Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cell Rep Methods ; 4(3): 100720, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38452770

ABSTRACT

Serial sectioning electron microscopy (EM) of millimeter-scale three-dimensional (3D) anatomical volumes requires the collection of thousands of ultrathin sections. Here, we report a high-throughput automated approach, GAUSS-EM (guided accumulation of ultrathin serial sections-EM), utilizing a static magnetic field to collect and densely pack thousands of sections onto individual silicon wafers. The method is capable of sectioning hundreds of microns of tissue per day at section thicknesses down to 35 nm. Relative to other automated volume EM approaches, GAUSS-EM democratizes the ability to collect large 3D EM volumes because it is simple and inexpensive to implement. We present two exemplar EM volumes of a zebrafish eye and mouse olfactory bulb collected with the method.


Subject(s)
Volume Electron Microscopy , Zebrafish , Animals , Mice , Microscopy, Electron , Silicon
2.
Bio Protoc ; 14(4): e4940, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405077

ABSTRACT

Mechanosensory organelles (MOs) are specialized subcellular entities where force-sensitive channels and supporting structures (e.g., microtubule cytoskeleton) are organized in an orderly manner. The delicate structure of MOs needs to be resolved to understand the mechanisms by which they detect forces and how they are formed. Here, we describe a protocol that allows obtaining detailed information about the nanoscopic ultrastructure of fly MOs by using serial section electron tomography (SS-ET). To preserve fine structural details, the tissues are cryo-immobilized using a high-pressure freezer followed by freeze-substitution at low temperature and embedding in resin at room temperature. Then, sample sections are prepared and used to acquire the dual-axis tilt series images, which are further processed for tomographic reconstruction. Finally, tomograms of consecutive sections are combined into a single larger volume using microtubules as fiducial markers. Using this protocol, we managed to reconstruct the sensory organelles, which provide novel molecular insights as to how fly mechanosensory organelles work and are formed. Based on our experience, we think that, with minimal modifications, this protocol can be adapted to a wide range of applications using different cell and tissue samples. Key features • Resolving the high-resolution 3D ultrastructure of subcellular organelles using serial section electron tomography (SS-ET). • Compared with single-axis tilt series, dual-axis tilt series provides a much wider coverage of Fourier space, improving resolution and features in the reconstructed tomograms. • The use of high-pressure freezing and freeze-substitution maximally preserves the fine structural details.

3.
Cancer Sci ; 115(4): 1029-1038, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316137

ABSTRACT

Here, we summarize the literature relevant to recent advances in three-dimensional (3D) histopathology in relation to clinical oncology, highlighting serial sectioning, tissue clearing, light-sheet microscopy, and digital image analysis with artificial intelligence. We look forward to a future where 3D histopathology expands our understanding of human pathophysiology and improves patient care through cross-disciplinary collaboration and innovation.


Subject(s)
Artificial Intelligence , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods
4.
Ultramicroscopy ; 257: 113903, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101083

ABSTRACT

Tri-beam microscopes comprising a fs-laser beam, a Xe+ plasma focused ion beam (PFIB) and an electron beam all in one chamber open up exciting opportunities for site-specific correlative microscopy. They offer the possibility of rapid ablation and material removal by fs-laser, subsequent polishing by Xe-PFIB milling and electron imaging of the same area. While tri-beam systems are capable of probing large (mm) volumes providing high resolution microscopical characterisation of 2D and 3D images across exceptionally wide range of materials and biomaterials applications, presenting high quality/low damage surfaces to the electron beam can present a significant challenge, especially given the large parameter space for optimisation. Here the optimal conditions and artefacts associated with large scale volume milling, mini test piece manufacture, serial sectioning and surface polishing are investigated, both in terms of surface roughness and surface quality for metallic, ceramic, mixed complex phase, carbonaceous, and biological materials. This provides a good starting place for those wishing to examine large areas or volumes by tri-beam microscopy across a range of materials.

5.
Bio Protoc ; 13(20): e4849, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37900106

ABSTRACT

For the analysis of cellular architecture during mitosis, nanometer resolution is needed to visualize the organization of microtubules in spindles. Here, we present a detailed protocol that can be used to produce 3D reconstructions of whole mitotic spindles in cells grown in culture. For this, we attach mammalian cells enriched in mitotic stages to sapphire discs. Our protocol further involves cryo-immobilization by high-pressure freezing, freeze-substitution, and resin embedding. We then use fluorescence light microscopy to stage select mitotic cells in the resin-embedded samples. This is followed by large-scale electron tomography to reconstruct the selected and staged mitotic spindles in 3D. The generated and stitched electron tomograms are then used to semi-automatically segment the microtubules for subsequent quantitative analysis of spindle organization. Thus, by providing a detailed correlative light and electron microscopy (CLEM) approach, we give cell biologists a toolset to streamline the 3D visualization and analysis of spindle microtubules (http://kiewisz.shinyapps.io/asga). In addition, we refer to a recently launched platform that allows for an interactive display of the 3D-reconstructed mitotic spindles (https://cfci.shinyapps.io/ASGA_3DViewer/). Key features • High-throughput screening of mitotic cells by correlative light and electron microscopy (CLEM). • Serial-section electron tomography of selected cells. • Visualization of mitotic spindles in 3D and quantitative analysis of microtubule organization.

6.
J Fish Biol ; 103(1): 118-129, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37185985

ABSTRACT

Isotopic, tagging and diet studies of modern-day teleosts lacked the ability to contextualise life-history and trophic dynamics with a historical perspective, when exploitation rates were lower and climatic conditions differed. Isotopic analysis of vertebrae, the most plentiful hard-part in archaeological and museum collections, can potentially fill this data-gap. Chemical signatures of habitat and diet use during growth are retained by vertebrae during bone formation. Nonetheless, to fulfil their potential to reveal life-history and trophic dynamics, we need a better understanding of the time frame recorded by vertebrae, currently lacking due to a poor understanding of fish bone remodelling. To address this issue, the authors serially-sectioned four vertebral centra of the highly migratory Atlantic bluefin tuna (Thunnus thynnus; BFT) captured off Sardinia (Italy) and analysed their isotopic composition. They show how carbon (δ13 C), nitrogen (δ15 N) and sulphur (δ34 S) isotope values can vary significantly across BFT vertebrae growth-axes, revealing patterning in dietary life histories. Further, they find that similar patterns are revealed through incremental isotopic analysis of inner and outer vertebrae centra samples from 13 archaeological BFT vertebrae dating between the 9th and13th centuries CE. The results indicate that multi-year foraging signatures are retained in vertebrae and allow for the study of life histories in both modern and paleo-environments. These novel methods can be extended across teleost taxa owing to their potential to inform management and conservation on how teleost trophic dynamics change over time and what their long-term environmental, ecological and anthropological drivers are.


Subject(s)
Ecosystem , Tuna , Animals , Isotopes , Nutritional Status , Spine
7.
Microsc Microanal ; : 1-16, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36268627

ABSTRACT

The three-dimensional characterization of internal features, via metrics such as orientation, porosity, and connectivity, is important to a wide variety of scientific questions. Many spatial and morphological metrics only can be measured accurately through direct in situ three-dimensional observations of large (i.e., big enough to be statistically representative) volumes. For samples that lack material contrast between phases, serial grinding and imaging­which relies solely on color and textural characteristics to differentiate features­is a viable option for extracting such information. Here, we present the Grinding, Imaging, Reconstruction Instrument (GIRI), which automatically serially grinds and photographs centimeter-scale samples at micron resolution. Although the technique is destructive, GIRI produces an archival digital image stack. This digital image stack is run through a supervised machine-learning-based image processing technique that quickly and accurately segments data into predefined classes. These classified data then can be loaded into three-dimensional visualization software for measurement. We share three case studies to illustrate how GIRI can address questions with a significant morphological component for which two-dimensional or small-volume three-dimensional measurements are inadequate. The analyzed metrics include: the morphologies of objects and pores in a granular material, the bulk mineralogy of polyminerallic solids, and measurements of the internal angles and symmetry of crystals.

