , Oryza , Oryza/chemistry , Chitosan/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Phenols/chemistry , Phenols/isolation & purification , Water/chemistry , Temperature , Plant Extracts/chemistry , Chemical Fractionation/methods
20.
Environ Monit Assess ; 196(5): 448, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607467

ABSTRACT

Soil in mining wastelands is seriously polluted with heavy metals. Zero-valent iron (ZVI) is widely used for remediation of heavy metal-polluted soil because of its excellent adsorption properties; however, the remediation process is affected by complex environmental conditions, such as acid rain and freeze-thaw cycles. In this study, the effects of different pH values and freeze-thaw cycles on remediation of antimony (Sb)- and arsenic (As)-contaminated soil by ZVI were investigated in laboratory simulation experiments. The stability and potential human health risks associated with the remediated soil were evaluated. The results showed that ZVI has a significant stabilizing effect on Sb and As in both acidic and alkaline soils contaminated with dual levels of Sb and As, and the freeze-thaw process in different pH value solution systems further enhances the ability of ZVI to stabilize Sb and As, especially in acidic soils. However, it should be noted that apart from the pH=1.0 solution environment, ZVI's ability to stabilize As is attenuated under other circumstances, potentially leading to leaching of its unstable form and thereby increasing contamination risks. This indicates that the F1 (2% ZVI+pH=1 solution+freeze-thaw cycle) processing exhibits superior effectiveness. After F1 treatment, the bioavailability of Sb and As in both soils also significantly decreased during the gastric and intestinal stages (about 60.00%), the non-carcinogenic and carcinogenic risks of Sb and As in alkaline soils are eliminated for children and adults, with a decrease ranging from 60.00% to 70.00%, while in acidic soil, the non-carcinogenic and carcinogenic risks of As to adults and children is acceptable, but Sb still poses non-carcinogenic risks to children, despite reductions of about 65.00%. These findings demonstrate that soil pH is a crucial factor influencing the efficacy of ZVI in stabilizing Sb and As contaminants during freeze-thaw cycles. This provides a solid theoretical foundation for utilizing ZVI in the remediation of Sb- and As-contaminated soils, emphasizing the significance of considering both pH levels and freeze-thaw conditions to ensure effective and safe treatment.


Subject(s)
Antimony , Arsenic , Humans , Adult , Child , Iron , Environmental Monitoring , Risk Assessment , Soil , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL