Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(7): e0089124, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38953369

ABSTRACT

Serratia sp. ATCC 39006 is an important model strain for the study of prodigiosin production, whose prodigiosin biosynthesis genes (pigA-O) are arranged in an operon. Several transcription factors have been shown to control the transcription of the pig operon. However, since the regulation of prodigiosin biosynthesis is complex, the regulatory mechanism for this process has not been well established. In most γ-proteobacteria, the ROK family regulator NagC acts as a global transcription factor in response to N-acetylglucosamine (GlcNAc). In Serratia sp. ATCC 39006, NagC represses the transcription of two divergent operons, nagE and nagBAC, which encode proteins involved in the transport and metabolism of GlcNAc. Moreover, NagC directly binds to a 21-nt region that partially overlaps the -10 and -35 regions of the pig promoter and promotes the transcription of prodigiosin biosynthesis genes, thereby increasing prodigiosin production. Although NagC still acts as both repressor and activator in Serratia sp. ATCC 39006, its transcriptional regulatory activity is independent of GlcNAc. NagC was first found to regulate antibiotic biosynthesis in Gram-negative bacteria, and NagC-mediated regulation is not responsive to GlcNAc, which contributes to future studies on the regulation of secondary metabolism by NagC in other bacteria. IMPORTANCE: The ROK family transcription factor NagC is an important global regulator in the γ-proteobacteria. A large number of genes involved in the transport and metabolism of sugars, as well as those associated with biofilm formation and pathogenicity, are regulated by NagC. In all of these regulations, the transcriptional regulatory activity of NagC responds to the supply of GlcNAc in the environment. Here, we found for the first time that NagC can regulate antibiotic biosynthesis, whose transcriptional regulatory activity is independent of GlcNAc. This suggests that NagC may respond to more signals and regulate more physiological processes in Gram-negative bacteria.


Subject(s)
Acetylglucosamine , Bacterial Proteins , Gene Expression Regulation, Bacterial , Prodigiosin , Serratia , Serratia/genetics , Serratia/metabolism , Prodigiosin/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Acetylglucosamine/metabolism , Operon , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Environ Sci Pollut Res Int ; 31(4): 5319-5330, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38114705

ABSTRACT

Cadmium (Cd) presence and bioavailability in soils is a serious concern for cocoa producers. Cocoa plants can bioaccumulate Cd that can reach humans through the food chain, thus posing a threat to human health, as Cd is a highly toxic metal. Currently, microbiologically induced carbonate precipitation (MICP) by the ureolytic path has been proposed as an effective technique for Cd remediation. In this work, the Cd remediation potential and Cd resistance of two ureolytic bacteria, Serratia sp. strains 4.1a and 5b, were evaluated. The growth of both Serratia strains was inhibited at 4 mM Cd(II) in the culture medium, which is far higher than the Cd content that can be found in the soils targeted for remediation. Regarding removal efficiency, for an initial concentration of 0.15 mM Cd(II) in liquid medium, the maximum removal percentages for Serratia sp. 4.1.a and 5b were 99.3% and 99.57%, respectively. Their precipitates produced during Cd removal were identified as calcite by X-ray diffraction. Energy dispersive X-ray spectroscopy analysis showed that a portion of Cd was immobilized in this matrix. Finally, the presence of a partial gene from the czc operon, involved in Cd resistance, was observed in Serratia sp. 5b. The expression of this gene was found to be unaffected by the presence of Cd(II), and upregulated in the presence of urea. This work is one of the few to report the use of bacterial strains of the Serratia genus for Cd remediation by MICP, and apparently the first one to report differential expression of a Cd resistance gene due to the presence of urea.


Subject(s)
Cadmium , Serratia , Humans , Cadmium/metabolism , Serratia/metabolism , Carbonates/chemistry , Calcium Carbonate/chemistry , Soil/chemistry , Urea/metabolism
3.
Plants (Basel) ; 12(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37653890

ABSTRACT

Metal contamination coupled with aridity is a major challenge for remediation of abiotic stressed soils throughout the world. Both biochar and beneficial bacteria showed a significant effect in bioremediation; however, their conjugate study needs more exploration. Two rhizobacteria strains Serratia sp. FV34b and Pseudomonas sp. ASe42b isolated from multi-metal and drought stressed sites showed multiple plant-growth-promoting attributes (phosphate solubilization, indole-3-acetic acid, siderophore, and ammonia production). Both strains were able to tolerate a high concentration of Cd along with being resistant to drought (-0.05 to -0.73 MPa). The seldom studied biomass of Amaranthus caudatus L. was used for biochar preparation by pyrolyzing it at 470 °C for 160 min under limited oxygen and then using it for the preparation of biochar-based microbial cell composites (BMC)s. To check the efficiency of BMC under Cd stress (21 mg kg-1 soil) and drought, a pot-scale study was conducted using Brassica napus L. for 47 days. Both the BMC5 (Biochar + Serratia sp. FV43b) and BMC9 (Biochar + Pseudomonas sp. ASe42b) improved the seed germination, plant biometrical (shoot and root biomass, length of organs) and physiological (photosynthetic pigments, proline, malondialdehyde, and relative water content) parameters under drought (exerted until it reaches up to 50% of field capacity) and Cd-spiked soil. However, for most of them, no or few significant differences were observed for BMC9 before and after drought. Moreover, BMC9 maximized the Cd accumulation in root and meager transfer to shoot, making it a best bioformulation for sustainable bioremediation of Cd and drought stressed soils using rapeseed plant.

4.
J Basic Microbiol ; 63(10): 1165-1176, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37469200

ABSTRACT

Psychrophiles are cold-adapted microorganisms living in cold regions and are known to generate cold-active enzymes such as proteases, lipases, and peptidases. These types of enzymes are a major part of the market of the food and textile sector. This study aimed to isolate and characterize the cold-active and detergent-stable, extracellular protease from psychotrophic bacteria Serratia sp. TGS1 (OQ654005). Protease was purified by gel permeation chromatography using Sephadex G-75. The specific activity of the purified protease was 250 U/mg at 15°C, with a purification fold of 5.68 and a percentage yield of 60%. The cold active protease was stable within a temperature range of 5-30°C and a pH range of 6-10. Ca+2 and Mg+2 enhanced its activity while chelators like ethylenediaminetetraacetic acid inhibited cold active protease, showing it as metalloprotease in nature. The enzyme was sensitive to Cu+2 , Zn+2 , and Hg+2 , and the proteolytic activity decreased upon treatment with heavy metals. The molecular weight of the protease was estimated to be 47 kDa using sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Proteins within a specific range of molecular weight possess desirable properties for industrial enzyme use. By working on a specific range, the researchers intended to examine an enzyme to examine its specific characteristics. The purified protease showed high stability to detergents like SDS, Tween 20, Tween 60, and Triton X. The maximum velocity Vmax and Km values were 59.90 mg/min/mL and 1.53 mg/mL, respectively. The obtained protease exhibited an interesting activity at a broad range of pH (6-10) and stability at low temperatures (5-30°C) and detergents. Such enzymatic features of versatile and potent cold-active enzymes enhance their industrial applications to meet food, dairy, and laundry requirements.

5.
3 Biotech ; 13(3): 98, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36860360

ABSTRACT

Cadmium (Cd) is a toxic heavy metal that causes serious health problems and is present in agriculturally important soils in Colombia, such as the ones used for cocoa farming. Recently, the use of ureolytic bacteria by the Microbiologically Induced Carbonate Precipitation (MICP) activity has been proposed as an alternative to mitigate the availability of Cd in contaminated soils. In this study, 12 urease-positive bacteria able to grow in the presence of Cd(II) were isolated and identified. Three were selected based on urease activity, precipitates formation and growth, with two belonging to the genus Serratia (codes 4.1a and 5b) and one to Acinetobacter (code 6a). These isolates exhibited low urease activity levels (3.09, 1.34 and 0.31 µmol mL-1 h-1, respectively), but could raise the pH to values close to 9.0 and to produce carbonate precipitates. It was shown that the presence of Cd affects the growth of the selected isolates. However, urease activity was not negatively influenced. In addition, the three isolates were observed to efficiently remove Cd from solution. The two Serratia isolates presented maximum removals of 99.70% and 99.62%, with initial 0.05 mM Cd(II) in the culture medium (supplemented with urea and Ca(II)) at 30 °C and 144 h of incubation. For the Acinetobacter isolate, the maximum removal was 91.23% at the same conditions. Thus, this study evidences the potential use of these bacteria for bioremediation treatments in samples contaminated with Cd, and it is one of the few reports that shows the high cadmium removal capacity of bacteria from the genus Serratia. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03495-1.

6.
Microb Genom ; 9(3)2023 03.
Article in English | MEDLINE | ID: mdl-36995210

ABSTRACT

Serratia sp. ATCC 39006 is a Gram-negative bacterium that has been used to study the function of phage defences, such as CRISPR-Cas, and phage counter-defence mechanisms. To expand our phage collection to study the phage-host interaction with Serratia sp. ATCC 39006, we isolated the T4-like myovirus LC53 in Otepoti Dunedin, Aotearoa New Zealand. Morphological, phenotypic and genomic characterization revealed that LC53 is virulent and similar to other Serratia, Erwinia and Kosakonia phages belonging to the genus Winklervirus. Using a transposon mutant library, we identified the host ompW gene as essential for phage infection, suggesting that it encodes the phage receptor. The genome of LC53 encodes all the characteristic T4-like core proteins involved in phage DNA replication and generation of viral particles. Furthermore, our bioinformatic analysis suggests that the transcriptional organization of LC53 is similar to that of Escherichia coli phage T4. Importantly, LC53 encodes 18 tRNAs, which likely compensate for differences in GC content between phage and host genomes. Overall, this study describes a newly isolated phage infecting Serratia sp. ATCC 39006 that expands the diversity of phages available to study phage-host interactions.


Subject(s)
Bacteriophage T4 , Serratia , Serratia/genetics , Bacteriophage T4/genetics , Myoviridae/genetics , Genomics , New Zealand
7.
Appl Biochem Biotechnol ; 195(10): 6098-6112, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36809430

ABSTRACT

Plant-associated bacteria exhibit diverse chemical means to protect plants from the pathogens. The present study has been conducted to evaluate the volatile-mediated antifungal activity of Serratia sp. NhPB1 isolated from the pitcher plant against the notorious pathogen Pythium aphanidermatum. The study has also evaluated the protective effect of NhPB1 on Solanum lycopersicum and Capsicum annuum leaves and fruits against P. aphanidermatum. From the results, NhPB1 was found to have remarkable activity against the tested pathogen. The isolate was also found to impart disease protection in selected plants as evidenced by the morphological changes. Here, the leaves and fruits of S. lycopersicum and C. annuum control which were treated with the uninoculated LB and distilled water were found to have the presence of P. aphanidermatum growth with lesions and decaying of tissues. However, the NhPB1-treated plants did not show any symptoms of fungal infection. This could further be confirmed by the microscopical examination of tissues by propidium iodide staining. Here, the normal architecture of leaf and fruit tissues could be observed in the NhPB1-treated group, but the tissue invasion by P. aphanidermatum was observed in the control group which further confirms the promises of selected bacteria for biocontrol applications.


Subject(s)
Pythium , Serratia , Plant Diseases/prevention & control , Plant Diseases/microbiology , Antifungal Agents/pharmacology , Fruit
8.
Biomolecules ; 12(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36291677

ABSTRACT

Microbial products have been used for the treatment of different diseases for many centuries. The serratiopeptidase enzyme provides a new hope for COVID-19-infected patients. Nowadays, anti-inflammatory drugs are easy to obtain at minimal expenditure from microbial sources. Serratia sp. is identified as one of the most efficient bacteria produced from serratiopeptidase. Screening for new and efficient bacterial strains from different sources has been of interest in recent years. Serratiopeptidase remains the most well-known anti-inflammatory drug of choice. Serratiopeptidase is a cheaper and safer anti-inflammatory drug alternative to NSAIDs. The multifaceted properties of serratiopeptidase may lead towards arthritis, diabetes, cancer and thrombolytic treatments. Existing serratiopeptidase treatments in combination with antibiotics are popular in the treatment of postoperative swelling. Although an exclusive number of serratiopeptidase-producing strains have been derived, there is an urge for new recombinant strains to enhance the production of the enzyme. This review explores the properties of serratiopeptidase, different therapeutic aspects, industrial production, and various analytical techniques used in enzyme recovery. In addition, the review highlights the therapeutic and clinical aspects of the serratiopeptidase enzyme to combat COVID-19-induced respiratory syndrome.


Subject(s)
COVID-19 Drug Treatment , Humans , Peptide Hydrolases , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents
9.
Microbiol Res ; 264: 127175, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36067706

ABSTRACT

Membrane biofouling is a process that can impede the development of membrane bioreactor (MBR), which constitutes an important system of the wastewater treatment process. Membrane biofouling is governed by quorum sensing (QS), a communication system heavily dependent on the activities of signal molecules. Certain bacteria, known as quorum quenching (QQ) bacteria, can quench the QS process by destroying the signal molecules. These QQ bacteria are considered a sustainable and feasible way of mitigating membrane biofouling in MBR. In this study, a QQ enzyme (designated as AisZ) from a Serratia sp. was first identified and characterized. Escherichia coli BL21 expressing AisZ was able to degrade different QS signal molecules. Furthermore, these cells could also mitigate membrane biofouling in MBR during a 29-day operation by reducing the transmembrane pressure from 31 to 21 kPa. The metal ions Co2+ and Ni2+ were relatively important to AisZ in that they could significantly enhance the activity of AisZ and restore the EDTA-inactivated AisZ. Expression of the aisA gene was not influenced by Co2+, Ni2+ and QS signal molecules. AisZ might, therefore, extend the diversity of potential candidates for the mitigation of biofouling associated with membrane filtration technologies.


Subject(s)
Biofouling , Biofouling/prevention & control , Bioreactors/microbiology , Escherichia coli/genetics , Membranes , Quorum Sensing , Serratia/genetics
10.
Environ Res ; 214(Pt 3): 113937, 2022 11.
Article in English | MEDLINE | ID: mdl-35931193

ABSTRACT

In this study the multiple metal(loid) (As, Cd, Cu and Ni) resistant bacterium Serratia sp. KUJM3 was able to grow in both single and multiple metal(loid) contaminated wastewater and removed them by 34.93-48.80% and 22.93-32%, respectively. It reduced As(v) to As(III) by 68.44-85.06% in a concentration dependent manner. The strain's IAA production potential increased significantly under both metal(loid)s regime. The lentil (Lens culinaris) seed germination and seed production were enhanced with the exogenous bacterial inoculation by 20.39 and 16.43%, respectively. Under both multi-metal(loid) regimes the bacterial inoculation promoted shoot length (22.65-51.34%), shoot dry weight (33.89-66.11%) and seed production (13.46-35%). Under bacterial manipulation the metal(loid)s immobilization increased with concomitant curtailment of translocation in lentil plant by 61.89-75.14% and 59.19-71.14% in shoot and seed, respectively. The strain biomineralized struvite (MgNH4 PO4 ·6H2O) from human urine @ 403 ± 6.24 mg L-1. The fertilizer potential of struvite was confirmed with the promotion of cowpea (Vigna unguiculata) growth traits e.g. leaf number (37.04%), pod number (234%), plant wet weight (65.47%) and seed number (134.52%). Thus Serratia sp. KUJM3 offers multiple benefits of metal(loid)s bioremediation, As(V) reduction, plant growth promotion, and struvite biomineralization garnering a suite of appealing environmental applications.


Subject(s)
Lens Plant , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Humans , Metals , Metals, Heavy/analysis , Plant Development , Serratia , Soil Pollutants/analysis , Struvite
11.
Foods ; 11(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35954039

ABSTRACT

Hafnia sp. and Serratia sp. belong to the Tribe Klebsielleae; although they are not considered pathogenic bacteria, there are many documented cases of diseases caused by these microorganisms. The aim of this study was to determine the antibiotic resistance profiles of strains belonging to the genus Hafnia and Serratia isolated from fish and shrimps. Phenotypic antibiotic resistance was determined using the semi-automatic Vitek 2 system (bioMérieux, Marcy-l'Étoile, France), while the presence of the extended-spectrum beta-lactamase, AmpC beta-lactamases, Klebsiella pneumoniae carbapenemases and Metallo-ß-Lactamase producing strains were determined using the MIC Test Strip (Liofilchem, Roseto degli Abbruzzi, Italy). As a result of the conducted research, it was observed that a vast number of Hafnia sp. strains were resistant to cefalexin (84.61%), while Serratia sp. Strains to cefuroxime (79.41%) and nitrofurantoin (85.29%). In addition, it was observed that of all strains, only one had an ability to produce enzymes typical for ß-lactamase-producing Enterobacterales. Although the strains of Hafnia sp. and Serratia sp. isolated from fish and shrimp are not characterized by frequent resistance to antibiotics, taking into account the constantly growing number of antibiotic-resistant strains, this may be a problem in the future, mainly due to gene transfer through mobile genetic elements and the acquisition of resistance expressed phenotypically through contact with stress factors. Therefore, studies monitoring the antibiotic resistance profile of these species should be carried out on a regular basis.

12.
Adv Healthc Mater ; 11(17): e2200568, 2022 09.
Article in English | MEDLINE | ID: mdl-35765741

ABSTRACT

Current advances in ultrasound imaging techniques combined with the next generation contrast agents such as gas vesicles (GV) revolutionize the visualization of biological tissues with spatiotemporal precision. In optics, fluorescent proteins enable understanding of molecular and cellular functions in biological systems due to their multiplexed imaging capability. Here, a panel of GVs is investigated using mid-band fit (MBF) spectral imaging to realize multiplexed ultrasound imaging to uniquely visualize locations of different types of stationary GVs. The MBF spectral imaging technique demonstrates that stationary clustered GVs are efficiently localized and distinguished from unclustered GVs in agarose gel phantom and 3D vessel structures are visualized in ex vivo mouse liver specimens. Mouse macrophages serve as carriers of clustered and unclustered GVs and multiplexing beacons to report cells' spatial locations by emitting distinct spectral signals. 2D MBF spectral images are reconstructed, and pixels in these images are classified depending on MBF values by comparing predetermined filters that predict the existence of cells with clustered and unclustered GVs. This pseudo-coloring scheme clearly distinguishes the locations of two classes of cells like pseudo-color images in fluorescence microscopy.


Subject(s)
Contrast Media , Proteins , Animals , Mice , Microscopy, Fluorescence , Proteins/chemistry , Ultrasonography/methods
13.
Chemosphere ; 298: 134344, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35307394

ABSTRACT

Tetracycline pollution is an emerging threat in aquatic and terrestrial environments because of its widespread applications in human disease, livestock, and aquaculture. Present study, investigated the tetracycline degrading novel Serratia marcescens strain WW1, which was isolated from a wastewater treatment plant (WWTP). Toxicity analysis of tetracycline with strain WW1 indicates that its intermediate metabolites are not toxic for the indicator bacteria and algae. The degradation conditions for the tetracycline optimized using response surface methodology (RSM) were determined as: pH 6.0; temperature, 36 °C; tetracycline concentration, 20 mg L-1; and inoculum size, 100 µL (OD∼0.5). The strain WW1 was able to utilize tetracycline during the growth phase, and it degraded 89.5% of the tetracycline within 48 h. The degradation kinetics suggested the strain perform significant tetracycline removal with half-life (t1/2) 239.04 and 12.44 h in control and treatments. Tetracycline and its intermediates were analyzed using High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectroscopy (LC-MS). It was observed that strain WW1 could efficiently metabolize the tetracycline within 48 h of experiment. The ability of strain WW1 to degrade tetracycline justifies its use as an environmentally-useful bacterium. Therefore, the present study demonstrated that the degradation of antibiotics is possible using indigenous microbial strains.


Subject(s)
Serratia marcescens , Water Purification , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental , Humans , Serratia marcescens/metabolism , Tetracycline/analysis
14.
Microb Pathog ; 164: 105449, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35183700

ABSTRACT

The aim of this work was to produce a red tripyrrole pigment prodigiosin from Serratia sp. C6LB strain, to investigate the promising antimicrobial properties on Gram-positive and Gram-negative bacterial strains. The research was also proposed to evaluate the antibiofilm activity on Staphylococcus epidermidis S61 biofilm and its cytotoxic activity against human cancer cell lines. The production and structural elucidation of prodigiosin was carried out using spectrophotometric scanning, TLC, HPLC, FTIR and NMR analysis. The pigment production was optimized using mannose and peptone as carbon and nitrogen sources, respectively. The study confirmed promising antibacterial properties of prodigiosin on eight Gram-positive and Gram-negative bacterial strains with MICs values ranged from 0.039 to 2.5 mg/mL. Antiadhesive activity test of prodigiosin on Staphylococcus epidermidis S61 biofilm exhibited 99.9% inhibition, whereas maximum biofilm eradication activity reached 65%. Cytotoxic activity showed IC50 of 16 µg/mL and 6.7 µg/mL against breast cancer lines MCF-7 and MDA-MB231, respectively.


Subject(s)
Prodigiosin , Serratia , Animals , Anti-Bacterial Agents/metabolism , Biofilms , Humans , Milk , Serratia marcescens
15.
Appl Environ Microbiol ; 88(5): e0204121, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35044847

ABSTRACT

The biosynthesis of prodigiosin in the model prodigiosin-producing strain, Serratia sp. ATCC 39006, is significantly influenced by environmental and cellular signals. However, a comprehensive regulatory mechanism for this process has not been well established. In the present study, we demonstrate that organic hydroperoxide activates prodigiosin biosynthesis in an OhrR-dependent manner. Specifically, the MarR-family transcriptional repressor OhrR (Ser39006_RS05455) binds to its operator located far upstream of the promoter region of the prodigiosin biosynthesis operon (319 to 286 nucleotides [nt] upstream of the transcription start site) and negatively regulates the expression of prodigiosin biosynthesis genes. Organic hydroperoxide disassociates the binding between OhrR and its operator, thereby promoting the prodigiosin production. Moreover, OhrR modulates the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide by regulating the transcription of its own gene and the downstream cotranscribed ohr gene. These results demonstrate that OhrR is a pleiotropic repressor that modulates the prodigiosin production and the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide stress. IMPORTANCE Bacteria naturally encounter various environmental and cellular stresses. Organic hydroperoxides generated from the oxidation of polyunsaturated fatty acids are widely distributed and usually cause lethal oxidative stress by damaging cellular components. OhrR is known as a regulator that modulates the resistance of bacteria to organic hydroperoxide stress. In the current study, organic hydroperoxide disassociates OhrR from the promoter of prodigiosin biosynthesis gene cluster, thus promoting transcription of pigA to -O genes. In this model, organic hydroperoxide acts as an inducer of prodigiosin synthesis in Serratia sp. ATCC 39006. These results improve our understanding of the regulatory network of prodigiosin synthesis and serve as an example for identifying the cross talk between the stress responses and the regulation of secondary metabolism.


Subject(s)
Gene Expression Regulation, Bacterial , Hydrogen Peroxide , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen Peroxide/metabolism , Prodigiosin , Repressor Proteins/genetics , Serratia/genetics
16.
Front Microbiol ; 12: 734854, 2021.
Article in English | MEDLINE | ID: mdl-34603264

ABSTRACT

The well-known Crp/Fnr family regulator Fnr has long been recognized as an oxygen sensor to regulate multiple biological processes, including the switch between aerobic/anaerobic metabolism, nitrogen fixation, bioluminescence, infection, and virulence. In most cases, Fnr was found to be active under anaerobic conditions. However, its role in aerobic antibiotic metabolism has not yet been revealed. In this research, we report that in the model organism, Serratia sp. ATCC 39006, Fnr (Ser39006_013370) negatively regulates prodigiosin production by binding to the spacer between the -10 and -35 region in the promoter of prodigiosin biosynthetic gene cluster under aerobic conditions. Fnr was also shown to modulate the anti-bacterial activity and motility by regulating pathway-specific regulatory genes, indicating that Fnr acts as a global regulator in Serratia sp. ATCC 39006. For the first time, we describe that Fnr regulates antibiotic synthesis in the presence of oxygen, which expands the known physiological functions of Fnr and benefits the further investigation of this important transcriptional regulator.

17.
J Invertebr Pathol ; 184: 107655, 2021 09.
Article in English | MEDLINE | ID: mdl-34411606

ABSTRACT

The pupal soil cell of the pecan weevil, Curculio caryae (Coleoptera: Curculionidae), was reported previously to exhibit antibiosis to an entomopathogenic fungus, Beauveria bassiana. The objectives of this study were to examine 1) if the antimicrobial effect occurs in other insects that form pupal cells, 2) whether the effect extends to plant pathogenic fungi, and 3) identify the source of antibiosis in pupal soil cells of C. caryae. Antibiosis of pupal cells against B. bassiana was confirmed in-vitro in three additional curculionids, Diaprepes abbreviatus, Conotrachelus nenuphar, and Pissodes nemorensis, all of which had fewer fungal colonies relative to controls. Pupal soil cells were found to suppress phytopathogenic fungi in-vitro, including suppression of Alternaria solani by D. abbreviatus pupal cell, and that of Monilinia fructicola by C. caryae. The detection of antibiosis of soil cells formed by surface-sterilized insects using sterile soil implies the antimicrobial effect stemmed from inside the insect. Further, a novel biotic mechanism was identified: a bacterium related to Serratia nematodiphila was isolated from C. caryae pupal soil cells and was found to be associated with antibiosis. The bacterial cultures with or without autoclave had similar effects but were not as potent as pupal soil cells for suppressing B. bassiana. Also, autoclaved soil cells and autoclaved bacterial culture suppressed M. fructicola but were not as inhibitory as non-autoclaved soil cells. This indicates that antibiosis may be due to bacterial metabolites, although other factors may also be involved. Our findings suggest potential to develop the antibiotic compounds as novel bio-fungicides to control plant diseases.


Subject(s)
Antibiosis , Beauveria/drug effects , Plant Diseases/prevention & control , Serratia/physiology , Soil Microbiology , Weevils/microbiology , Animals , Fungicides, Industrial/chemistry , Pupa/growth & development , Pupa/microbiology , Serratia/chemistry , Species Specificity , Weevils/growth & development
18.
Environ Sci Pollut Res Int ; 28(33): 45619-45628, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33871775

ABSTRACT

Hexavalent chromium (Cr(VI)) and pyrene are toxic pollutants that are difficult to remediate from soils and wastewater. Serratia sp. strains have been previously demonstrated to remove either Cr(VI) or pyrene and here a new isolate, called the Z6 strain, was demonstrated to remove both simultaneously. The removal occurs primarily by Cr(VI) reduction and pyrene biodegradation, and genome analysis suggests the removal mechanisms are the putative chromate reductase and two assumable pathways of pyrene degradation. The Z6 strain effectively removed most Cr(VI) (up to approximately 86%) and pyrene (up to approximately 57%) in seven different types of wastewater after 7 days of biotreatment. Additionally, the carrier loofa used for bacteria immobilization did not change the kinetics of Cr(VI) reduction or pyrene degradation. The carrier loofa was also effective for multiple uses, with removal capacity not being significantly affected over the first seven cycles with the same carrier loofa. These results provide data for developing practical biotreatment applications of Cr(VI) and pyrene contaminated sites.


Subject(s)
Chromium , Pyrenes , Biodegradation, Environmental , Serratia , Water Pollution
19.
Front Microbiol ; 12: 619731, 2021.
Article in English | MEDLINE | ID: mdl-33717008

ABSTRACT

Chitosanase is a significant chitosan-degrading enzyme involved in industrial applications, which forms chitooligosaccharides (COS) as reaction products that are known to have various biological activities. In this study, the gene csnS was cloned from a deep-sea bacterium Serratia sp. QD07, as well as over-expressed in Escherichia coli, which is a new chitosanase encoding gene. The recombinant strain was cultured in a 5 L fermenter, which yielded 324 U/mL chitosanases. After purification, CsnS is a cold-adapted enzyme with the highest activity at 60°C, showing 37.5% of the maximal activity at 0°C and 42.6% of the maximal activity at 10°C. It exhibited optimum activity at pH 5.8 and was stable at a pH range of 3.4-8.8. Additionally, CsnS exhibited an endo-type cleavage pattern and hydrolyzed chitosan polymers to yield disaccharides and trisaccharides as the primary reaction products. These results make CsnS a potential candidate for the industrial manufacture of COS.

20.
Ecotoxicol Environ Saf ; 208: 111584, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396107

ABSTRACT

Cadmium (Cd) is highly toxic for plant metabolic processes even in low concentration due to higher retention rates, longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of Cd tolerant PGPR, Serratia sp. CP-13 together with two differentially Cd tolerant maize cultivars (MMRI-Yellow, Sahiwal-2002) selected amongst ten cultivars after screening. The maize cultivars were grown under different Cd treatments (0, 6, 12, 18, 24, 30 µM) in Petri plates both with and without Serratia sp. CP-13 inoculation. Treated plants were analyzed for their biomass accumulation, chlorophylls, carotenoids, proline, anthocyanin, protein, malondialdehyde (MDA), H2O2 as well as for antioxidants (POD, SOD, CAT) and mineral elements (Ca, Mg, Zn, K, Fe, Na, Cd). The maize cultivar MMRI-Yellow (tolerant) and Sahiwal-2002 (sensitive) exhibited significant reduction in leaf area, nutrient contents, plant biomass, activity of antioxidants, total proteins, photosynthetic pigments as well as flavonoids with increased production of H2O2, proline, MDA and relative membrane permeability (RMP) under Cd stress. However, this reduction was cultivar specific and recorded higher in cv. Sahiwal-2002 as compared to MMRI-Yellow. Application of Serratia sp. CP-13 significantly augmented plant biomass, photosynthetic pigments, antioxidative machinery, as well as flavonoids and proline while diminishing H2O2, RMP MDA production even under Cd stress in studied cultivars. Furthermore, CP-13 inoculation assisted the Cd stressed plants to sustain an optimal level of essential nutrients (Ca, Mg, Zn, K, Fe) except for Na and Cd which responded antagonistically. It was inferred that both inoculated maize cultivars exhibited better health and metabolism but substantial Cd tolerance was acquired by the sensitive cv. Sahiwal-2002 than the tolerant cv. MMRI-Yellow under applied Cd regimes. Furthermore, studied maize cultivars depicted maximum Cd tolerance in order of 30 < 24 < 18 < 12 < 6 < 0 µM Cd treatments under Serratia sp. CP-13 inoculation. Findings of current work highlighted the importance of Serratia sp. CP-13 and its inoculation impact on morpho-physio-biochemical attributes of maize growth under Cd dominant environment, which is likely an addition towards efficient approaches for bacterially-assisted Cd bioremediation and minimal Cd retention in edible plant parts.


Subject(s)
Cadmium/toxicity , Serratia/physiology , Soil Pollutants/toxicity , Zea mays/physiology , Antioxidants/metabolism , Biodegradation, Environmental , Biological Transport , Biomass , Cadmium/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Photosynthesis , Plant Leaves/metabolism , Serratia/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Zea mays/metabolism , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...