8.
Front Neuroanat ; 16: 852057, 2022.
Article in English | MEDLINE | ID: mdl-35528948

ABSTRACT

The structural complexity of nervous tissue makes it very difficult to unravel the connectivity between neural elements at different scales. Numerous methods are available to trace long-range projections at the light microscopic level, and to identify the actual synaptic connections at the electron microscopic level. However, correlating mesoscopic and nanoscopic scales in the same cell, cell population or brain region is a problematic, laborious and technically demanding task. Here we present an effective method for the 3D reconstruction of labeled subcellular structures at the ultrastructural level, after single-neuron labeling in fixed tissue. The brain is fixed by intracardial perfusion of aldehydes and thick vibratome sections (250 µm) are obtained. Single cells in these vibratome sections are intracellularly injected with horseradish peroxidase (HRP), so that the cell body and its processes can be identified. The thick sections are later flat-embedded in epoxy resin and re-sectioned into a series of thinner (7 µm) sections. The sections containing the regions of interest of the labeled cells are then imaged with automated focused ion beam milling and scanning electron microscopy (FIB-SEM), acquiring long series of high-resolution images that can be reconstructed, visualized, and analyzed in 3D. With this methodology, we can accurately select any cellular segment at the light microscopic level (e.g., proximal, intermediate or distal dendrites, collateral branches, axonal segments, etc.) and analyze its synaptic connections at the electron microscopic level, along with other ultrastructural features. Thus, this method not only facilitates the mapping of the synaptic connectivity of single-labeled neurons, but also the analysis of the surrounding neuropil. Since the labeled processes can be located at different layers or subregions, this method can also be used to obtain data on the differences in local synaptic organization that may exist at different portions of the labeled neurons.

9.
J Microsc ; 287(1): 19-31, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35415878

ABSTRACT

The visualisation and quantification of pore networks and main phases have been critical research topics in cementitious materials as many critical mechanical and chemical properties and infrastructure reliability rely on these 3D characteristics. In this study, we realised the mesoscale serial sectioning and analysis up to ∼80 µm by ∼90 µm by ∼60 µm on portland cement mortar using plasma focused ion beam (PFIB) for the first time. The workflow of working with mortar and PFIB was established applying a prepositioned hard silicon mask to reduce curtaining. Segmentation with minimal human interference was performed using a trained neural network, in which multiple types of segmentation models were compared. Combining PFIB analysis at microscale with X-ray micro-computed tomography, the analysis of capillary pores and air voids ranging from hundreds of nanometres (nm) to millimetres (mm) can be conducted. The volume fraction of large capillary pores and air voids are 11.5% and 12.7%, respectively. Moreover, the skeletonisation of connected capillary pores clearly shows fluid transport pathways, which is a key factor determining durability performance of concrete in aggressive environments. Another interesting aspect of the FIB tomography is the reconstruction of anhydrous phases, which could enable direct study of hydration kinetics of individual cement phases.

10.
Protoplasma ; 259(5): 1219-1231, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34989863

ABSTRACT

Serial sectioning transmission electron microscopy (ssTEM) is a classical method of 3D reconstruction using serial sections obtained with an ultramicrotome. However, producing a long ribbon with homogeneity is difficult. Here, ultramicrotome movement was suspended after producing a ribbon of 15-30 serial sections (cutting intervals, 100 nm), and then, the ribbon was mounted on an individual one-slot grid. However, as this ssTEM method may include influencing factors such as incorrect intervals of section thickness and distortion of sections, which is produced by cutting sections using a diamond knife and beam interaction under TEM observation, qualitative and quantitative data on rice mesophyll cells and chloroplasts were compared with those obtained from a focused ion beam scanning electron microscopy (FIB-SEM) (cutting intervals, 50 nm). No structural distortion in 3D models was observed. In addition, no significant differences in the volume and surface area were observed between the two methods. The surface to volume ratio was significantly affected by the increase in section thickness, but not the difference of methodologies. Our method was useful for observing large volumes of plant cells and organelles, leading to the identification of various sizes and types of chloroplasts. The formation of a chloroplast pocket, which is a structure surrounding other intracellular compartments, was confirmed in rice leaves grown under moderate growth conditions using the ssTEM method. As only four out of 90 chloroplasts formed pocket structures, the formation was considered to be rare under the applied moderate growth conditions.


Subject(s)
Mesophyll Cells , Oryza , Chloroplasts , Imaging, Three-Dimensional/methods , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
11.
Ultramicroscopy ; 230: 113394, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34614440

ABSTRACT

3D electron backscatter diffraction (3D-EBSD) is a method of obtaining 3-dimensional crystallographic data through serial sectioning. The recent advancement of using a Xe+ plasma focused ion beam for sectioning along with a complementary metal-oxide semiconductor based EBSD detector allows for an improvement in the trade-off between volume analyzed and spatial resolution over most other 3D characterization techniques. Recent publications from our team have focused on applying 3D-EBSD to understand microstructural phenomena in Ti-6Al-4V microstructures as a function of electron beam scanning strategies in electron beam powder bed fusion additive manufacturing. The microstructures resulting from this process have fine features, with α laths as small as 1 µm interwoven in a highly complex fashion, presenting a significant challenge to characterize. Over the course of these fundamental works, we have developed best-practice 3D-EBSD collection protocols and advanced methods for 3D data reconstruction and analysis of such microstructures which remain unpublished. These methods may be of interest to the 3D materials characterization community, especially considering the lack of standard commercial software tools. Thus, the current paper elaborates on the methods and analysis used to characterize fine titanium microstructures using 3D-EBSD and presents a detailed description of the new algorithms developed for probing the unique features therein. The new analyses include algorithms for identifying intervariant boundary types, classifying three-variant clusters, assigning grains to variants, and quantifying interconnectivity of branched α platelets.

12.
Front Neurosci ; 15: 726763, 2021.
Article in English | MEDLINE | ID: mdl-34566569

ABSTRACT

The human brain contains a wide array of billions of neurons and interconnections, which are often simplified for analysis in vitro using compartmentalized microfluidic devices for neuronal cell culturing, to better understand neuronal development and disease. However, such devices are traditionally incompatible for high-pressure freezing and high-resolution nanoscale imaging and analysis of their sub-cellular processes by methods including electron microscopy. Here we develop a novel compartmentalized neuronal co-culture platform allowing reconstruction of neuronal networks with high variable spatial control, which is uniquely compatible for high-pressure freezing. This cryo-fixation method is well-established to enable high-fidelity preservation of the reconstructed neuronal networks and their sub-cellular processes in a near-native vitreous state without requiring chemical fixatives. To direct the outgrowth of neurites originating from two distinct groups of neurons growing in the two different compartments, polymer microstructures akin to microchannels are fabricated atop of sapphire disks. Two populations of neurons expressing either enhanced green fluorescent protein (EGFP) or mCherry were grown in either compartment, facilitating the analysis of the specific interactions between the two separate groups of cells. Neuronally differentiated PC12 cells, murine hippocampal and striatal neurons were successfully used in this context. The design of this device permits direct observation of entire neuritic processes within microchannels by optical microscopy with high spatial and temporal resolution, prior to processing for high-pressure freezing and electron microscopy. Following freeze substitution, we demonstrate that it is possible to process the neuronal networks for ultrastructural imaging by electron microscopy. Several key features of the embedded neuronal networks, including mitochondria, synaptic vesicles, axonal terminals, microtubules, with well-preserved ultrastructures were observed at high resolution using focused ion beam - scanning electron microscopy (FIB-SEM) and serial sectioning - transmission electron microscopy (TEM). These results demonstrate the compatibility of the platform with optical microscopy, high-pressure freezing and electron microscopy. The platform can be extended to neuronal models of brain disease or development in future studies, enabling the investigation of subcellular processes at the nanoscale within two distinct groups of neurons in a functional neuronal pathway, as well as pharmacological testing and drug screening.

13.
Comput Biol Med ; 136: 104751, 2021 09.
Article in English | MEDLINE | ID: mdl-34411901

ABSTRACT

BACKGROUND AND OBJECTIVE: Serial sectioning is the routine method in histology study. In order to restore the defective images in section stack, and overcome the limitations of manual annotation of broken areas, we developed a fully automatic approach for locating and restoring the defective image stack. METHODS: We proposed a novel end-to-end framework named automatic consecutive context perceived transformer GAN (ACCP-GAN) for fully automatic serial sectioning image blind inpainting. The first stage network (auto-detection module) was designed to detect the broken areas and repair them roughly, then guided the second stage network (refined inpainting module) to generate these expected patches precisely; therefore, the segmentation part was integrated into restoring part. The transformer module (SPTransformer), based on self-attention mechanism, was introduced to make the refined inpainting module focus on the features from neighboring images to help in correcting inpainting results. Moreover, gated convolution was largely used to extract features from normal parts in the defective image. The framework was trained and validated on the N7 dataset (803 images), and the generalization ability of the model was tested on the E17 (701 images) and N5 (413 images) datasets, all of these images were collected for previous kidney study. RESULTS: N7 dataset was divided into training, validation, and test sets with a ratio of 6:2:2. Our model performed well in broken areas segmentation with the accuracy = 0.9995. The final restoration got the best performance with FSIM = 0.9478, MS-SSIM = 0.9592, PSNR = 29.7903, VIF = 0.8543, and FID = 47.2252 compared to the popular inpainting methods. The model was further tested on E15 and N5 datasets, and the generalization ability was satisfying. CONCLUSIONS: Our method could detect and restore the defective serial sectioning image stack automatically, even the broken patches were large on an individual image. The newly designed SPTransformer performed well in feature extraction. This method reduced the workload of manual annotation and improved the analysis or application of large scale sectioning image stack in histology research.


Subject(s)
Image Processing, Computer-Assisted
14.
J Microsc ; 284(1): 25-44, 2021 10.
Article in English | MEDLINE | ID: mdl-34110027

ABSTRACT

We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labour. The software tool was developed in an interdisciplinary collaboration between computer scientists and cell biologists to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite dealing with imperfect data related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time-consuming. Furthermore, an interactive visualisation of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialised, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. To the best of our knowledge, it is the only currently available tool which is able to process data of the type and size presented here. The key to our solution is a careful design of the visualisation and interaction tools for each processing step to guarantee real-time response, and an optimised workflow that efficiently guides the user through datasets. The final solution presented here is the result of an iterative process with tight feedback loops between the involved computer scientists and cell biologists. LAY DESCRIPTION: Electron tomography of biological samples is used for a three-dimensional (3D) reconstruction of filamentous structures, such as microtubules (MTs) in mitotic and meiotic spindles. Large-scale electron tomography can be applied to increase the reconstructed volume for the visualisation of full spindles. For this, each spindle is cut into a series of semi-thick physical sections, from which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. Previously, we presented fully automatic approaches for this 3D reconstruction pipeline. However, large volumes often suffer from imperfections (ie physical distortions) caused by the image acquisition process, making it difficult to apply fully automatic approaches for matching and stitching of numerous tomograms. Therefore, we developed an interactive, semi-automatic solution that considers all requirements for large-scale stitching of microtubules in image stacks of consecutive sections. We achieved this by combining automatic methods, visual validation and interactive error correction, thus allowing the user to continuously improve the result by interactively correcting landmarks or matches of filaments. We present large-scale reconstructions of spindles in which the automatic workflow failed and where different steps of manual corrections were needed. Our approach is also applicable to other biological samples showing 3D distributions of MTs in a number of different cellular contexts.


Subject(s)
Electron Microscope Tomography , Spindle Apparatus , Tomography/instrumentation , Histological Techniques , Image Processing, Computer-Assisted/instrumentation , Imaging, Three-Dimensional , Microtubules , Software
15.
J Microsc ; 281(2): 138-156, 2021 02.
Article in English | MEDLINE | ID: mdl-32737879

ABSTRACT

The introduction of cryo-techniques to the focused ion-beam scanning electron microscope (FIB-SEM) has brought new opportunities to study frozen, hydrated samples from the field of Life Sciences. Cryo-techniques have long been employed in electron microscopy. Thin electron transparent sections are produced by cryo-ultramicrotomy for observation in a cryo-transmission electron microscope (TEM). Cryo-TEM is presently reaching the imaging of macromolecular structures. In parallel, cryo-fractured surfaces from bulk materials have been investigated by cryo-SEM. Both cryo-TEM and cryo-SEM have provided a wealth of information, despite being 2D techniques. Cryo-TEM tomography does provide 3D information, but the thickness of the volume has a maximum of 200-300 nm, which limits the 3D information within the context of specific structures. FIB-milling enables imaging additional planes by creating cross-sections (e.g. cross-sectioning or site-specific X-sectioning) perpendicular to the cryo-fracture surface, thus adding a third imaging dimension to the cryo-SEM. This paper discusses how to produce suitable cryo-FIB-SEM cross-section results from frozen, hydrated Life Science samples with emphasis on 'common knowledge' and reoccurring observations. LAY DESCRIPTION: Life Sciences studies life down to the smallest details. Visualising the smallest details requires electron microscopy, which utilises high-vacuum chambers. One method to maintain the integrity of Life Sciences samples under vacuum conditions is freezing. Frozen samples can remain in a suspended state. As a result, research can be carried out without having to change the chemistry or internal physical structure of the samples. Two types of electron microscopes equipped with cryo-sample handling facilities are used to investigate samples: The scanning electron microscope (SEM) which investigates surfaces and the transmission electron microscope (TEM) which investigates thin electron transparent sections (called lamellae). A third method of investigation combines a SEM with a focused ion beam (FIB) to form a cryo-FIB-SEM, which is the basis of this paper. The electron beam images the cryo-sample surface while the ion beam mills into the surface to expose the interior of the sample. The latter is called cross-sectioning and the result provides a way of investigating the 3rd dimension of the sample. This paper looks at the making of cross-sections in this manner originating from knowledge and experience gained with this technique over many years. This information is meant for newcomers, and experienced researchers in cryo-microscopy alike.


Subject(s)
Biological Science Disciplines , Electron Microscope Tomography , Cryoelectron Microscopy , Microscopy, Electron , Microtomy
16.
Histochem Cell Biol ; 155(2): 241-260, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32944795

ABSTRACT

Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.


Subject(s)
Electron Microscope Tomography , Imaging, Three-Dimensional , Lung/ultrastructure , Animals , Humans
17.
J Struct Biol ; 213(1): 107664, 2021 03.
Article in English | MEDLINE | ID: mdl-33221390

ABSTRACT

Enameloid, the hyper-mineralized tissue covering shark teeth is a complex structure resulting from both ameloblast and odontoblast activity. The way these two types of cells interact to set up this tissue is not fully understood and results in the formation of subunits in the enameloid: the Single Crystallite Enameloid (SCE) and the Bundled Crystallite Enameloid (BCE). Using the Focused Ion Beam Nanotomography (FIB-nt), 3D images were produced to assess the relationship between the SCE and BCE of one fossil and one recent neoselachian shark teeth. 3D analysis of crystallite bundles reveals a strong connection between the crystallites forming the SCE and those forming the bundles of the Radial Bundle Enameloid (RBE), a component of the BCE, although it has been suggested that SCE and BCE have a different origin: epithelial for the SCE and mesenchymal for the BCE. Another significant result of the use of FIB-nt is the visualization of frequent branching among the radial bundles forming the RBE, including horizontal link between adjacent bundles. FIB-nt demonstrates therefore a strong potential to decipher the complex evolution of hyper-mineralised tissue in shark teeth, and, therefore, to better understand the evolution of tooth structure among basal Gnathostomes.


Subject(s)
Minerals/chemistry , Animals , Biological Evolution , Fossils , Microscopy, Electron, Scanning , Sharks/anatomy & histology , Tooth/anatomy & histology
18.
Microscopy (Oxf) ; 70(3): 265-277, 2021 Jun 06.
Article in English | MEDLINE | ID: mdl-33002113

ABSTRACT

In this study, we conducted a quantitative evaluation of dislocation density by scanning electron microscopy electron channeling contrast imaging for α grains of a Ti-6Al-4V alloy deformed at room temperature. The depth of visibility of dislocations is experimentally measured as 140 to 160 nm by a serial sectioning observation. This result is compared with the theoretical value and applied to evaluate dislocation density. These factors confirm that the theoretically calculated value of the depth of visibility, at 5 to 6 times the extinction distance, is valid for the hexagonal close-packed Ti alloy.

19.
Microsc Microanal ; 26(6): 1088-1099, 2020 12.
Article in English | MEDLINE | ID: mdl-33289465

ABSTRACT

Nonmetallic inclusion (NMI) populations in superelastic (SE) Nitinol fine wires (<140 µm in diameter) were investigated by combining plasma focused ion beam (PFIB) serial sectioning with scanning electron microscopy (SEM). High purity (HP)­lower oxygen content and standard purity (SP)­higher oxygen content Nitinol wires were sectioned and imaged. The three-dimensional (3D) reconstructions provided more complete connectivity of NMIs and pores as well as information about the distribution of the features within the wire volume that is not possible with traditional two-dimensional (2D) imaging techniques. NMIs were present alone and with pores in the leading and/or trailing edges of the inclusions, in addition to stringers (i.e., fractured, elongated NMI, and intermixed with pores adjacent to each other), all of which were parallel to the wire drawing axis. The area percentages for the NMIs were 0.01% (HP Nitinol) and 0.04% (SP Nitinol), while the volume percentages measured 0.09% (HP Nitinol) and 0.47% (SP Nitinol). The combined PFIB-SEM serial sectioning approach provided the requisite resolution necessary to distinguish between NMIs and pores at micron and submicron sizes. Information gathered from this technique can be used to better inform models and predictions for fatigue lifetimes based on statistical analyses of these feature populations.

20.
Am J Phys Anthropol ; 173(4): 748-759, 2020 12.
Article in English | MEDLINE | ID: mdl-32918320

ABSTRACT

OBJECTIVES: The growth of tooth dentin is incremental, so its formation represents a dietary record in early life. With archeological skeletons, applying sequential stable isotope analysis to the horizontal sections of tooth dentin has revealed weaning patterns and dietary changes that took place during childhood. However, the assignment of ages to dentin serial sections (DSSs) is problematic due to the changing extension rate and oblique growth layers of dentin, and these effects have not been quantified. This study presents a mathematical model for investigating the corresponding age range of the horizontal DSSs of human permanent incisors, canines, and molars. METHODS: Parameters describing the tooth dentin microstructure were taken from previous studies, and dentin growth patterns were modeled. The model was implemented as the R package MDSS. RESULTS: The developed model shows that the true corresponding age of the sections differed by a few years on average from the estimated age with equal temporal divisions, that the model gave values extending across a wide range, and that these differences become large for sections formed at older ages. The stable isotope ratio of the sections presented an aggregate representation of possibly complex dietary changes across a few years, and dietary changes over short times, such as several months, could not be accurately reconstructed even when using a finer horizontal sectioning method. CONCLUSIONS: These results demonstrate that DSSs correspond to an unexpectedly wider (i.e., three to four times) and different (i.e., -2 to 0.5 years on average) age range than previously assumed and that complicated patterns of dietary change blur in the isotopic trajectory of the sections. Alternative experimental methods, such as imaging-assisted oblique sampling, should be used to retrieve an accurate and precise sequential dietary record from tooth dentin.


Subject(s)
Age Determination by Teeth/methods , Dentin/chemistry , Dentin/growth & development , Models, Biological , Child , Child, Preschool , Diet , Humans , Infant , Male , Tooth/chemistry , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...